
ACM SIGPLAN Continuation Workshop

Saturday, September 24, 2011
Tokyo, Japan (co-located with ICFP)

Session 1 (chair: Yukiyoshi Kameyama)

9:00–10:00 Continuations and classical logic: using continuations as a tool for logic
(invited talk)
Koji NAKAZAWA (Kyoto University)
It is well known as the Curry-Howard isomorphism that there is a neat correspondence
between logical systems and typed calculi, in particular, the intuitionistic natural deduc-
tion and the simply typed lambda calculus. In his paper in 1989, Griffin showed that the
correspondence is extended to classical logic and calculi with control operators, and
then some typed calculi based on classical logic have been proposed and studied from
viewpoints of both logic and programming languages.

In this talk, I show how continuations relate to classical logic, and that we can use
ideas from continuations to prove a fundamental property of logic, that is, normalization
theorem for some proof systems of classical logic.

10:00–10:30 Tea break

Session 2 (chair: Tiark Rompf)

10:30–10:45 Visualizing continuations
Naoki TAKASHIMA, Yukiyoshi KAMEYAMA

Direct manipulation of delimited continuations allows one to write elegant and modular
programs. However, it is often hard for beginners to understand their behavior due to
their semantical difficulty. To ease such a burden, we have designed a new language
Redex for visualizing delimited continuations. It has nested (multi-prompt) delimited-
control operators and a serialization mechanism. The latter gives the source-term
representation, rather than binary representation, of any represented values in the
language so that one can see the delimited continuations at any time of execution
of a program. We believe that such a feature is very useful for learning delimited
continuations.

10:45–11:00 Demonstration of Continuation based C on GCC
Shinji KONO

We have implemented a C-like Continuation based programming language. Continua-
tion based C, CbC was implemented using micro-C on various architectures, and we
have tried several CbC programming experiments. Here we report a new implementa-
tion of CbC compiler based on GCC 4.5. Since it contains full C capability, we can use
both CbC and C.

1

11:10–11:35 Using delimited continuations for distributed computing with the CIEL engine
Derek G. MURRAY, Malte SCHWARZKOPF, Christopher SMOWTON, Steven SMITH, Anil
MADHAVAPEDDY, Steven HAND

CIEL is a universal execution engine for distributed computation, designed to achieve
high scalability and reliability when run on a commodity cluster. CIEL supports the
full range of MapReduce-style computations, and additionally Turing-powerful data-
dependent control-flow that permits efficient, fault-tolerant evaluation of iterative and
dynamic programming problems that are difficult to express in a pure MapReduce
framework. CIEL also has a clear separation between the execution engine and the
programming language interfaces, and so in this talk I will describe the integration of de-
limited continuations (Scala, OCaml), monadic workflow (Haskell), pure continuations
(Stackless Python), and manual callbacks (Java).

11:35–12:00 Swarm: transparent scalability through portable continuations
James DOUGLAS

Transparent scalability is an elusive characteristic sought for successful software projects
which inevitably outgrow themselves. A common way to approach the design of such
applications is with the MapReduce pattern, which requires considerable foresight into
how the application can be broken down into the functional map and reduce operations.
A problem with this and similar approaches is the investment required at the beginning
of development; the problem domain must be carefully analyzed and a solution crafted
to support the predicted scalability needs. It would be preferable if applications could
be developed simply and cheaply, then later, when necessary, made scalable without
reworking the existing source code. We present an approach to building transparently
scalable applications using Swarm, a framework which enables code execution to
“follow the data” within Scala’s serializable delimited continuations. Swarm abstracts
the location of data across a distributed system from the developer, eliminating costly
architectural and modeling requirements of popular distributed computing patterns and
frameworks. We explain the design of an example implementation of a Twitter-like
Web application which uses Swarm’s continuation-passing style collections, and show
how the developer is unburdened by the complexity of scalability. We demonstrate how
this Swarm-based application can be transparently scaled without requiring changes to
the code or accommodation by the architecture.

