[20] ; ... (proves? A20 [] (A => A)) [21] (assume :x (A => B)) (assume :y A) ; ... (proves? A21 [(A => B) A] B) [22] (assume :x (A => (B => C))) ; ... (proves? A22 [(A => (B => C))] (B => (A => C))) [23] (assume :x A) ; ... (proves? A23 [A] (A && A)) [24] (assume :x (A && A)) ; ... (proves? A24 [(A && A)] A) [25] (assume :x A) ; ... (proves? A25 [A] (A || A)) [26] (assume :x (A || A)) ; ... (proves? A26 [(A || A)] A) [27] (assume :x A) (assume :y B) ; ... (proves? A27 [A B] A) [28] (assume :x (A && B)) ; ... (proves? A28 [(A && B)] (B && A)) [29] (assume :x (A || B)) ; ... (proves? A29 [(A || B)] (B || A)) [30] (assume :x ((A && B) && C)) ; ... (proves? A30 [((A && B) && C)] (A && (B && C))) [31] (assume :x ((A || B) || C)) ; ... (proves? A31 [((A || B) || C)] (A || (B || C))) [32] (assume :x (A && (B || C))) ; ... (proves? A32 [(A && (B || C))] ((A && B) || (A && C))) [33] (assume :x ((A && B) || (A && C))) ; ... (proves? A33 [((A && B) || (A && C))] (A && (B || C))) [34] (assume :x ((A && B) => C)) ; ... (proves? A34 [((A && B) => C)] (A => (B => C))) [35] (assume :x (A => (B => C))) ; ... (proves? A35 [(A => (B => C))] ((A && B) => C)) [36] (assume :x B) ; ... (proves? A36 [B] (A => B)) [37] (assume :x A) (assume :y (~~ B)) ; ... (proves? A37 [A (~~ B)] (~~ (A => B))) [38] (assume :x (~~ A)) (assume :y (~~ B)) ; ... (proves? A38 [(~~ A) (~~ B)] (A => B)) [39] (assume :x A) ; ... (proves? A39 [A] (~~ (~~ A))) [40] (assume :x (~~ A)) ; ... (proves? A40 [(~~ A)] (~~ A)) [41] (assume :x A) (assume :y B) ; ... (proves? A41 [A B] (A && B)) [42] (assume :x (~~ B)) ; ... (proves? A42 [(~~ B)] (~~ (A && B))) [43] (assume :x (~~ A)) (assume :y B) ; ... (proves? A43 [(~~ A) B] (~~ (A && B))) [44] (assume :x A) ; ... (proves? A44 [A] (A || B)) [45] (assume :x B) ; ... (proves? A45 [B] (A || B)) [46] (assume :x (~~ A)) (assume :y (~~ B)) ; ... (proves? A46 [(~~ A) (~~ B)] (~~ (A || B))) [47] (assume :x ((~~ A) || (~~ B))) ; ... (proves? A47 [((~~ A) || (~~ B))] (~~ (A && B))) [48] (assume :x ((~~ A) && (~~ B))) ; ... (proves? A48 [((~~ A) && (~~ B))] (~~ (A || B))) [49] (assume :x (~~ (A || B))) ; ... (proves? A49 [(~~ (A || B))] ((~~ A) && (~~ B))) [50] (assume :x (A => B)) ; ... (proves? A50 [(A => B)] ((~~ B) => (~~ A))) [51] ; ... (proves? A51 [] (A => A)) [52] ; ... (proves? A52 [] (~~ :false)) [53] ; ... (proves? A53 [] ((A => (A => B)) => (A => B))) [54] ; ... (proves? A54 [] ((A && :false) => (B && A))) [55] ; ... (proves? A55 [] ((~~ A) => ((B || A) => B))) [56] ; ... (proves? A56 [] ((A || :false) => A)) [57] ; ... (proves? A57 [] (~~ (A && (~~ A)))) [58] ; ... (proves? A58 [] ((~~ (~~ (~~ A))) => (~~ A))) [59] ; ... (proves? A59 [] (((~~ A) || B) => (A => B))) [60] ; ... (proves? A60 [] (A => (B => (~~ (~~ ((~~ A) || B)))))) [61] ; ... (proves? A61 [] ((A || B) => (~~ (~~ ((~~ A) => B))))) [62] ; ... (proves? A62 [] (~~ (~~ (A || (~~ A))))) [63] ; ... (proves? A63 [] ((A => B) => (~~ (~~ ((~~ A) || B))))) [64] (assume :x (A || B)) (assume :y (A => C)) (assume :z (B => C)) ; ... (proves? A64 [(A || B) (A => C) (B => C)] C)