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Today’s Topic

▶ Type system of programming languages

▶ Type inference

▶ Type inference for staging (based on examples)
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Type System

let f x y z = if x then y + 1 else z ∗ 3
==>
f : bool −> int −> int −> int

This type means

▶ x has type bool

▶ y has type int

▶ z has type int

▶ then, the return type of f is int
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Benefit of Types

Basic benefits

▶ Avoiding illegal instructions (e.g. 10 + "abc"), “well-typed
programs don’t go wrong”.

▶ Lightweight documentation

▶ Efficiency (i.e. hint for compiler)

▶ Abstraction (interface vs implementation)

Advanced benefits

▶ Types can include more static information

▶ E.g. Static/Dynamic (staging), Invariant (verification),
Security etc.
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Types for functional programming languages

let foo x = x+1 : int−>int

let goo x y = x+y : int−>int−>int

let hoo x y = if x then y else y + 1
: bool−>int−>int
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Type inference rules

e = 13

▶ type of e must be int

e = e1 + e2

▶ type of e1 must be int

▶ type of e2 must be int

▶ type of e must be int
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Type inference rules

e = if e1 then e2 else e3

▶ type of e1 must be bool

▶ type of e2 can be arbitrary type (α)

▶ type of e3 must be α

▶ type of e must be α

e = x

▶ type of x can be arbitrary type (α)

▶ type of e must be α

▶ (and all occurrences of x must have the same type)
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Example of type inference

let rec power n x =
if n=0 then 1
else x ∗ (power (n−1) x)

▶ let α be type of n

▶ let β be type of x

▶ let γ be return type of power

▶ n=0 has type bool, α must be int

▶ 1 has type int, so γ is int

▶ n-1 has type int

▶ (power (n-1) x) has type γ,

▶ x*(power (n-1) x) has type int and β is int

▶ and everything else is OK

Hence, power has type int->int->int.
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Types for staging (naive version)

Type S

▶ means type for static values (will be computed and erased)

▶ e.g. the parameter n of power has type S

Type D

▶ means type for dynamic values (will become code)

▶ e.g. the parameter x of power has type D

▶ e.g. the return type of power is D

Type t1 → t2

▶ means function type from t1 to t2.

▶ e.g. power is expected to have type S -> D -> D

No types such as int, bool->bool etc.
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Notes on Types for Staging

Type D and type D -> D differ:

A MetaOCaml expression of Type D

<fun x −> x ∗ 3>

A MetaOCaml expression of Type D->D

fun x −> < ~x ∗ 3>

A MetaOCaml expression of Type S->D

fun x −> if x then <3> else <5>
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Typing rules for staging

e = e1 + e2

▶ type of e1, e2, and e are S, or

▶ type of e1, e2, and e are D

e = if e1 then e2 else e3

▶ type of e1 must be S or D, and

▶ type of e2,e3,e must be the same

▶ if type of e1 is D, so is e

Yukiyoshi Kameyama Adv. Course in Programming Languages

Typing rules for staging

e = e1 e2 (function call)

▶ type of e1, e2, e are D, or

▶ type of e1 is α → β, where α is type of e2 and β is type of e

e = c (constant)

▶ type of e is S or D
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Example (1)

Power function:

let rec power n x =
if n=0 then 1
else x ∗ (power (n−1) x)

Suppose n : S and x : D, return type is D.

▶ power : S -> D -> D

▶ (n=0) : S and (n-1) : S

▶ 1 : D or 1 : S

▶ (power (n-1) x): D

▶ x*(power (n-1) x): D, hence then-part also has type D.

▶ if ...then...else... : D (the same as the return type)

▶ Ok!
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Example (2)

Gib function:

let rec gib n x y =
if n=0 then (x,y)
else
let (x1,y1)=gib (n−1) x y in
(y1, x1+y1)

Suppose n : S, x : S, y:D and return type is unknown (α).

▶ gib: S -> S -> D -> α.

▶ (n=0) : D or (n=0) : S.

▶ (x,y) : S*D and α=S*D.

▶ (gib (n-1) x y): S*D.

▶ x1 : S and y1 : D.

▶ (x1+y1) is NOT typable
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Refined system

Static values can be lifted to dynamic values.

lift 5
==> <5>

lift 5 : int code
lift : int −> int code, or S −> D

When we stage a program we are allowed to insert lift at any place.
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Example (2, again)

Gib function:

let rec gib n x y =
if n=0 then (x,y)
else
let (x1,y1)=gib (n−1) x y in
(y1, x1+y1)

Suppose n : S, x : S, y:D and return type is unknown (α).

▶ gib: S -> S -> D -> \alpha.

▶ (x,y) : S*D and α=S*D.

▶ (gib (n-1) x y): S*D, and x1 : S and y1 : D.

▶ (lift(x1)+y1) : D.

▶ (x,y) in then-branch should be (lift(x),y) of type D * D.

▶ Ok! gib has type S -> S -> D -> (D * D).
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Exercise: Infer the types

(1) Assume x : D, y : S , and return type is D.

let rec goo x y =
if x > 100 then x − y
else goo (goo (x+11) y) y

(2) Assume a, b, c have type S and d and e have type D. return
type is D.

let rec foo a b c d e =
if a > 0 then
foo (a+b) (b+c) (c+d) (d−e) (e∗a)

else
foo 3 5 (foo b c d e a) 7 9
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Summary

Type system and type inference:

▶ Key component in modern programming languages (C, C++,
ML family, Haskell, Java, Scala, etc.)

▶ Important tool for program analysis and verification; we can
represent various static information, including binding time
(static/dynamic), invariant, security level, by types.

▶ A very simple type system help stage programs.
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