12:00–13:30 Lunch break

Session 3 (chair: Chung-chieh Shan)

13:30–14:30 Continuation semantics in linguistics (invited talk)
Mats ROOTH (Cornell University)
For decades, typed lambda calculus has been an essential part of the toolkit for work
on semantics in theoretical linguistics. While practitoners in linguistics have been
aware that the same logical and type-theoretic methods are used in theoretical computer
science, the advantages of this in importing ideas into linguistics are only starting to
be cashed out. The chief success so far is the “continuation semantics” for linguistic
phenomena including scope and coreference. In this talk, I will explain the linguistic
intuition about continuation semantics for scope, and look at some of my own research
on intonational focus and ellipsis. I will also talk about using lambda calculators in
teaching, and anticipated benifits of using CS-derived ideas in linguistic semantics.

2

14:35–15:00 ‘Focus movement’ by delimited continuations
Daisuke BEKKI, Kenichi ASAI

In the past 10 years, the application of the notion of continuations to natural language
semantics has been pursued in order to capture non-local aspects of semantic composi-
tion. The phenomenon of “focus” is an example of such aspects, in which the “focused
element” induces a universal quantification which refers to the meaning of the whole
sentence. In this talk, we will first introduce a theory of the meta-lambda calculus,
a kind of two-level typed lambda calculus, to define a monadic translation by which
shift/reset operators are defined via continuation monad. We then introduce Bekki and
Asai’s analysis of focus in which focus contains a shift operator and the adverbial “only”
denotes a reset operator. Such a compositional encoding of focus becomes possible
through the clear semantics of the meta-lambda calculus based on category theory.

15:00–15:30 Tea break

Session 4 first half (chair: Oleg Kiselyov)

15:30–15:55 Modular rollback through free monads
Conor MCBRIDE, Olin SHIVERS, Aaron TURON

Control operators prove to be an excellent tool for decoupling concerns, and in particular
for separating error repair or user interaction from the processing of correct input. In
a paper to appear in this year’s ICFP, Shivers and Turon give one such use case, a
programming pattern for “modular rollback through control logging.” Using this pattern,
an input processor can be written in a direct way, without any knowledge of a user’s
ability to back up and alter the input, or a repair module’s ability to fix errors. In
this talk, we will explore the theoretical underpinnings of the programming pattern,
using free monads and Filinski’s reify/reflect to factor the implementation. We will
show, in particular, that the pattern can be seen as a particular mode of use of monadic
representation.

15:55–16:20 Yield, the control operator: applications and a conjecture
Roshan P. JAMES, Amr SABRY

In previous work, “Yield: Mainstream delimited continuations” (TPDC 2011), we
presented a generalized version of the yield control operator that was distilled from
studying yield operators of various programming languages. In this brief abstract,

1. we extend that presentation to establish the connection of yield with dynamic
binding, dynamic scope and generalized stack inspection in the spirit of Kiselyov
et al (SIGPLAN Not. 2006),

2. we outline a lightweight workflow infrastructure in the spirit of Lu and Gannon
(eScience 2008) and

3. we provide a yield monad transformer that allows yield to be composed with
other effects.

Finally, we pose a question of considerable theoretical interest: do delimited continua-
tions expressed using yield in combination with session types shed light on answer-type
polymorphism?

3

16:20–16:45 Correctness of functions with shift and reset
Noriko HIROTA, Kenichi ASAI

Although shift and reset have become used to write various interesting functions,
the understanding of those functions is not always simple. As an attempt to better
understand their behavior, we formalize and prove correct some functions written
with shift and reset in Coq. Building on Sozeau and Kiselyov’s formalization of shift
and reset using Generalized Continuation Monad, we first formalize Kameyama and
Hasegawa’s axioms for shift and reset in Coq. We then write a few functions in monadic
style and prove them correct using Kameyama and Hasegawa’s axioms and the standard
monad laws. By carefully not unfolding the definition of monadic operators, we can
effectively prove correctness of functions in direct style. We report on two case studies
of this approach: reverse and times, and mention that non-trivial generalization of
hypothesis is required to properly characterize the behavior of continuations.

16:45–16:55 Short break without tea

Session 4 second half (chair: Amr Sabry)

16:55–17:20 The limit of the CPS hierarchy
Josef SVENNINGSSON

We present a language which we refer to as the limit of the CPS hierarchy. It allows for
an unbounded number of levels of continuations. We present a semantics in the form of
an abstract machine.

