
Adv. Course in Programming Languages

Yukiyoshi Kameyama

Department of Computer Science, University of Tsukuba

How to stage programs

Yukiyoshi Kameyama Adv. Course in Programming Languages

Today’s Topic

How to obtain a specialized code from an ordinary program?

No! (We want to make this process automatic.)

Yukiyoshi Kameyama Adv. Course in Programming Languages

GenPower function

name input output

ordinary function power x,n xn

specialized code power13 x x13

code generator gen power n powern

We want to obtain a code generator from an ordinary function.

gen power5⇝ power5

power52⇝ 32

power53⇝ 243

power54⇝ 1024

gen power is a code geneartor, and power5 is a specialized code
(generated by gen power).

Yukiyoshi Kameyama Adv. Course in Programming Languages

Quasi-quotation

In MetaOCaml, <e> is quotation, and e is anti-quotation.

<1+2> −> <1+2>
<1+2∗3−4+5> −> <1+2∗3−4+5>
< ~<1+2> ∗ 3> −> < (1+2) ∗ 3>
let x = <1+2> in < ~x ∗ 3> −> <(1+2) ∗ 3>
let x = <1+2> in < ~x − ~x> −> <(1+2) − (1+2)

>

Computation rule:

~<e> −> e

Yukiyoshi Kameyama Adv. Course in Programming Languages

Basics of Types

Types of functions:

let incr x = x + 1 incr : int −> int
let foo (x,y) = x + y foo : (int ∗ int) −>

int
let goo x y = x + y goo : int −> int −>

int

Arrow (→) represents the function type.

power : int −> int −> int
power 2 5 = 32

gib : int −> int −> int −> (int∗int)
gib 3 1 1 = (3,5)

Yukiyoshi Kameyama Adv. Course in Programming Languages

GenPower Function

GenPower Function (code generator for the power function):

let rec genp n x =
if n = 0 then <1>
else if (even n) then

<square ~(genp (n/2) x)>
else < ~x ∗ ~(genp (n−1) x)>

genp 0 <y> −> <1>
genp 1 <y> −> < ~<y> ∗ ~(genp 0 <x>)>

−> < ~<y> ∗ ~<1>>
−> < y ∗ 1 >

genp 2 <y> −> <square ~(genp 1 <y>)>
−> <square (y ∗ 1)>

genp 3 <y> −> <y ∗ (square (y + 1))>

Yukiyoshi Kameyama Adv. Course in Programming Languages

How to make GenPower

How to obtain GenPower from Power?

let rec power n x =
if n = 0 then 1
else if (even n) then

square (power (n/2) x)
else x ∗ (power (n−1) x)

let rec genp n x =
if n = 0 then <1>
else if (even n) then

<square ~(genp (n/2) x)>
else < ~x ∗ ~(genp (n−1) x)>

Quite similar: we only have to insert <> and ~ at some suitable
places.

Yukiyoshi Kameyama Adv. Course in Programming Languages

Coloring power function (1)

Idea: Coloring by red for static, black for others

let rec power n x =
if n = 0 then 1
else x * (power (n - 1) x)

1 0 and 1 are static. We regard power itself is static.
2 We assume n is static and x is dynamic.
3 Then n=0 and n-1 become static.
4 The conditional (if n=0 then ...) becomes static.
5 Nothing more is static (the remaining things are dynamic.)

By quoting red parts, we get a code generator:

let rec genp n <x> =
if n = 0 then 1
else < x * ∼(genp (n - 1) <x>) >

Yukiyoshi Kameyama Adv. Course in Programming Languages

Coloring power function (2)

Problem 1 in the previous code:

let rec genp n <x> =
if n = 0 then 1
else < x * ∼(genp (n - 1) <x>) >

Here, then-branch returns an integer 1, while else-branch returns a
code (program). Solution: we replace 1 by <1>, even though we

can compute the value of 1 statically.

let rec genp n <x> =
if n = 0 then <1>
else < x * ∼(genp (n - 1) <x>) >

Yukiyoshi Kameyama Adv. Course in Programming Languages

Coloring power function (2)

Problem 2 in the previous code:

let rec genp n <x> =
if n = 0 then <1>
else < x * ∼(genp (n - 1) <x>) >

Here, <x> cannot be an argument of a function. Solution: we

replace it by y. Then <x> becomes ∼y, hence:

let rec genp n y =
if n = 0 then 1
else < ∼y * ∼(genp (n - 1) y) >

with some magical code:

let genp main n =
< fun x -> ∼(genp n <x>) >

Yukiyoshi Kameyama Adv. Course in Programming Languages

Coloring better power function

Starting from:

let rec power2 n x =
if n = 0 then 1
else if (even n) then

square (power2 (n/2) x)
else x ∗ (power2 (n−1) x)

We obtain the following generator by coloring:

let rec genp2 n x =
if n = 0 then <1>
else if (even n) then

<square ~(genp2 (n/2) x)>
else < ~x ∗ ~(genp2 (n−1) x)>

Yukiyoshi Kameyama Adv. Course in Programming Languages

Generalized Fibonacci Function

let rec gib n x y =
if n = 0 then (x, y)
else let (r1,r2) = gib (n−1) x y in

(r2, r1+r2)

gib 0 1 1 −> (1,1)
gib 1 1 1 −> (1,2)
gib 2 1 1 −> (2,3)
gib 3 1 1 −> (3,5)
gib 4 1 1 −> (5,8)
gib 4 3 7 −> (27,44)

Yukiyoshi Kameyama Adv. Course in Programming Languages

Generalized Fibonacci Function

Assumption: we know the value of n, but not that of x or y .

let rec gib n x y =
if n = 0 then (x, y)
else let (r1,r2) = gib (n-1) x y in
(r2, r1+r2)

We get a generator for Gibonacci:

let rec gib_gen n x y =

if n = 0 then (x,y)

else let (r1,r2) = gib_gen (n-1) x y in

< (~r2, ~r1 + ~r2) >

Yukiyoshi Kameyama Adv. Course in Programming Languages

Coloring power function (Summary)

▶ Starting from an ordinary function (e.g. power), and the
static/dynamic information about its arguments,

▶ We can automatically derive a code genrator for it, by
coloring.

