Papers for reports

Basic/General:

> A Gentle Introduction to Malt-Stage Programming,

Adv. Course in Programming Languages Taha, Dagstuhl Seminar, 2003.
» GoMeta! A Case for Generative Programming and DSLs

in Performance Critical Systems, Rompf et al., SNAPL'15.
Yukiyoshi Kameyama
Application/Specific
Department of Computer Science, University of Tsukuba » Terra: A Mu|ti_Stage Language for High—Performance
Computing, DeVito et al., PLDI'13.

» Halide: A Language and Compiler for Optimizing
Parallelism, Locality, and Recomputation in Image
Processing Pipelines, Ragan-Kelly et al., PLDI'13.

» Functional Pearl: A SQL to C Compiler in 500 Lines of
Code, Rompf et al., ICFP'15.

Program Generation: Performance vs Abstraction

Yukiyoshi Kameyama Adv. Course in Programming Languages Yukiyoshi Kameyama Adv. Course in Programming Languages

GoMeta! A Case for Generative Programming and DSLs in
Performance Critical Systems, Rompf et al., SNAPL'15.

. . Survey Paper on Program Generation
» Quasiquotation in Scheme y Fap &

» Performance-critical software

» C++ template
> Template Haskell » Abstraction without regret
emplate Haske _ _
> MetaOCaml » Generative performance programming
etaOCam
» Case Study 1: C ili ies in datab t
> Scala LMS (Lightweight Modular Staging) ase Study -: -omptling queries in database systems

» Case Study 2: Parser combinators

» Case Study 3: DSL compiler framework for heterogeneous
hardware

» Case Study 4: Synthesis of high-performance numeric kernels

Yukiyoshi Kameyama Adv. Course in Programming Languages Yukiyoshi Kameyama Adv. Course in Programming Languages

X-critical system X-critical system

X=Mission (Mission-critical system) X=Safety (Safety-critical system)

Yukiyoshi Kameyama Adv. Course in Programming Languages Yukiyoshi Kameyama Adv. Course in Programming Languages

X-critical system Abstraction vs Performance

Low-level code: C, assembly etc.

» Good: High-performance

» Bad: Unsafe (security vulnerability), less agile and less
productive

X=Performance (Performance-critical system /software) > ﬁTJdI\Z/IXIOtGIg(L)Jr;abIe for different targets (multi-core, cluster,

High-level code:
» Good: Abstraction (types, modules, classes ...)

» Bad: Tend to be inefficient, Abstraction overhead

Solution:

> Generative performance programming

Yukiyoshi Kameyama Adv. Course in Programming Languages Yukiyoshi Kameyama Adv. Course in Programming Languages

Generative performance programming Abstraction /Productivity vs Performance

Abstraction is great for productivity

» data, type, procedure, function, module, class abstraction.
Generative programming

» Another name for staged computation, or program generation Abstraction overhead:

., , . let rec search t =

Generative 'performance’ programming let rec search a t = :
£) = 0 th match t with
» New phrase in this paper t da.(1):hT en | Leaf —> do_nothing
)] o_nothing
» Program generation for high-performance (or else begin 1‘) N?de (n,tl,t2) —>
performance-critical) code search a (t*2); egn

search tl;

print_node n;

search t2
end

print_node a. (t);
search a (t*x2+1);
end

Yukiyoshi Kameyama Adv. Course in Programming Languages Yukiyoshi Kameyama Adv. Course in Programming Languages

Removing Abstraction Overhead Generative Performance Programming

Optimizing compilers remove abstraction overhead by inlining etc.,
but ...

» Different hardware: parallel, heterogeneous, distributed

> Yet, it is often sub-optimal (not optimal) » Applications which need high efficiency

> Compilers do not know each domain/architecture. » High-level programming languages provide more generality

» Often we don't have time to write optimizing compiler for and abstraction
DSLs.

DSLs and generative programming help the situation.

