Papers for reports

Basic/General:

]] > A Gentle Introduction to Malt-Stage Programming,
Adv. Course in Programming Languages Taha, Dagstuhl Seminar, 2003.

» GoMeta! A Case for Generative Programming and DSLs

Yukiyoshi Kameyama in Performance Critical Systems, Rompf et al., SNAPL'15.

Application/Specific
Department of Computer Science, University of Tsukuba

» Terra: A Multi-Stage Language for High-Performance
Application of Program Generation — Domain-Specific Computing, DeVito et al., PLDI'13.
Language » Halide: A Language and Compiler for Optimizing
Parallelism, Locality, and Recomputation in Image
Processing Pipelines, Ragan-Kelly et al., PLDI'13.
» Functional Pearl: A SQL to C Compiler in 500 Lines of
Code, Rompf et al., ICFP'15.

Yukiyoshi Kameyama Adv. Course in Programming Languages Yukiyoshi Kameyama Adv. Course in Programming Languages

General-Purpose Languages vs Domain-Specific Languages

A Gentle Introduction to Multi-Stage Programming by Walid Taha. GPL:
» You know many GPL (FORTRAN, C, C++, Java, Python,
» DSL (Domain-Specific Language) Perl, Ruby, OCaml, Lisp, etc.)
> Interpreter for DSL » You think GPL is universal (everything can be written.)
» Staging Interpreter > You trust GPL. You don't have to design GPL.
» Various Tricks (not in this lecture) DSL-
» Performance

> You are a user of your DSL.
» You need to design, implement, and modify a DSL.

> You throw away a DSL, and design a new one from scratch.

Yukiyoshi Kameyama Adv. Course in Programming Languages Yukiyoshi Kameyama Adv. Course in Programming Languages

What is DSL? How to design a DSL?

No rigid definition for DSL:
» DSL is purpose-built, purpose-oriented.

> Parser: BNF, PEG, ... No general solution, but there are good recipe.

» Database: SQL, ...

» Hardware: Verilog, VHDL, ... 000002000000 Secript000OO0D0ODO,0D0O00O,
» Robotics: ... 2012.

» GUI: ...)]

> Game programming; (Note. the author's 2 weeks is 2 years for ordinary people.)

> etc etc etc

» DSL is relatively small, restricted, simple.
» DSL need not be Turing complete.

Yukiyoshi Kameyama Adv. Course in Programming Languages Yukiyoshi Kameyama Adv. Course in Programming Languages

How to implement DSL? DSL in this paper
This is the paper’s topic. Example of DSL programs:
» Write a naive (slow) interpreter for the DSL. let rec f x =

if x = o then 1

else x x (f (x—1))
» Then we get much better performance. in £ 10

» Convert it to a program generator (by staging).

In more detail.... Power function, again??? No, it's factorial.

» An interpreter is a program which, given a DSL program and Embedding DSL into MetaOCamil:
a few parameters, returns the value of the computation.
. . . . DSL Embedding
» Staging: The input DSL program is static, and the parameters 1+ 9 Add(Int 1, Int 2)

are dynamic. fact(x-1) App("fact",Sub(Var "x",Int 1))

» Generated code: given the parameters, it returns the result.

Yukiyoshi Kameyama Adv. Course in Programming Languages Yukiyoshi Kameyama Adv. Course in Programming Languages

Naive DSL Interpreter Staging the Naive DSL Interpreter

let rec evall e env fenv =
match e with

| Int i —> 1 | .
nputs for the function eval:
| Add (el,e2) —> (evall el env fenv) P

+ (evall e2 env fenv) > expression e is static

> values of variables etc.: dynamic

(* sample run %)
evall (Add((Int 2), (Int 3))) env0 fenv0 ==> 5 Namely, we specialize 'eval’ by the expression (the program).

Very slow: if we run the factorial function by this evall, it runs 15

to 20 times slower than the hand-written factorial function.
(Interpretive overhead)

Yukiyoshi Kameyama Adv. Course in Programming Languages

Yukiyoshi Kameyama Adv. Course in Programming Languages

Staged DSL Interpreter Staged Interpreter is a translator

let rec eval2 e env fenv = Surpﬁﬂngreﬂﬂt
match e with
| Int 1 —> <i> (¥ sample run *)
| Add (el,e2) —> < ~(evall el env fenv) eval?2 (factorial 10) env0 fenv0 ==>
+ ~(evall e2 env fenv)> <let rec f x = if x = o0 then 1 else x *x (f (x
e —1))
(* sample run %) in £ 10>
eval22 (Aid((Int 2), (Int 3))) env0 fenvl ==> Just like a hand-written factorial function, so the optimization is
e perfect! (No interpretive overhead)

Quite similar to the staging process for the power function.

Yukiyoshi Kameyama Adv. Course in Programming Languages Yukiyoshi Kameyama Adv. Course in Programming Languages

The rest of the paper Possible report on this paper

One page per the item:

» Summary of the paper (Examples: you should at least read
Life is not so easy the abstract, introduction, and conclusion. What is

. . . ’. . " . . 2
» The simple DSL interpreter can be staged very easily. interpretive overhead'? What is staging?)

» But we will meet many obstacles to prevent staging: if we

» Your evaluation/impression/thoughts about the paper
have the division-by-zero error etc.

(Examples: what/how do you feel about the paper.)

> For each time, some ‘tricks’ will solve the problem. » Your topics related to this paper: (Examples: do you use DSL
in your research? if yes, what kind of DSL? do you think DSL
is useful or a bad idea? do you want to do meta-programming
in your domain?)

Yukiyoshi Kameyama Adv. Course in Programming Languages

Yukiyoshi Kameyama Adv. Course in Programming Languages