17:20–17:45 Non-deterministic search library
Kenichi ASAI, Chihiro KANEKO

Non-deterministic programming has been used as a non-trivial application of (delimited)
continuations. We report on our experience of using OchaCaml, an extension of Caml
Light with (polymorphically typed) shift and reset, to write a search problem using
non-deterministic operators. We provide a library for non-deterministic operations
implemented using shift and reset and show how it enables us to write a search problem
in direct style, using party puzzles as a concrete example.

Thanks to the Continuation Workshop program committee:

• Kenichi Asai (Ochanomizu University, Japan)
• Małgorzata Biernacka (University of Wroclaw, Poland)
• Hugo Herbelin (PPS-πr2, INRIA, France)
• Oleg Kiselyov
• Julia Lawall (University of Copenhagen, Denmark)
• Tiark Rompf (EPFL, Switzerland)
• Hayo Thielecke (University of Birmingham, UK)

Thanks to the Continuation Workshop organizers: Yukiyoshi Kameyama (University of Tsukuba) and
Oleg Kiselyov. Thanks to the ICFP organizers, especially

• Manuel Chakravarty (University of New South Wales)
• Zhenjiang Hu (National Institute of Informatics)
• Soichiro Hidaka (National Institute of Informatics)
• Gabriele Keller (University of New South Wales)
• Derek Dreyer (Max Planck Institute for Software Systems)

Welcome and enjoy!
Chung-chieh Shan (Cornell University), program chair

4

Visualizing Continuations

Naoki Takashima
taka@logic.cs.tsukuba.ac.jp

Yukiyoshi Kameyama
kameyama@acm.org

Department of Computer Science, University of Tsukuba

1 Overview

Control operators for delimited continuations [3, 2] are powerful and promising mechanisms for functional
programs. Nevertheless, their semantics makes it hard for beginners to understand the behavior, and it is
often a time-consuming task for ordinary programmers to get used to them. Even experts on control operators
sometimes get confused when they use more than one set of control operators. We need better languages and
better tools to make them more practical.

We believe that “visualizing” continuations is the key to solving this problem. One can easily understand
literals such as integers and strings, since we can “see” them, by, for instance, printing them. We can understand
the behavior of functions, since they are written as source codes, or their values (closures) can be seen on the
fly by debuggers etc. On the contrary, continuations captured by control operators do not exist in source codes,
and one cannot print their values during the execution of programs. Although delimited continuations are
sometimes regarded as functional values in theory, we cannot easily see them just like functions in practice.

Having this idea in mind, we have designed a new programming language Redex [1] as an experimental tool
for our ideas. Redex implements the following three distinguished features: delimited-control operators, serial-
ization, and interoperability. The first feature enables one to access delimited continuations in several different
styles. The second is the key to visualizing Redex values including functions and (delimited) continuations. The
last is to reinforce the expressive power of Redex so as to make more practical visualization methods possible.

In the talk, we will demonstrate how these features provide an interesting testbed for playing with delimited
continuations.

2 Programming Language Redex

Delimited-control operators
In the literature, many control operators for delimited continuations have been proposed including Felleisen’s

control/prompt and Danvy and Filinski’s shift/reset, which differ whether captured continuations contain a reset
at its top or not. In general, we may consider more variants:

reset #p { E[shift #p : k -> e] }

==> reset #p { let k = fun y -> reset #p { E[y] } in e }

This is the semantics of shift/reset (if we ignore #p), but we get three other variants by omitting either or both
of reset in the reduced term.

As Redex aims at providing a thinking tool, it provides all four control operators above. Moreover they can
be nested by attaching names #p to each use of control operators, and one can simultaneously use arbitrary
combination of control operators in Redex.
Serialization

The most notable feature of Redex is serialization; one can convert any1 Redex value into a string, and
convert it back to an equivalent value. Here is a sample Redex program for append

func append = function

| [] -> shift #p : k -> k

| hd :: tl -> hd :: append tl

let f = reset #p { append [1, 2, 3] }

do printn ! serialize f

1There are some .NET values which cannot be serialized.