Yukiyoshi Kameyama Adv. Course in Programming Languages Yukiyoshi Kameyama Adv. Course in Programming Languages

Case Study 1: database queries Case Study 1: database queries

processCSV ("data.txt") { record =>
Scala with metaprogramming feature (Lightweight modular if (record("Flag") == "yes")
ﬂaghg): println(record ("Name"))
}
processCSV ("data.txt") { record =>
if (record("Flag") == "yes") class Record(fields: Array[String], schema:
println (record ("Name")) Array[String]) {
} def apply(key: String) = fields (schema
Example. indexOf key)
' }
Name, Value, Flag o . .
A 7 no This is VERY slow than the following hand-written code:
B 2 . Y?S while (lines.hasNext) {
==> "B" is printed val fields = lines.next ().split(",")
if (fields(2)) == yes) println(fields(0))

Yukiyoshi Kameyama Adv. Course in Programming Languages Yukiyoshi Kameyama Adv. Course in Programming Languages

Staged Interpreter is a compiler Case Study 1: database queries

By specifying 'fields’ is static, we automatically get a staged

In Scala LMS, we only have to specify dynamic/static by types. version of processCSV:

(before staging) (before staging)
class Record(fields: Array[String], schema: processCSV ("data.txt") { record =>

Array[String]) { if (record("Flag") — nyes")
def apply(key: String) = fields (schema println (record ("Name"))
indexOf key)

(generator for staging)
processCSV (file: String) (yld: Record => Rep|
Unit]) = {
val lines = FileReader(file); wval schema =
lines.next.split (", ")
run (while (lines.hasNext) {
} val fields = lines.next () .split(",")

This modification means that the field argument is static and the yld (new Record(fields.schema))
schema argument is dynamic. b

(after staging)

class Record(fields: Rep[Array[String]],
schema: Array[String]) {
def apply(key: String) = fields(schema
indexOf key)

}

Yukiyoshi Kameyama Adv. Course in Programming Languages Yukiyoshi Kameyama Adv. Course in Programming Languages
generated code ragmen

vt 1A /1 9vmvAe AN A<o+) I

Summary of Case Study 1 Other Case Studies

Case Study 2: Parser combinators

» cf. Hand-optimized HTTP parsers for Apache etc. (2000 lines
of C code)

» Staged parser combinators for HTTP and JSON data, which
have comparative (0.75 or 1.2 times faster/slower)
performance with hand-written parsers.

Generative programming with Scala LMS:
> can generate the best code (hand-written code),

» by only specifying the static/dynamic information through

ypes Case Study 3: DSL compiler framework for heterogeneous
The authors’ group has succeeded in hardware
> writing a highly efficient SQL compiler, with only 500 lines » Delite: a compiler framework for embedded DSLs.
» ...and got the best paper award in VLDB (top conference on Case Study 4: Synthesis of high-performance numeric kernels
database) » Kernels for linear algebras, FFT (Fast Fourier Transform),

filters etc.
» Re-implemented Spiral’s DSLs by Scala LMS

> Uses type classes and generic programming

Yukiyoshi Kameyama Adv. Course in Programming Languages Yukiyoshi Kameyama Adv. Course in Programming Languages

Summary of this paper Summary of my lectures

Staged computation or Program generation (or Generative

_ _ _ Programming)
» High-level vs low-level programming; abstraction vs

. > isak hi ‘A i ith ilt/R Tears'
high-performance is a key to achieve 'Abstraction without Guilt/Regret/Tears

S . . . > can be done using types
» By eliminating abstraction overhead is the key to resolve this & yp

tension > has a big potential to achieve high performance with high

. . reliability
> It can be done by generative performance programming
» Many success stories using the authors' Scala LMS Study on programming languages
> The core idea of Scala LMS is 'staging by types’ » has solid foundation by logical/mathematical theories,

> is useful in understanding programming and designing new
languages and new way of computing

Yukiyoshi Kameyama Adv. Course in Programming Languages Yukiyoshi Kameyama Adv. Course in Programming Languages

Report (for the first 5 weeks)

Report:

» Choose one (or more) paper from the five papers about
program generation

» Write three (or more) pages of reports about the paper you
choose

» Submit the report through the Manabe system by May 23rd
(Tue.), 2017.

Recommended organization of the report:
» Summary of the paper
» Your evaluation/impression/thoughts on the paper

» Argue the relation between your topics and the paper (your
"topics’ can be your research topics for master thesis, or other
topics for part-time jobs, hobbies etc.)

Yukiyoshi Kameyama Adv. Course in Programming Languages

