『離散構造』 演習問題 No.3 (亀山)

以下の問題で、集合 \mathcal{N}_{11} というのは、 $\{n\in\mathcal{N}\mid 0\leq n<11\}$ となる集合、つまり、0 以上 11 未満の整数の集合のことである。

問1(像、逆像、全射、単射、合成、逆関数)

 $a\in\mathcal{N}_{11}$ に対して、関数 $f_a:\mathcal{N}_{11}\to\mathcal{N}_{11}$ を, $f_a(x)=(a\cdot x+1)\mod 11$ と定める.ただし, \mod は,自然数上の割算の余りを求める演算とする。たとえば、 $7\mod 3=1$ である。

- (a) $S = \{1, 2, 3\}$ とし、 f_7 による S の像 $f_7(S)$ を計算しなさい。
- (b) $S = \{1, 2, 3\}$ とし、 f_7 による S の逆像 $f_7^{-1}(S)$ を計算しなさい。
- (c) 関数 f_7 が全単射になるかどうか調べなさい。
- (d) $f_a \circ f_b$ が恒等関数となるための $a \ge b$ の条件 (必要十分条件) を求めなさい。
- (e) f_a が逆関数を持つための a の条件 (必要十分条件) を求めなさい。

問2(関数の例)

- (a) すべての自然数の集合 $\mathcal N$ から、すべての偶数の集合への単射を 1 つ示しなさい。
- (b) $\mathcal R$ をすべての実数の集合とする。集合 $\{r \in \mathcal R \mid 0 < r < 1\}$ から集合 $\{r \in \mathcal R \mid 1 < r\}$ への全射を 1 つ示しなさい。
- (c) 関数 $f: \mathcal{N} \to \mathcal{N}$ で、f は恒等関数ではないが、 $f \circ f$ が恒等関数になるものを 1 つ示しなさい。

問3 (関数の性質)

- (a) すべての関数 $f:S\to T$ および $g:T\to U$ に対して、f と g が全射ならば、 $g\circ f$ は全射であることを示しなさい。
- (b) 「すべての関数 $f:S\to T$ および $g:T\to U$ に対して、 $g\circ f$ が単射ならば、f は単射である」かどうか調べ、正しいなら証明し、正しくないなら反例を示しなさい。
- (c) 有限集合 S,T の要素数をそれぞれ 5,4 とする。 $f:S\to T$ となる単射と全射が、それぞれいくつあるかを計算しなさい。