1

which, when executed will print the following string as a result:

(\ $Internal_0003 -> (reset #p { (($OpCons 1) (($OpCons 2) (($OpCons 3)

$Internal_0003))) }));;

Serialization in Redex does not produce an unreadable bit sequence; rather, the produced string represents an
original source term as a tree (modulo the generated bound variables). Let us take another example:

let f =

let x = 10 in let y = 20 in

reset #p { (shift #p : k -> k) + y }

do printn (serialize f)

in which the delimited continuation captured by shift contains a free variable y. Serializing such a continuation
will accompany a kind of closure conversion:

(\ $Internal_0002 -> (reset #p { ((\ y -> (($OpAdd $Internal_0002) y)) 20) }));;

\end{quote}

Interoperability with F#
Another notable feature of Redex is interoperability with Microsoft’s .NET framework. It enables one to use

various libraries from Redex programs. We can call .NET functions, and even create a .NET object as a Redex

value, and send a message to this object from a Redex function. See Fig. 1 for a simple example.

Figure 1:

As a more substantial example, a version of Fibonacci function implemented in Redex is shown in the
appendix. It combines various features in Redex: (1) functional programming, (2) delimited-control operators
“shift” and “reset”, (3) serialization, and (4) the .NET class “StreamWriter”. It is now very easy to implement
a GUI for manipulating (serialized) delimited continuations, and so on.

3 Concluding Remark

Redex is implemented in F#, and is freely available through the URL [1]. (One needs .NET framework in
advance.) Its syntax resembles OCaml’s, while it is dynamically typed unlike most other functional languages.
Although it remains a prototype implementation, we can play with delimited continuations and serialization,
and moreover, the interoperability with .NET framework enables one to enjoy them more.

References

[1] The redex programming language. http://logic.cs.tsukuba.ac.jp/˜taka/proj/redex/.

[2] Olivier Danvy and Andrzej Filinski. Abstracting control. In LISP and Functional Programming, pages
151–160, 1990.

[3] Matthias Felleisen. The theory and practice of first-class prompts. In Principles of Programming Languages,
pages 180–190, 1988.

2

A Fibonacci in Redex

We show an implementation of Fibonacci function, which uses various feature of Redex.
The function computes each value of Fibonacci sequence one by one. Namely, when it is called, it returns

a pair of the next value and the continuation (to compute the rest of the sequence). Then it serializes the
captured continuation and saves it to a file using .NET class “StreamWriter” so that one can continue the rest
of the computation afterwords (when the function is called next time).

func gen_fib v0 v1 =

reset #p {

let next = v0 + v1 in

do shift #p : k -> (k, next) in

gen_fib v1 next

}

open System.IO

let cont_file = "cont.txt"

let write_cont k =

let str = serialize k in

let w_stream = new StreamWriter (cont_file) in

w_stream.WriteLine str;

w_stream.Dispose ()

let main () =

let (k, v) =

if call File.Exists(cont_file) then

(let r_stream = new StreamReader(cont_file) in

let str = r_stream.ReadToEnd () in

r_stream.Dispose ();

eval str ())

else gen_fib 1 1 in

printn v;

write_cont k

do main ()

If we execute the program, it prints “2”, “3”, “5”, “8”, and so on, for each invocation of the program.

3

Demonstration of Continuation based
C on GCC

Shinji KONO

e-mail:kono@ie.u-ryukyu.ac.jp
Information Engineering, University of the Ryukyus

Nishihara-cyo 1, Okinawa, 903-01, Japan

June 26, 2011

We have implemented C like Continuation based programming language.
Continuation based C, CbC [1, 2] was implemented using micro-C on various
architecture, and we have tried several CbC programming experiments. Here
we report new implementation of CbC compiler based on GCC 4.5. Since it
contains full C capability, we can use both CbC and C.

CbC’s basic programming unit is a code segment. It is not a subroutine,
but it looks like a function, because it has input and output. We can use C
struct as input and output interfaces.

struct interface1 { int i; };

struct interface2 { int o; };

__code f(struct interface1 a) {

struct interface2 b; b.o=a.i;

goto g(b);

}

In this example, a code segment f has input a and sends output b to
a code segment g. There is no return from code segment b, b should call

1

another continuation using goto. Any control structure in C is allowed in
CwC language, but in case of CbC, we restrict ourselves to use if statement
only, because it is sufficient to implement C to CbC translation. In this case,
code segment has one input interface and several output interfaces (fig.).

