『離散構造』3章(関数)

演習問題の解答 (2009/3/3 訂正)

亀山

問題1 (関数の定義と単射・全射)

以下に示す対応付けが, \mathcal{R} から \mathcal{R} への関数,部分関数,単射,全射であるか答えよ.

- (a) $x\mapsto x^3-x$: 関数である,従って部分関数でもある,単射でない $(0\mapsto 0$ かつ $1\mapsto 0$ となる) が,全射である $(x\in\mathcal{R}$ の範囲で, x^3-x も \mathcal{R} 全体を渡る).
- (b) $x \mapsto (x = y^3$ となる y): 関数であり,部分関数でもあり,単射,全射である.
- (c) $x\mapsto \sqrt{x^3}$: (2009/3/3 大越君の指摘により訂正) 以前に「関数であり,部分関数でもあり,単射,全射である。」と書いていたのは誤りです。これは、 $x\ge 0$ の場合でないと、対応する値がないので、関数にはなりません。部分関数です。失礼しました。
- (d) $x\mapsto (x=\tan y$ となる y): 関数でも部分関数でもない (x に対応する y が複数ある.たとえば,x=0 のとき $y=0,2\pi$ などが対応する).

問題2(像、合成、全射、単射)

 $f(x) = \sin x, g(x) = x^3 - 1, A = \{x \in \mathcal{R} \mid 0 \le x \le \pi\}$ とする。

- (a) $0 \le x \le \pi$ の範囲で $0 \le \sin x \le 1$ であるので, $f(A) = \{x \in \mathcal{R} \mid 0 \le x \le 1\}$ となる. $g'(x) = 3x^2$ となり, $g'(x) \ge 0$ なので,g は (広義の) 単調増加である.よって, $0 \le x \le \pi$ の範囲で, $g(0) \le g(x) \le g(\pi)$ となり, $g(A) = \{x \in \mathcal{R} \mid -1 \le x \le \pi^3 1\}$ となる.
- (b) 合成関数 $f\circ g$ が定義されるのは,g のコドメインと f の定義域(ドメイン)が一致するときであるが,このケースではこれらは両方とも $\mathcal R$ なので,一致する.よって, $f\circ g$ は定義される.また, $(f\circ g)(x)=f(g(x))=\sin(x^3-1)$ である.

同様に, $g\circ f$ も定義され, $(g\circ f)(x)=g(f(x))=\sin^3 x-1$ である.

(c) (問題文では , 求める集合の名前が A であったが , これでは上の方で与えられた集合 A とだぶってしまうので , ここでは C と書く .)

 $C \subset \mathcal{R}$ のとき , $f : \mathcal{R} \to C$ が全射となる C を 1 つ求めよ .

まず f が関数となるためには , $f(\mathcal{R})\subset C$ でなければいけない . (そうでなければ , $f(x)\not\in C$ となる $x\in\mathcal{R}$ が存在することになり , f は \mathcal{R} から C への関数とはならない .)

また,f が全射となるためには, $f(\mathcal{R})\supset C$ でなければいけない.(そうでなければ,f(x)=y となるx が存在しない $y\in C$ が存在することになり,f は全射にならない.)

以上より, $C=f(\mathcal{R})$ となる.つまり, $C=\{x\in\mathcal{R}\mid 0\leq x\leq 1\}$ となる.このとき,実際に f は \mathcal{R} から C への関数となり,また,全射となる.

(d) $B \subset \mathcal{R}$ のとき, $g: B \to \mathcal{R}$ が単射となる B を 1 つ求めよ.

これは問題が不備であった.もともと g は $(B=\mathcal{R}$ のときに既に) 単射であったので, $B\subset\mathcal{R}$ となる,どんな B をとっても g は単射である.

そこで、問題を少し変更して、 $g(x)=x^3-x$ だったとする。 $(g:\mathcal{R}\to\mathcal{R}$ は単射ではないので,問題として意味がある.) この場合,B としては,たとえば, $\{x\in\mathcal{R}\mid x\geq \frac{1}{\sqrt{3}}\}$ とすれば,この範囲で g は (狭義の) 単調増加なので, $g:B\to\mathcal{R}$ は単射となる.(これ以外にも,いろいろな取りかたがある.たとえば, $B=\{0\}$ など.)

(e) $f \circ h = h \circ g$ となる関数 $h : \mathcal{R} \to \mathcal{R}$ を 1 つ求めよ。

答: $f\circ h=h\circ g$ というのは , 関数の等しさの定義により 「すべての実数 x に対して , $(f\circ h)(x)=(h\circ g)(x)$ となる 」ということである .

従って, $(f\circ h)(x)=f(h(x))=\sin(h(x))$ と, $(h\circ g)(x)=h(g(x))=h(x^3-1)$ という式が,すべての実数 x に対して等しい値になる.

これは、三角関数と多項式が絡みあっており、真面目に考えると、却って解けなくなる、

発想を変えて,特殊なケースに帰着させて解いてみよう.h(x)=c という定数関数 $(c\in\mathcal{R}$ とする) であると仮定してみると, $(f\circ h)(x)=\sin c$ となり, $(h\circ g)(x)=c$ となる.よって $\sin c=c$ となる 実数 c を見つければよいことになり,c=0 とすればよい.つまり,h(x)=0 という関数にすれば, $f\circ h=h\circ g$ となる.

