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Today’s Topic

How to obtain a specialized code from an ordinary program?

No! (We want to make this process automatic.)
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GenPower function

name input output

ordinary function power x,n xn

specialized code power13 x x13

code generator gen power n powern

We want to obtain a code generator from an ordinary function.

gen power5⇝ power5

power52⇝ 32

power53⇝ 243

power54⇝ 1024

gen power is a code geneartor, and power5 is a specialized code
(generated by gen power).
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Quasi-quotation

In MetaOCaml, <e> is quotation, and e is anti-quotation.

<1+2> −> <1+2>
<1+2∗3−4+5> −> <1+2∗3−4+5>
< ~<1+2> ∗ 3> −> < (1+2) ∗ 3>
let x = <1+2> in < ~x ∗ 3> −> <(1+2) ∗ 3>
let x = <1+2> in < ~x − ~x> −> <(1+2) − (1+2)

>

Computation rule:

~<e> −> e
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Basics of Types

Types of functions:

let incr x = x + 1 incr : int −> int
let foo (x,y) = x + y foo : (int ∗ int) −>

int
let goo x y = x + y goo : int −> int −>

int

Arrow (→) represents the function type.

power : int −> int −> int
power 2 5 = 32

gib : int −> int −> int −> (int∗int)
gib 3 1 1 = (3,5)
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GenPower Function

GenPower Function (code generator for the power function):

let rec genp n x =
if n = 0 then <1>
else if (even n) then

<square ~(genp (n/2) x)>
else < ~x ∗ ~(genp (n−1) x)>

genp 0 <y> −> <1>
genp 1 <y> −> < ~<y> ∗ ~(genp 0 <x>)>

−> < ~<y> ∗ ~<1>>
−> < y ∗ 1 >

genp 2 <y> −> <square ~(genp 1 <y>)>
−> <square (y ∗ 1)>

genp 3 <y> −> <y ∗ (square (y + 1))>
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How to make GenPower

How to obtain GenPower from Power?

let rec power n x =
if n = 0 then 1
else if (even n) then

square (power (n/2) x)
else x ∗ (power (n−1) x)

let rec genp n x =
if n = 0 then <1>
else if (even n) then

<square ~(genp (n/2) x)>
else < ~x ∗ ~(genp (n−1) x)>

Quite similar: we only have to insert <> and ~ at some suitable
places.
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Coloring power function (1)

Idea: Coloring by red for static, black for others

let rec power n x =
if n = 0 then 1
else x * (power (n - 1) x)

1 0 and 1 are static. We regard power itself is static.
2 We assume n is static and x is dynamic.
3 Then n=0 and n-1 become static.
4 The conditional (if n=0 then ...) becomes static.
5 Nothing more is static (the remaining things are dynamic.)

By quoting red parts, we get a code generator:

let rec genp n <x> =
if n = 0 then 1
else < x * ∼(genp (n - 1) <x>) >
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Coloring power function (2)

Problem 1 in the previous code:

let rec genp n <x> =
if n = 0 then 1
else < x * ∼(genp (n - 1) <x>) >

Here, then-branch returns an integer 1, while else-branch returns a
code (program). Solution: we replace 1 by <1>, even though we

can compute the value of 1 statically.

let rec genp n <x> =
if n = 0 then <1>
else < x * ∼(genp (n - 1) <x>) >
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Coloring power function (2)

Problem 2 in the previous code:

let rec genp n <x> =
if n = 0 then <1>
else < x * ∼(genp (n - 1) <x>) >

Here, <x> cannot be an argument of a function. Solution: we

replace it by y. Then <x> becomes ∼y, hence:

let rec genp n y =
if n = 0 then 1
else < ∼y * ∼(genp (n - 1) y) >

with some magical code:

let genp main n =
< fun x -> ∼(genp n <x>) >
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Coloring better power function

Starting from:

let rec power2 n x =
if n = 0 then 1
else if (even n) then

square (power2 (n/2) x)
else x ∗ (power2 (n−1) x)

We obtain the following generator by coloring:

let rec genp2 n x =
if n = 0 then <1>
else if (even n) then

<square ~(genp2 (n/2) x)>
else < ~x ∗ ~(genp2 (n−1) x)>
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Generalized Fibonacci Function

let rec gib n x y =
if n = 0 then (x, y)
else let (r1,r2) = gib (n−1) x y in

(r2, r1+r2)

gib 0 1 1 −> (1,1)
gib 1 1 1 −> (1,2)
gib 2 1 1 −> (2,3)
gib 3 1 1 −> (3,5)
gib 4 1 1 −> (5,8)
gib 4 3 7 −> (27,44)
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Generalized Fibonacci Function

Assumption: we know the value of n, but not that of x or y .

let rec gib n x y =
if n = 0 then (x, y)
else let (r1,r2) = gib (n-1) x y in
(r2, r1+r2)

We get a generator for Gibonacci:

let rec gib_gen n x y =

if n = 0 then (x,y)

else let (r1,r2) = gib_gen (n-1) x y in

< (~r2, ~r1 + ~r2) >
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Coloring power function (Summary)

▶ Starting from an ordinary function (e.g. power), and the
static/dynamic information about its arguments,

▶ We can automatically derive a code genrator for it, by
coloring.