Code SegmentInput
Interface

Output
Interface

Output
Interface

Output
Interface

Figure 1: code

We have found interfaces should be a dual of code segment. It should be
data segment. Concept of data segment is important in parallel computation
and distributed computation because location of data is important. Data
segment is not only a data structure in computation, but it has computation
also. If data segment are moved it requires copying time and code segment
have to wait for the data segment.

We will show an implementation of data segment in our Cerium Task
Manager for Cell architecture and multi processor.

We built basic application such as grep and its demonstration will be
shown.

References

[1] Shinji Kono , “Implementing Continuation based language in GCC ,” in
Continuation Festa 2008, April 2008.

[2] Shinji KONO, “CbC,” March 2008. [Online]. Available:
https://sourceforge.jp/projects/cbc/

2

Using Delimited continuations for Distributed Computing with the
CIEL Engine

Derek G. Murray, Malte Schwarzkopf, Christopher Smowton, Steven
Smith, Anil Madhavapeddy and Steven Hand

Presenter: Anil Madhavapeddy

Tools for programming distributed environments generally fall into
one of two camps. Some, such as MapReduce or Dryad, insulate the
programmer from many of the difficulties of distributed programming,
at the expense of restricting the programming model. Others, such
as MPI, provide a much more generic framework but force developers
to consider all of the low-level details. We believe this is a false
choice: the framework should provide a simple interface to naive
programmers, but allow more demanding users to express more complicated
designs when necessary.

Our CIEL distributed execution engine is able to expose this trade-off
and return control to its users. CIEL enables programs written in
different languages and programming models to run as tasks in a
distributed parallel computation. The key feature of CIEL is its
ability to support data-dependent control flow during a distributed
job, which allows it to run unbounded iterative and recursive
algorithms. CIEL tasks have a mechanism for spawning additional
tasks and can perform iteration using a tail-recursive style, with
explicit continuation-passing.

While this is sufficiently expressive, it is not the most intuitive
programming model for all applications. We have extended CIEL to
support executors which present the illusion of a single thread of
execution that is transparently broken down into parallel tasks.
As a result, the programmer can write straight-line code in several
languages, such as Python, Scala and OCaml, which will be executed
as a reliable distributed job. These so-called 'threaded executors'
use continuations to serialise the state of the program when a
remote data reference is unavailable, and the CIEL engine takes
care of resuming execution (potentially on a different host) when
that reference subsequently becomes available.

In this talk, we will briefly outline how the CIEL engine works,
and then demonstrate the OCaml and Scala executors use serialisable
delimited continuations to interface with CIEL. A more detailed
overview of the OCaml interface is also available separately [3].

[1] CIEL: a universal engine for distributed data-flow programming;
USENIX NSDI 2011; online at
http://anil.recoil.org/papers/2011-nsdi-ciel.pdf

[2] A Polyglot Approach to Cloud Programming; draft paper online at

http://www.cl.cam.ac.uk/~ms705/pub/papers/2011-ciel-socc-draft.pdf

[3] DataCaml - a first look at distributed dataflow programming using OCaml
http://anil.recoil.org/2011/06/18/datacaml-with-ciel.html

CW2001

ACM SIGPLAN Continuation Workshop 2011

Swarm

Transparent Scalability Through Portable Continuations

https://github.com/sanity/Swarm

Submitted on:

Jul 2, 2011

Submitted by:

James Douglas

james@earldouglas.com

Abstract
Transparent scalability is an elusive characteristic sought for successful software projects
which inevitably outgrow themselves. A common way to approach the design of such
applications is with the MapReduce pattern, which requires considerable foresight into how
the application can be broken down into the functional map and reduce operations. A
problem with this and similar approaches is the investment required at the beginning of
development; the problem domain must be carefully analyzed and a solution crafted to
support the predicted scalability needs. It would be preferable if applications could be
developed simply and cheaply, then later, when necessary, made scalable without reworking
the existing source code. We present an approach to building transparently scalable
applications using Swarm, a framework which enables code execution to "follow the data"
within Scala's serializable delimited continuations. Swarm abstracts the location of data
across a distributed system from the developer, eliminating costly architectural and modeling
requirements of popular distributed computing patterns and frameworks. We explain the
design of an example implementation of a Twitter-like Web application which uses Swarm's
continuation-passing style collections, and show how the developer is unburdened by the
complexity of scalability. We demonstrate how this Swarm-based application can be
transparently scaled without requiring changes to the code or accommodation by the
architecture.