Very simple analysis on programs (a modern compiler does a lot
more).

But coloring is not sufficient for all the cases! (Bad news)

Yukiyoshi Kameyama Adv. Course in Programming Languages

Slightly Different Power

When the order of arguments is reversed:

let rec power3 x n =
if n = 0 then 1
else if (even n) then

square (power3 x (n/2))
else x ∗ (power3 x (n−1))

Impossible to color “power3” and “(n/2)”, but not “x”.

Yukiyoshi Kameyama Adv. Course in Programming Languages

Generalize Fibonacci

Assumption: we know the values of n and x , but not that of y .

let rec gib n x y =
if n = 0 then (x, y)
else let (r1,r2) = gib (n-1) x y in
(r2, r1+r2)

The dynamic expression r2 appears in the first element of the pair,
which should be static. (Problematic!)

Yukiyoshi Kameyama Adv. Course in Programming Languages

Higher-order Function

Map is a typical higher-order function:

let rec map f lst =

match lst with

| [] -> []

| h :: tl -> (f h) :: (map f tl)

in

map (fun x -> x + 1) [3; 7; 2; 5]

==>

[4; 8; 3; 6]

Yukiyoshi Kameyama Adv. Course in Programming Languages

Staging with Higher-order Function

Suppose we know the length of lst, but don’t know f and lst
(dynamic), and we want to get:

let rec map_gen2 f lst =

match lst with

| [] -> []

| h :: tl -> .<(.~f .~h) :: .~(map_gen2 f tl)>.

in

map_gen2 .<some_fun>. [.<a1>.; .<a2>.;...]

==> .< [some_func a1; some_func s2; ...]>.

It is rather difficult to distinguish the two, by coloring only.

Yukiyoshi Kameyama Adv. Course in Programming Languages

How can we obtain code generators in general?

Coloring expressions is NOT sufficient.

We need a better way than two colors:

▶ The first Power. Input: n and x, Output.

▶ The second Power. Input: x and n, Output.

▶ The first Gib. Input: n, x, y, Output: left and right.

▶ The second Gib. Input: n, x, y, Output: left and right (?).

▶ Higher-order case: a variable f may contain two colors.

Solution: coloring types.

Yukiyoshi Kameyama Adv. Course in Programming Languages

Coloring Types in GenPower

let rec power n x =

if n = 0 then 1

else x * (power (n-1) x)

power : int -> int -> int

The type of power: int -> int -> int

The type of power gen: ?

▶ n is static (red), so its type is static

▶ x is dynamic (black), so its type is dynamic

▶ the returned object is dynamic (black), so its type is dynamic

The type of power gen: int -> int -> int

Yukiyoshi Kameyama Adv. Course in Programming Languages

Coloring Types in GenPower

The type of power gen: int -> int -> int

We write it as int -> (int code) -> (int code)

gen_power : int -> (int code) -> (int code)

gen_power 3 <5> ==> <5 * 5 * 5 * 1>

gen_power 3 <2+3> ==> <(2+3) * (2+3) * (2+3) * 1>

If n is dynamic, and x is static, then we have another type:

gen_power2 : (int code) -> int -> (int code)

Yukiyoshi Kameyama Adv. Course in Programming Languages

Types inference does the job

let rec gib n x y =

if n = 0 then (x,y)

else let (r1,r2) = gib (n-1) x y in

(r2, r1+r2)

gib : int -> int -> int -> (int * int)

Assume n and x are staitc, and y is dynamic.

We want to assign consistent types for all expressions.

▶ (NG) gib : int → int → (int code) → (int * (int code))

▶ (OK) gib : int → (int code) → (int code) → ((int code)* (int
code))

Type inference tells how we can make a consisten generator.

Yukiyoshi Kameyama Adv. Course in Programming Languages

Types inference does the job

gib : int → (int code) → (int code) → ((int code)* (int code))

let rec gen_gib n x y =

if n = 0 then (x,y)

else let (r1,r2) = gen_gib (n-1) x y in

(r2, < ~r1 + ~r2 >)

gen_gib : int -> int code -> int code

-> int code * int code

To make the argument x static (of type int), we need a wrapper
function:

let wrapper n x y =

gen_gib n <x> y

wrapper : int -> int -> int code

-> int code * int code

Using the lifting (of MetaOCaml):

let x = 3 in <x + 2> ==> <3 + 2>
Yukiyoshi Kameyama Adv. Course in Programming Languages

Summary

“Staging”: converting an ordinary function to a code generator:

▶ Coloring expressions sometimes work, but not always.

▶ Coloring types does work, and correctly detects errors.

Type inference is quite fundamental in many modern programming
languages:

▶ ML (SML, OCaml and F#) and Haskell have built-in
automatic type inference systems.

▶ Theories and algorithms for type inference are well studied.

▶ Many object-oriented programming languages (including Java
and Scala) have powerful type systems.

Yukiyoshi Kameyama Adv. Course in Programming Languages

Static Safety Guarantee

Static safety guarantee of no syntax error, no type error and no
scope error (no free variables) in generated codes:

Approach no syntax error no type/scope error

Strings as codes NG NG

Lisp Quasiquotation OK NG

C++ template OK NG

Template Haskell OK NG

Scala LMS OK NG

MetaOCaml OK OK

Yukiyoshi Kameyama Adv. Course in Programming Languages