Very simple analysis on programs (a modern compiler does a lot
more).

But coloring is not sufficient for all the cases! (Bad news)
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Slightly Different Power

When the order of arguments is reversed:

let rec power3 x n =
if n = 0 then 1
else if (even n) then

square (power3 x (n/2))
else x ∗ (power3 x (n−1))

Impossible to color “power3” and “(n/2)”, but not “x”.
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Generalize Fibonacci

Assumption: we know the values of n and x , but not that of y .

let rec gib n x y =
if n = 0 then (x, y)
else let (r1,r2) = gib (n-1) x y in
(r2, r1+r2)

The dynamic expression r2 appears in the first element of the pair,
which should be static. (Problematic!)
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Higher-order Function

Map is a typical higher-order function:

let rec map f lst =

match lst with

| [ ] -> [ ]

| h :: tl -> (f h) :: (map f tl)

in

map (fun x -> x + 1) [3; 7; 2; 5]

==>

[4; 8; 3; 6]
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Staging with Higher-order Function

Suppose we know the length of lst, but don’t know f and lst
(dynamic), and we want to get:

let rec map_gen2 f lst =

match lst with

| [ ] -> [ ]

| h :: tl -> .<(.~f .~h) :: .~(map_gen2 f tl)>.

in

map_gen2 .<some_fun>. [.<a1>.; .<a2>.;... ]

==> .< [some_func a1; some_func s2; ...]>.

It is rather difficult to distinguish the two, by coloring only.
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How can we obtain code generators in general?

Coloring expressions is NOT sufficient.

We need a better way than two colors:

▶ The first Power. Input: n and x, Output.

▶ The second Power. Input: x and n, Output.

▶ The first Gib. Input: n, x, y, Output: left and right.

▶ The second Gib. Input: n, x, y, Output: left and right (?).

▶ Higher-order case: a variable f may contain two colors.

Solution: coloring types.
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Coloring Types in GenPower

let rec power n x =

if n = 0 then 1

else x * (power (n-1) x)

power : int -> int -> int

The type of power: int -> int -> int

The type of power gen: ?

▶ n is static (red), so its type is static

▶ x is dynamic (black), so its type is dynamic

▶ the returned object is dynamic (black), so its type is dynamic

The type of power gen: int -> int -> int
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Coloring Types in GenPower

The type of power gen: int -> int -> int

We write it as int -> (int code) -> (int code)

gen_power : int -> (int code) -> (int code)

gen_power 3 <5> ==> <5 * 5 * 5 * 1>

gen_power 3 <2+3> ==> <(2+3) * (2+3) * (2+3) * 1>

If n is dynamic, and x is static, then we have another type:

gen_power2 : (int code) -> int -> (int code)
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Types inference does the job

let rec gib n x y =

if n = 0 then (x,y)

else let (r1,r2) = gib (n-1) x y in

(r2, r1+r2)

gib : int -> int -> int -> (int * int)

Assume n and x are staitc, and y is dynamic.

We want to assign consistent types for all expressions.

▶ (NG) gib : int → int → (int code) → (int * (int code))

▶ (OK) gib : int → (int code) → (int code) → ((int code)* (int
code))

Type inference tells how we can make a consisten generator.
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Types inference does the job

gib : int → (int code) → (int code) → ((int code)* (int code))

let rec gen_gib n x y =

if n = 0 then (x,y)

else let (r1,r2) = gen_gib (n-1) x y in

(r2, < ~r1 + ~r2 >)

gen_gib : int -> int code -> int code

-> int code * int code

To make the argument x static (of type int), we need a wrapper
function:

let wrapper n x y =

gen_gib n <x> y

wrapper : int -> int -> int code

-> int code * int code

Using the lifting (of MetaOCaml):

let x = 3 in <x + 2> ==> <3 + 2>
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Summary

“Staging”: converting an ordinary function to a code generator:

▶ Coloring expressions sometimes work, but not always.

▶ Coloring types does work, and correctly detects errors.

Type inference is quite fundamental in many modern programming
languages:

▶ ML (SML, OCaml and F#) and Haskell have built-in
automatic type inference systems.

▶ Theories and algorithms for type inference are well studied.

▶ Many object-oriented programming languages (including Java
and Scala) have powerful type systems.
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Static Safety Guarantee

Static safety guarantee of no syntax error, no type error and no
scope error (no free variables) in generated codes:

Approach no syntax error no type/scope error

Strings as codes NG NG

Lisp Quasiquotation OK NG

C++ template OK NG

Template Haskell OK NG

Scala LMS OK NG

MetaOCaml OK OK
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