Supplementary material

Code selections

The following code represents a selection from the Swarm source code hosted on GitHub. It
includes a loop which listens for incoming serialized continuations from remote nodes, and
sends them off to be dereferenced, executed, and/or relocated as appropriate.

Swarm's listen loop:
 val server = new java.net.ServerSocket(port);

 var runnable = new Runnable() {
 override def run() = {
 while (true) {
 val socket = server.accept()
 val ois = new java.io.ObjectInputStream(socket.getInputStream())
 val bee = ois.readObject().asInstanceOf[(Unit => Bee)]
 debug("resuming execution from " + local)
 Swarm.continue(bee)
 }
 }
 }
 Swarm.executor.execute(runnable)

Swarm's continue method:
 def continue(f: Unit => Bee)(implicit tx: Transporter) {
 execute(reset(f()))
 }

Swarm's execute method:
 def execute(bee: Bee)(implicit tx: Transporter) {
 bee match {
 case RefBee(f, ref) if (tx.isLocal(ref.location)) =>
 if (!Store.exists(ref.uid)) {
 val newRef = Store.relocated(ref.uid)
 ref.relocate(newRef.uid, newRef.location)
 tx.transport(f, ref.location)
 } else {
 Swarm.continue(f)
 }
 case RefBee(f, ref) => tx.transport(f, ref.location)
 case IsBee(f, destination) if (tx.isLocal(destination)) =>
 Swarm.continue(f)
 case IsBee(f, destination) => tx.transport(f, destination)
 case NoBee() =>
 }
 }

Demo screenshot

The following screenshot shows the main view of the Swarm Twitter demo after statuses have
been submitted by different users. These statuses are made available on multiple server
nodes via Swarm.

Swarm Twitter main view:

“Focus Movement” by Delimited Contintuations

Daisuke Bekki Kenichi Asai

Ochanomizu University
Faculty of Science, Department of Information Science ∗

September 24, 2011

1 Linguistic Background: Focus in Formal Semantics

Rooth (1992) discussed the truth conditions of the two sentences (1a) and (1b) which structually differ
only in the location of focus (indicated by []F): in a situation where Mary introduced Bill and Tom
to Sue, with no other introductions, (1a) is false while (1b) is true.

(1) a. Mary only introduced [Bill]F to Sue.

b. Mary only introduced Bill to [Sue]F .

In order to account for such a contrast, Rooth (1992) claimed that the semantic compositions for
sentences such as (1) involves the notion of alternative sets: for example, {x | introduce(m, x, s)} for
(1a) and {x | introduce(m, b, x)} for (1b), with which the truth conditions for (1a) and (1b) can be
represented as (2a) and (2b), respectively.

(2) a. ∀x(x ∈ {x | introduce(m, x, s)} ↔ x = b)

b. ∀x(x ∈ {x | introduce(m, b, x)} ↔ x = s)

In line with the generative tradition, Wagner (2006), among others, adopts an operation called
“focus movement” which is an instance of covert movements, in order to obtain the structures for
alternative sets.

On the other hand, Barker (2004) pointed out that the alternative sets exactly correspond to the
continuations (Stratchey and Wadsworth (1974)) of the semantic representations of the focused ele-
ments, and proposed a possible implementation by means of the fcontrol/run operators (Sitaram
and Felleisen (1990)). However, whether those operators can be defined by Barker’s version of continu-
ations was not clear enough. Shan (2007) further developed and extended this idea of a continuation-
based analysis to various lingistic side-effects, including quantification, binding, wh-questions, and
superiority effects.

This abstract aims at elaborating the analysis of focus in Bekki and Asai (2010), which attempted
to show that delimited continuations may replace covert movements with purely compositional calcu-
lations. We first introduce the meta-lambda calculus, a kind of two-level calculus, and define (a variant
of) shift and reset (Danvy and Filinski (1990)) in terms of the meta-lambda calculus. We then
show how thus defined shift and reset can be used to explain focus movements in a compositional
way. It appears that the use of a two-level calculus for semantic representations naturally separate
covert movements from semantic representations of base sentences.

∗2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan.

