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Department of Computer Science, University of Tsukuba > Type inference for staging (based on examples)

How to stage programs, precisely
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Type System Benefit of Types

Basic benefits

let f x y z = if x then y + 1 else z x 3 » Avoiding illegal instructions (e.g. 10 + "abc"), “well-typed

==> programs don't go wrong'".
f : bool —> int —> int —> int . . .
> Lightweight documentation

This type means » Efficiency (i.e. hint for compiler)
» x has type bool » Abstraction (interface vs implementation)
> y has type int Advanced benefits

> 2 has type int » Types can include more static information

v

then, the return type of f is int » E.g. Static/Dynamic (staging), Invariant (verification),

Security etc.
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Types for functional programming languages Type inference rules

e=13
let foo x = x+1 : int—>int b-typeofe must be int
let goo x y = x+y : int—>int—>int e—el + 2

let hoo x y = if x then y else y + 1 > type of el must be int

bool—>int—>int > type of e2 must be int

> type of e must be int
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Type inference rules Example of type inference

let rec power n x =
if n=0 then 1

e = if el then e2 else e3 else x *x (power (n—1) x)

v

type of el must be bool
> let « be type of n

v

type of e2 can be arbitrary type («)
> let B be type of x

v

type of e3 must be «
> let v be return type of power

v

type of e must be «

» n=0 has type bool, a must be int
e=x > 1 has type int, so -y is int
> type of x can be arbitrary type («) > n-1 has type int

v

type of e must be « » (power (n-1) x) has type 7,

v

(and all occurrences of x must have the same type) > x*(power (n-1) x) has type int and 3 is int

» and everything else is OK

Hence, power has type int->int->int.
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Types for staging (naive version) Notes on Types for Staging

Type S
» means type for static values (will be computed and erased) Type D and type D -> D differ:

> e.g. the parameter n of power has type S A MetaOCaml expression of Type D

Type D <fun x —> x * 3>

» means type for dynamic values (will become code)

» e.g. the parameter x of power has type D A MetaOCaml expression of Type D->D
> e.g. the return type of power is D fun x —> < ~x * 3>
Type t1 — t2 A MetaOCaml expression of Type S->D
» means function type from t1 to t2. fun x —> if x then <3> else <5>

> e.g. power is expected to have type S -> D -> D

No types such as int, bool->bool etc.
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Typing rules for staging Typing rules for staging

e==¢el + e2

> type of e1, €2, and e are S, or e = el e2 (function call)

v

» type of el, €2, and e are D type of el, e2, e are D, or

> type of el is @ — 3, where « is type of €2 and (3 is type of e
e = if el then e2 else e3
» type of el must be S or D, and e = c (constant)
» type of e2,e3,e must be the same > type of e is S or D

> if typeof el isD, sois e
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Example (1) Example (2)

Power function: Gib function:
let rec power n x = leF rec gib n x y =
if n=0 then 1 if n=0 then (x,y)
else x x (power (n—1) x) else
let (x1,yl)=gib (n—1) x y in
Supposen : Sand x : D, return type is D. (yl, x1+yl)

» power : S > D ->D
» (n=0) : Sand (n-1) : S
»1 :Dorl : S

Supposen : S, x : S, y:D and return type is unknown («).
» gib: S > S ->D -> o

» (n=0) : Dor (n=0) : S.
» (power (n-1) x): D

» (x,y) : S*D and a=SxD.
» x*(power (n-1) x): D, hence then-part also has type D. > (gib (n-1) x y): S*D.
» if ...then...else... : D (the same as the return type) > x1 : Sandyl : D.
» Ok!

v

(x1+y1) is NOT typable
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Refined system Example (2, again)

Gib function:

let rec gib n x y =

if n=0 then (x,y)
Static values can be lifted to dynamic values.

else
1ift 5 let (x1,yl)=gib (n—1) x y in
==> <5> (yvl, x1+yl)
1ift 5 : int code Supposen : S, x : S, y:D and return type is unknown («).
lift : int —> int code, or S —> D » gib: S -> S -> D -> \alpha.

» (x,y) : S*D and a=S*D.

(gib (n-1) x y): S*D,and x1 : Sandyl : D.
(1ift(x1)+y1) : D.

(x,y) in then-branch should be (1ift(x),y) of type D * D.
Ok! gib hastypeS -> S -=> D -> (D * D).

When we stage a program we are allowed to insert lift at any place.

v

v

v

v
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(1) Assume x : D, y : S, and return type is D.

let rec goo x y = Type system and type inference:
if x > 100 then x — y

else goo (goo (x+11) y) v » Key component in modern programming languages (C, C++,

ML family, Haskell, Java, Scala, etc.)

(2) Assume a, b, c have type S and d and e have type D. return » Important tool for program analysis and verification; we can
type is D. represent various static information, including binding time
let rec foo a b ¢ d e — (static/dynamic), invariant, security level, by types.
if a > 0 then > A very simple type system help stage programs.
foo (a+b) (b+c) (ctd) (d—e) (exa)
else

foo 3 5 (foobcdea) 79
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