
Adv. Course in Programming Languages

Yukiyoshi Kameyama

Department of Computer Science, University of Tsukuba

Application of Program Generation – Domain-Specific
Language

Yukiyoshi Kameyama Adv. Course in Programming Languages

Papers for reports

Basic/General:

▶ A Gentle Introduction to Malt-Stage Programming,
Taha, Dagstuhl Seminar, 2003.

▶ GoMeta! A Case for Generative Programming and DSLs
in Performance Critical Systems, Rompf et al., SNAPL’15.

Application/Specific

▶ Terra: A Multi-Stage Language for High-Performance
Computing, DeVito et al., PLDI’13.

▶ Halide: A Language and Compiler for Optimizing
Parallelism, Locality, and Recomputation in Image
Processing Pipelines, Ragan-Kelly et al., PLDI’13.

▶ Functional Pearl: A SQL to C Compiler in 500 Lines of
Code, Rompf et al., ICFP’15.

Yukiyoshi Kameyama Adv. Course in Programming Languages

Today

A Gentle Introduction to Multi-Stage Programming by Walid Taha.

▶ DSL (Domain-Specific Language)

▶ Interpreter for DSL

▶ Staging Interpreter

▶ Various Tricks (not in this lecture)

▶ Performance

Yukiyoshi Kameyama Adv. Course in Programming Languages

DSL

General-Purpose Languages vs Domain-Specific Languages

GPL:

▶ You know many GPL (FORTRAN, C, C++, Java, Python,
Perl, Ruby, OCaml, Lisp, etc.)

▶ You think GPL is universal (everything can be written.)

▶ You trust GPL. You don’t have to design GPL.

DSL:

▶ You are a user of your DSL.

▶ You need to design, implement, and modify a DSL.

▶ You throw away a DSL, and design a new one from scratch.

Yukiyoshi Kameyama Adv. Course in Programming Languages

What is DSL?

No rigid definition for DSL:
▶ DSL is purpose-built, purpose-oriented.

▶ Parser: BNF, PEG, ...
▶ Database: SQL, ...
▶ Hardware: Verilog, VHDL, ...
▶ Robotics: ...
▶ GUI: ...
▶ Game programming:
▶ etc etc etc

▶ DSL is relatively small, restricted, simple.

▶ DSL need not be Turing complete.

Yukiyoshi Kameyama Adv. Course in Programming Languages

How to design a DSL?

No general solution, but there are good recipe.

千葉滋著「2週間でできる Script言語の作りかた」, 技術評論社,
2012.

(Note. the author’s 2 weeks is 2 years for ordinary people.)

Yukiyoshi Kameyama Adv. Course in Programming Languages

How to implement DSL?

This is the paper’s topic.

▶ Write a naive (slow) interpreter for the DSL.

▶ Convert it to a program generator (by staging).

▶ Then we get much better performance.

In more detail....

▶ An interpreter is a program which, given a DSL program and
a few parameters, returns the value of the computation.

▶ Staging: The input DSL program is static, and the parameters
are dynamic.

▶ Generated code: given the parameters, it returns the result.

Yukiyoshi Kameyama Adv. Course in Programming Languages

DSL in this paper

Example of DSL programs:

let rec f x =
if x = o then 1
else x ∗ (f (x−1))

in f 10

Power function, again??? No, it’s factorial.

Embedding DSL into MetaOCaml:

DSL Embedding

1 + 2 Add(Int 1, Int 2)

fact(x-1) App("fact",Sub(Var "x",Int 1))

Yukiyoshi Kameyama Adv. Course in Programming Languages

Naive DSL Interpreter

let rec eval1 e env fenv =
match e with
| Int i −> i
| Add (e1,e2) −> (eval1 e1 env fenv)

+ (eval1 e2 env fenv)
...
(∗ sample run ∗)
eval1 (Add((Int 2), (Int 3))) env0 fenv0 ==> 5

Very slow: if we run the factorial function by this eval1, it runs 15
to 20 times slower than the hand-written factorial function.
(Interpretive overhead)

Yukiyoshi Kameyama Adv. Course in Programming Languages

Staging the Naive DSL Interpreter

Inputs for the function eval:

▶ expression e is static

▶ values of variables etc.: dynamic

Namely, we specialize ’eval’ by the expression (the program).

Yukiyoshi Kameyama Adv. Course in Programming Languages

Staged DSL Interpreter

let rec eval2 e env fenv =
match e with
| Int i −> <i>
| Add (e1,e2) −> < ~(eval1 e1 env fenv)

+ ~(eval1 e2 env fenv)>
...
(∗ sample run ∗)
eval2 (Add((Int 2), (Int 3))) env0 fenv0 ==>

<2 + 3>

Quite similar to the staging process for the power function.

Yukiyoshi Kameyama Adv. Course in Programming Languages

Staged Interpreter is a translator

Surprising result:

(∗ sample run ∗)
eval2 (factorial 10) env0 fenv0 ==>
<let rec f x = if x = o then 1 else x ∗ (f (x

−1))
in f 10>

Just like a hand-written factorial function, so the optimization is
perfect! (No interpretive overhead)

Yukiyoshi Kameyama Adv. Course in Programming Languages

The rest of the paper

Life is not so easy

▶ The simple DSL interpreter can be staged very easily.

▶ But we will meet many obstacles to prevent staging: if we
have the division-by-zero error etc.

▶ For each time, some ’tricks’ will solve the problem.

Yukiyoshi Kameyama Adv. Course in Programming Languages

Possible report on this paper

One page per the item:

▶ Summary of the paper (Examples: you should at least read
the abstract, introduction, and conclusion. What is
’interpretive overhead’? What is staging?)

▶ Your evaluation/impression/thoughts about the paper
(Examples: what/how do you feel about the paper.)

▶ Your topics related to this paper: (Examples: do you use DSL
in your research? if yes, what kind of DSL? do you think DSL
is useful or a bad idea? do you want to do meta-programming
in your domain?)

Yukiyoshi Kameyama Adv. Course in Programming Languages

