Today's Topic
Adv. Course in Programming Languages

) ] » Type system of programming languages
Yukiyoshi Kameyama

» Type inference

Department of Computer Science, University of Tsukuba > Type inference for staging (based on examples)

How to stage programs, precisely

Yukiyoshi Kameyama Adv. Course in Programming Languages Yukiyoshi Kameyama Adv. Course in Programming Languages

Type System Benefit of Types

Basic benefits

let f x y z = if x then y + 1 else z x 3 » Avoiding illegal instructions (e.g. 10 + "abc"), “well-typed

==> programs don't go wrong'".
f : bool —> int —> int —> int . . .
> Lightweight documentation

This type means » Efficiency (i.e. hint for compiler)
» x has type bool » Abstraction (interface vs implementation)
> y has type int Advanced benefits

> 2 has type int » Types can include more static information

v

then, the return type of f is int » E.g. Static/Dynamic (staging), Invariant (verification),

Security etc.

Yukiyoshi Kameyama Adv. Course in Programming Languages Yukiyoshi Kameyama Adv. Course in Programming Languages



Types for functional programming languages Type inference rules

e=13
let foo x = x+1 : int—>int b-typeofe must be int
let goo x y = x+y : int—>int—>int e—el + 2

let hoo x y = if x then y else y + 1 > type of el must be int

bool—>int—>int > type of e2 must be int

> type of e must be int

Yukiyoshi Kameyama Adv. Course in Programming Languages Yukiyoshi Kameyama Adv. Course in Programming Languages

Type inference rules Example of type inference

let rec power n x =
if n=0 then 1

e = if el then e2 else e3 else x *x (power (n—1) x)

v

type of el must be bool
> let « be type of n

v

type of e2 can be arbitrary type («)
> let B be type of x

v

type of e3 must be «
> let v be return type of power

v

type of e must be «

» n=0 has type bool, a must be int
e=x > 1 has type int, so -y is int
> type of x can be arbitrary type («) > n-1 has type int

v

type of e must be « » (power (n-1) x) has type 7,

v

(and all occurrences of x must have the same type) > x*(power (n-1) x) has type int and 3 is int

» and everything else is OK

Hence, power has type int->int->int.

Yukiyoshi Kameyama Adv. Course in Programming Languages Yukiyoshi Kameyama Adv. Course in Programming Languages



Types for staging (naive version) Notes on Types for Staging

Type S
» means type for static values (will be computed and erased) Type D and type D -> D differ:

> e.g. the parameter n of power has type S A MetaOCaml expression of Type D

Type D <fun x —> x * 3>

» means type for dynamic values (will become code)

» e.g. the parameter x of power has type D A MetaOCaml expression of Type D->D
> e.g. the return type of power is D fun x —> < ~x * 3>
Type t1 — t2 A MetaOCaml expression of Type S->D
» means function type from t1 to t2. fun x —> if x then <3> else <5>

> e.g. power is expected to have type S -> D -> D

No types such as int, bool->bool etc.

Yukiyoshi Kameyama Adv. Course in Programming Languages Yukiyoshi Kameyama

Adv. Course in Programming Languages
Typing rules for staging Typing rules for staging

e==¢el + e2

> type of e1, €2, and e are S, or e = el e2 (function call)

v

» type of el, €2, and e are D type of el, e2, e are D, or

> type of el is @ — 3, where « is type of €2 and (3 is type of e
e = if el then e2 else e3
» type of el must be S or D, and e = c (constant)
» type of e2,e3,e must be the same > type of e is S or D

> if typeof el isD, sois e

Yukiyoshi Kameyama Adv. Course in Programming Languages Yukiyoshi Kameyama Adv. Course in Programming Languages



Example (1) Example (2)

Power function: Gib function:
let rec power n x = leF rec gib n x y =
if n=0 then 1 if n=0 then (x,y)
else x x (power (n—1) x) else
let (x1,yl)=gib (n—1) x y in
Supposen : Sand x : D, return type is D. (yl, x1+yl)

» power : S > D ->D
» (n=0) : Sand (n-1) : S
»1 :Dorl : S

Supposen : S, x : S, y:D and return type is unknown («).
» gib: S > S ->D -> o

» (n=0) : Dor (n=0) : S.
» (power (n-1) x): D

» (x,y) : S*D and a=SxD.
» x*(power (n-1) x): D, hence then-part also has type D. > (gib (n-1) x y): S*D.
» if ...then...else... : D (the same as the return type) > x1 : Sandyl : D.
» Ok!

v

(x1+y1) is NOT typable

Yukiyoshi Kameyama Adv. Course in Programming Languages

Yukiyoshi Kameyama Adv. Course in Programming Languages

Refined system Example (2, again)

Gib function:

let rec gib n x y =

if n=0 then (x,y)
Static values can be lifted to dynamic values.

else
1ift 5 let (x1,yl)=gib (n—1) x y in
==> <5> (yvl, x1+yl)
1ift 5 : int code Supposen : S, x : S, y:D and return type is unknown («).
lift : int —> int code, or S —> D » gib: S -> S -> D -> \alpha.

» (x,y) : S*D and a=S*D.

(gib (n-1) x y): S*D,and x1 : Sandyl : D.
(1ift(x1)+y1) : D.

(x,y) in then-branch should be (1ift(x),y) of type D * D.
Ok! gib hastypeS -> S -=> D -> (D * D).

When we stage a program we are allowed to insert lift at any place.

v

v

v

v

Yukiyoshi Kameyama Adv. Course in Programming Languages Yukiyoshi Kameyama Adv. Course in Programming Languages



(1) Assume x : D, y : S, and return type is D.

let rec goo x y = Type system and type inference:
if x > 100 then x — y

else goo (goo (x+11) y) v » Key component in modern programming languages (C, C++,

ML family, Haskell, Java, Scala, etc.)

(2) Assume a, b, c have type S and d and e have type D. return » Important tool for program analysis and verification; we can
type is D. represent various static information, including binding time
let rec foo a b ¢ d e — (static/dynamic), invariant, security level, by types.
if a > 0 then > A very simple type system help stage programs.
foo (a+b) (b+c) (ctd) (d—e) (exa)
else

foo 3 5 (foobcdea) 79

Yukiyoshi Kameyama Adv. Course in Programming Languages Yukiyoshi Kameyama Adv. Course in Programming Languages