- 問題 3 集合 $A=\{x\in\mathcal{N}\mid 0\leq x\leq 12\}$ と、整数 i に対して、 $g_i:A\to A$ となる関数と、 $h_i:A\to A$ となる関数とを、 $g_i(x)=(x+i)\bmod 13$ で定義する。 $h_i(x)=(x\times i)\bmod 13$ で定義する。ただし、 \bmod は整数上の割り算を行い、余りを返す関数とする。
 - (a) g_3 が関数になっていることを確かめよ。 g_3 は全射か、また、単射か。 答. g_3 の定義域は有限集合なので, $0,1,\ldots,12$ に対する g_3 の値を列挙できる.列挙すると,3,4,5,6,7,8,9,10,11,12,0,1 となり,確かに,関数となっており,さらに,全単射になっていることがわかる.
 - (b) h_5 が関数になっていることを確かめよ。 h_5 は全射か、また、単射か。 答. $0,1,\ldots,12$ に対する h_5 の値を列挙すると,0,5,10,2,7,12,4,9,1,6,11,3,8 となり,関数で,かつ,全単射になっていることがわかる.
 - (c) $h_i = h_i$ となるのは、 $i \ge j$ がどのような条件を満たすときか。

答. $h_i=h_j$ となるのは、すべての $x\in A$ に対して, $h_i(x)=h_j(x)$ ということである.従って,特に $h_i(1)=h_j(1)$ である.すなわち $i \bmod 13=j \bmod 13$ である.(i と j を 13 で割った余りが一致するとき.)

逆に, $i \mod 13 = j \mod 13$ であるとき, $h_i = h_i$ となることはすぐわかる.

(d) h_i が h_j の逆関数となるのは、i と j がどのような条件を満たすときか。

答. h_i が h_j の逆関数となるというのは,任意の $x\in A$ に対して, $h_i(h_j(x))=x$ かつ $h_j(h_i(x))=x$ となるときである.(ちなみに,このとき h_j は h_i の逆関数になっている.)

よって, $(xij) \bmod 13 = x$ となるので, $(x(ij-1)) \bmod 13 = 0$ である。これが任意の $x \in A$ に対して成立するためには、 $(ij-1) \bmod 13 = 0$ でなければいけない。すなわち、ij を 13 で割ると 1 余る場合である。

逆に,ij を 13 で割ると 1 余る場合」には、 h_i は h_j の逆関数となっていることは容易にわかる.よって,ij を 13 で割ると 1 余る」ことが, h_i が h_j の逆関数となる必要十分条件である.

[補足] 問題の答としては、ここまでで OK だが、「ij を 13 で割ると 1 余る」という条件を、もっとかみくだいてみよう。i=1,2,3,4,5,6,7,8,9,10,11,12 に対して、それぞれ、j=1,7,9,10,8,11,2,5,3,4,6,12 とすれば、ij が 13 で割って 1 余る。つまり、 $1 \le i \le 12$ となる任意の i に対して、 h_i の逆関数は h_j の形をしていることになる。

たとえば, $(3*9) \mod 13 = 1$ なので, h_3 の逆関数は h_9 となる.これは,3 をかける」演算の逆(意味的には「3 で割る」演算)が、「9 をかける」という演算で実現できる(分数は必要ない)ことを意味している。0 以外の全ての要素でのかけ算に逆関数が存在すること等から,13 で割った余りの世界」は、代数学の言葉で「体」(たい,field)であることがわかる.このように、かけ算の逆演算が存在する体は非常に便利であり,暗号理論などで活躍する。

なお、上記の話は、素数である 13 で割った余りの世界だったからうまく行ったのであり、素数でない とうまく行かない (たとえば、6 で割った余りの世界では、 h_2 が全単射でなく、逆関数が存在しない。)

(e) $g_i = h_i$ となることがあるか。

答. ある $.i \mod 13 = 1$ で $j \mod 13 = 0$ のとき . (これ以外のときは $g_i = h_j$ とはならない。)

問題 $4\ f$ と g が単射で、合成関数 $g\circ f$ が定義されるとき、 $g\circ f$ も単射であることを証明せよ。

答. $f:A \rightarrow B, g:B \rightarrow C$ とする $g \circ f$ が単射であるというのは ,

$$\forall x \in A. \forall y \in A. (x \neq y \Rightarrow (g \circ f)(x) \neq (g \circ f)(y))$$

ということである.そこでこれを証明する.なお、f と g が単射であるので、以下の 2 つが成立する。

$$\forall x \in A. \forall y \in A. (x \neq y \Rightarrow f(x) \neq f(y))$$
$$\forall z \in B. \forall w \in B. (z \neq w \Rightarrow g(z) \neq g(w))$$

 $x \in A$ かつ $y \in A$ とし, さらに $x \neq y$ と仮定する.

f が単射であるという条件 (上記の 1 つ目の式) と $x \neq y$ ということから、 $f(x) \neq f(y)$ である.なお、当然ながら、 $f(x) \in B$ で $f(y) \in B$ である。

次に、g が単射であるという条件における z と w を、それぞれ、f(x) と f(y) とおくと、 $f(x) \neq f(y) \Rightarrow g(f(x)) \neq g(f(y))$ となり、先ほど $f(x) \neq f(y)$ を示したので、 $g(f(x)) \neq g(f(y))$ が導けた。よって, $(g \circ f)(x) \neq (g \circ f)(y)$ となる.

以上から, $g \circ f$ が単射であることが証明された.

[補足] 単射であることの定義を以下のようにして証明してもよい.

$$\forall x \in A. \forall y \in A. ((g \circ f)(x) = (g \circ f)(y)) \Rightarrow (x = y)$$

この場合の証明はここには書かないので、各自チャレンジしてほしい。