2 Meta-Lambda Calculus

The syntax of the meta-lambda calculus M consists of the center column of the following table:

meta-lambda calculus two-staged lambda calculus
base-level variable x x
base-level abstraction λx. M λ x. M
base-level application M1 M2 M1@M2

meta-level variable X x
meta-level variable with substitution X[M/x] (binding-time error)
meta-level abstraction ζX. M λx. M
meta-level application M1�M2 M1@M2

In addition to the standard base-level variables, abstractions, and applications, the meta-lambda calcu-
lus has corresponding meta-level terms: meta variables (possibly with substitution), meta abstractions
ζx. M , and meta applications M1�M2.

The intended meaning of the meta-lambda terms are close to the standard two-staged lambda
calculus, whose syntax is shown in the right column of the above table. In the two-staged lambda
calculus, meta-level (or static) terms are reduced first to generate base-level (or dynamic) terms.
Likewise, we can regard meta-level reduction in the meta-lambda calculus as generation of base-level
terms.

However, there are two important differences. First, in the meta-lambda calculus, base-level
reduction can be done before meta-level reduction. While a term like λx. (λ y. x)@a results in a
binding-time error because the static lambda cannot be reduced away, corresponding meta-lambda
term ζX. (λy. X) a is well-typed and is reduced to ζX. X[a/y] where X[a/y] represents that when X
is instantiated to a base-level term, the variable y occurring in it is replaced with a. A similar notion
of meta variables with substitution appears in Nanevski et al. (2008).

Secondly, α-equivalence of both the meta- and base-level terms are maintained in the meta-lambda
calculus. In the two-staged lambda calculus, it is typically required to generate fresh variables when
residualizing dynamic lambdas. In the meta-lambda calculus, such hygiene is maintained automatically
in a way similar to the multi-staged language by Kim et al. (2006). However, the detailed comparison
is still left as a future work. Currently, the syntax, type system, and categorical semantics of the
meta-lambda calculus are fixed, and the soundness of α-, β-, and η-equivalence has been shown by
Masuko and Bekki (2011).

3 Handling Focus with Continuations

Our analysis achieves purely compositional analysis of focus by translating a semantic representation
into CPS using the following set of rules.

Definition 1 (Translation to continuation monad). The translation rules of lambda terms into meta-
lambda calculus are defined as follows.

�x�c = ζκ.(κ�x)

�c�c = ζκ.(κ�c)

�λx.M�c = ζκ.(�M�c�(ζv.κ�(λx.v)))

�∀x(M)�c = ζκ.(�M�c�(ζv.κ�(∀x(v))))

�MN�c = ζκ.(�M�c�(ζm.�N�c�(ζn.κ�(mn))))

This translation is an identity translation if we pass an identity function as the initial continuation
and reduce meta-level terms at translation time. It traverses all the subterms including under the
binders, and reconstructs the original term.

The shift/reset operators are then defined in the following way.

Definition 2 (Control operators).

�shift κ.M�c = ζκ.�M�c�(ζx.x)

�reset(M)�c = ζκ.κ�(�M�c�(ζx.x))

Although the definition of shift above looks unfamiliar, it is almost the same as the original
definition of shift except that the continuation κ is not reified as a function but is used as is as the
meta-level function. In this setting, shift captures the meta-level continuation or translation-time
continuation, so to speak.

The above definition of shift and reset enables us to define the focus operators as follows, where
focus is interpreted referring to its alternative set that is captured by the shift operator, and the
adverbial “only” is the reset operator that determines the scope of the corresponding alternative set.

Definition 3 (Focus operator). For any meta-lambda term M : e and N : e → t,

[M]F
def≡ shift κ.λx.∀z(κzx ↔ z = M)

only(N)
def≡ reset(N)

Then the semantic representations for (1a) and (1b) are respectively calculated as follows.

