
ACM SIGPLAN Continuation Workshop

Saturday, September 24, 2011
Tokyo, Japan (co-located with ICFP)

Session 1 (chair: Yukiyoshi Kameyama)

9:00–10:00 Continuations and classical logic: using continuations as a tool for logic
(invited talk)
Koji Nakazawa (Kyoto University)
It is well known as the Curry-Howard isomorphism that there is a neat correspondence
between logical systems and typed calculi, in particular, the intuitionistic natural deduc-
tion and the simply typed lambda calculus. In his paper in 1989, Griffin showed that the
correspondence is extended to classical logic and calculi with control operators, and
then some typed calculi based on classical logic have been proposed and studied from
viewpoints of both logic and programming languages.

In this talk, I show how continuations relate to classical logic, and that we can use
ideas from continuations to prove a fundamental property of logic, that is, normalization
theorem for some proof systems of classical logic.

10:00–10:30 Tea break

Session 2 (chair: Tiark Rompf)

10:30–10:45 Visualizing continuations
Naoki Takashima, Yukiyoshi Kameyama

Direct manipulation of delimited continuations allows one to write elegant and modular
programs. However, it is often hard for beginners to understand their behavior due to
their semantical difficulty. To ease such a burden, we have designed a new language
Redex for visualizing delimited continuations. It has nested (multi-prompt) delimited-
control operators and a serialization mechanism. The latter gives the source-term
representation, rather than binary representation, of any represented values in the
language so that one can see the delimited continuations at any time of execution
of a program. We believe that such a feature is very useful for learning delimited
continuations.

10:45–11:00 Demonstration of Continuation based C on GCC
Shinji Kono

We have implemented a C-like Continuation based programming language. Continua-
tion based C, CbC was implemented using micro-C on various architectures, and we
have tried several CbC programming experiments. Here we report a new implementa-
tion of CbC compiler based on GCC 4.5. Since it contains full C capability, we can use
both CbC and C.

1



11:10–11:35 Using delimited continuations for distributed computing with the CIEL engine
Derek G. Murray, Malte Schwarzkopf, Christopher Smowton, Steven Smith, Anil
Madhavapeddy, Steven Hand

CIEL is a universal execution engine for distributed computation, designed to achieve
high scalability and reliability when run on a commodity cluster. CIEL supports the
full range of MapReduce-style computations, and additionally Turing-powerful data-
dependent control-flow that permits efficient, fault-tolerant evaluation of iterative and
dynamic programming problems that are difficult to express in a pure MapReduce
framework. CIEL also has a clear separation between the execution engine and the
programming language interfaces, and so in this talk I will describe the integration of de-
limited continuations (Scala, OCaml), monadic workflow (Haskell), pure continuations
(Stackless Python), and manual callbacks (Java).

11:35–12:00 Swarm: transparent scalability through portable continuations
James Douglas
Transparent scalability is an elusive characteristic sought for successful software projects
which inevitably outgrow themselves. A common way to approach the design of such
applications is with the MapReduce pattern, which requires considerable foresight into
how the application can be broken down into the functional map and reduce operations.
A problem with this and similar approaches is the investment required at the beginning
of development; the problem domain must be carefully analyzed and a solution crafted
to support the predicted scalability needs. It would be preferable if applications could
be developed simply and cheaply, then later, when necessary, made scalable without
reworking the existing source code. We present an approach to building transparently
scalable applications using Swarm, a framework which enables code execution to
“follow the data” within Scala’s serializable delimited continuations. Swarm abstracts
the location of data across a distributed system from the developer, eliminating costly
architectural and modeling requirements of popular distributed computing patterns and
frameworks. We explain the design of an example implementation of a Twitter-like
Web application which uses Swarm’s continuation-passing style collections, and show
how the developer is unburdened by the complexity of scalability. We demonstrate how
this Swarm-based application can be transparently scaled without requiring changes to
the code or accommodation by the architecture.

12:00–13:30 Lunch break

Session 3 (chair: Chung-chieh Shan)

13:30–14:30 Continuation semantics in linguistics (invited talk)
Mats Rooth (Cornell University)
For decades, typed lambda calculus has been an essential part of the toolkit for work
on semantics in theoretical linguistics. While practitoners in linguistics have been
aware that the same logical and type-theoretic methods are used in theoretical computer
science, the advantages of this in importing ideas into linguistics are only starting to
be cashed out. The chief success so far is the “continuation semantics” for linguistic
phenomena including scope and coreference. In this talk, I will explain the linguistic
intuition about continuation semantics for scope, and look at some of my own research
on intonational focus and ellipsis. I will also talk about using lambda calculators in
teaching, and anticipated benifits of using CS-derived ideas in linguistic semantics.

2



14:35–15:00 ‘Focus movement’ by delimited continuations
Daisuke Bekki, Kenichi Asai
In the past 10 years, the application of the notion of continuations to natural language
semantics has been pursued in order to capture non-local aspects of semantic composi-
tion. The phenomenon of “focus” is an example of such aspects, in which the “focused
element” induces a universal quantification which refers to the meaning of the whole
sentence. In this talk, we will first introduce a theory of the meta-lambda calculus,
a kind of two-level typed lambda calculus, to define a monadic translation by which
shift/reset operators are defined via continuation monad. We then introduce Bekki and
Asai’s analysis of focus in which focus contains a shift operator and the adverbial “only”
denotes a reset operator. Such a compositional encoding of focus becomes possible
through the clear semantics of the meta-lambda calculus based on category theory.

15:00–15:30 Tea break

Session 4 first half (chair: Oleg Kiselyov)

15:30–15:55 Modular rollback through free monads
Conor McBride, Olin Shivers, Aaron Turon

Control operators prove to be an excellent tool for decoupling concerns, and in particular
for separating error repair or user interaction from the processing of correct input. In
a paper to appear in this year’s ICFP, Shivers and Turon give one such use case, a
programming pattern for “modular rollback through control logging.” Using this pattern,
an input processor can be written in a direct way, without any knowledge of a user’s
ability to back up and alter the input, or a repair module’s ability to fix errors. In
this talk, we will explore the theoretical underpinnings of the programming pattern,
using free monads and Filinski’s reify/reflect to factor the implementation. We will
show, in particular, that the pattern can be seen as a particular mode of use of monadic
representation.

15:55–16:20 Yield, the control operator: applications and a conjecture
Roshan P. James, Amr Sabry
In previous work, “Yield: Mainstream delimited continuations” (TPDC 2011), we
presented a generalized version of the yield control operator that was distilled from
studying yield operators of various programming languages. In this brief abstract,

1. we extend that presentation to establish the connection of yield with dynamic
binding, dynamic scope and generalized stack inspection in the spirit of Kiselyov
et al (SIGPLAN Not. 2006),

2. we outline a lightweight workflow infrastructure in the spirit of Lu and Gannon
(eScience 2008) and

3. we provide a yield monad transformer that allows yield to be composed with
other effects.

Finally, we pose a question of considerable theoretical interest: do delimited continua-
tions expressed using yield in combination with session types shed light on answer-type
polymorphism?

3



16:20–16:45 Correctness of functions with shift and reset
Noriko Hirota, Kenichi Asai
Although shift and reset have become used to write various interesting functions,
the understanding of those functions is not always simple. As an attempt to better
understand their behavior, we formalize and prove correct some functions written
with shift and reset in Coq. Building on Sozeau and Kiselyov’s formalization of shift
and reset using Generalized Continuation Monad, we first formalize Kameyama and
Hasegawa’s axioms for shift and reset in Coq. We then write a few functions in monadic
style and prove them correct using Kameyama and Hasegawa’s axioms and the standard
monad laws. By carefully not unfolding the definition of monadic operators, we can
effectively prove correctness of functions in direct style. We report on two case studies
of this approach: reverse and times, and mention that non-trivial generalization of
hypothesis is required to properly characterize the behavior of continuations.

16:45–16:55 Short break without tea

Session 4 second half (chair: Amr Sabry)

16:55–17:20 The limit of the CPS hierarchy
Josef Svenningsson
We present a language which we refer to as the limit of the CPS hierarchy. It allows for
an unbounded number of levels of continuations. We present a semantics in the form of
an abstract machine.

17:20–17:45 Non-deterministic search library
Kenichi Asai, Chihiro Kaneko

Non-deterministic programming has been used as a non-trivial application of (delimited)
continuations. We report on our experience of using OchaCaml, an extension of Caml
Light with (polymorphically typed) shift and reset, to write a search problem using
non-deterministic operators. We provide a library for non-deterministic operations
implemented using shift and reset and show how it enables us to write a search problem
in direct style, using party puzzles as a concrete example.

Thanks to the Continuation Workshop program committee:

• Kenichi Asai (Ochanomizu University, Japan)
• Małgorzata Biernacka (University of Wroclaw, Poland)
• Hugo Herbelin (PPS-πr2, INRIA, France)
• Oleg Kiselyov
• Julia Lawall (University of Copenhagen, Denmark)
• Tiark Rompf (EPFL, Switzerland)
• Hayo Thielecke (University of Birmingham, UK)

Thanks to the Continuation Workshop organizers: Yukiyoshi Kameyama (University of Tsukuba) and
Oleg Kiselyov. Thanks to the ICFP organizers, especially

• Manuel Chakravarty (University of New South Wales)
• Zhenjiang Hu (National Institute of Informatics)
• Soichiro Hidaka (National Institute of Informatics)
• Gabriele Keller (University of New South Wales)
• Derek Dreyer (Max Planck Institute for Software Systems)

Welcome and enjoy!
Chung-chieh Shan (Cornell University), program chair

4