�[b]F �c = �shift κ.λx.∀y(κyx ↔ y = b)�c
= ζκ.(�λx.∀y(κyx ↔ y = b)�c�(ζx.x))

= ζκ.((ζk.λx.∀y(κyx ↔ y = b))�(ζx.x))

= ζκ.λx.∀y(κyx ↔ y = b)

�(only ((introduce [b]F) s)) m�c
= ζκ.(�only ((introduce [b]F) s)�c�(ζf.�m�c�(ζx.κ�(fx))))

= ζκ.(�reset((introduce [b]F) s)�c�(ζf.(ζk.k�m)�(ζx.κ�(fx))))

= ζκ.κ�((�[b]F �c�(ζz.(introduce z s)))m)

= ζκ.κ�((ζκ.λx.∀z(κzx ↔ z = b)�(ζz.(introduce z s)))m)

= ζκ.κ�((λx.∀z(introduce z s x ↔ z = b)m))

= ζκ.κ�∀z(introduce z s m ↔ z = b)

�(only ((introduce b) [s]F) m�c
= ζκ.(�only ((introduce b) [s]F)�c�(ζf.�m�c�(ζx.κ�(fx))))

= ζκ.(�reset((introduce b) [s]F)�c�(ζf.(ζk.k�m)�(ζx.κ�(fx))))

= ζκ.κ�((�[s]F �c�(ζz.(introduce b z)))m)

= ζκ.κ�((ζκ.λx.∀z(κzx ↔ z = s)�(ζz.(introduce b z)))m)

= ζκ.κ�((λx.∀z(introduce b z x ↔ z = s)m))

= ζκ.κ�∀z(introduce b z m ↔ z = s)

4 Summary and Future Work

We have demonstrated how the meta-lambda calculus can be used to explain covert movements in
a compositional way. The use of two-level calculus appears to open a new area in the semantic
representations of movements. However, the detailed investigation of both the meta-level lambda
calculus and its use in the semantics of natural languages is still on-going.

We will investigate the analysis with further theoretical implications and empirical consequences,
especially incorpolating the revisions on the formulation of meta-lambda calculus recently made by
Masuko and Bekki (2011).

References

Barker, C. (2004) “Continuations in Natural Language”, In the Proceedings of H. Thielecke (ed.): the
Fourth ACM SIGPLAN Continuations Workshop (CW’04). Technical Report CSR-04-1, School of
Computer Science, University of Birmingham, Birmingham B15 2TT. United Kingdom, pp.1–11.

Bekki, D. (2009) “Monads and Meta-Lambda Calculus”, In: H. Hattori, T. Kawamura, T. Ide’, M.
Yokoo, and Y. Murakami (eds.): New Frontiers in Artificial Intelligence (JSAI 2008 Conference
and Workshops, Asahikawa, Japan, June 2008, Revised Selected Papers from LENLS5), Vol. LNAI
5447. Springer, pp.193–208.

Bekki, D. and K. Asai. (2010) “Representing Covert Movements by Delimited Continuations”, In: K.
Nakakoji, Y. Murakami, and E. McCready (eds.): New Frontiers in Artificial Intelligence (JSAI-
isAI 2009 Workshops, Tokyo, Japan, November 2009, Selected Papers from LENLS7), Vol. LNAI
6284. Heidelberg, Springer, pp.161–180.

Danvy, O. and A. Filinski. (1990) “Abstracting Control”, In the Proceedings of LFP90, the 1990 ACM
Conference on Lisp and Functional Programming. pp.151–160.

Kim, I.-S., K. Yi, and C. Calcagno. (2006) “A Polymorphic Modal type System for Lisp-Like Multi-
Staged Languages”, In the Proceedings of the 33rd ACM Symposium on Principles of Programming
Languages (January 2006). pp.257–268.

Masuko, M. and D. Bekki. (2011) “Categorical Semantics of Meta-Lambda Calculus”, In the Proceed-
ings of the 13th JSSST Workshop on Programming and Programming Languages (PPL2011) (in
Japanese). Joozankei, Japan, pp.60–74.

Nanevski, A., F. Pfenning, and B. Pientka. (2008) “Contextual Modal Type Theory”, ACM Transac-
tions on Computational Logic (June 2008) 9(3). Article 23.

Rooth, M. (1992) “A Theory of Focus Interpretation”, Natural Language Semantics 1, pp.75–116.

Shan, C.-c. (2007) “Linguistic side effects”, In: C. Barker and P. Jacobson (eds.): Direct composition-
ality. Oxford University Press, pp.132–163.

Sitaram, D. and M. Felleisen. (1990) “Control delimiters and their hierarchies”, LISP and Symbolic
Computation 3(1), pp.67–99.

Stratchey, C. and C. Wadsworth. (1974) “Continuations: a mathematical semantics for handling full
jumps”, Technical report, Oxford University, Computing Laboratory.

Wagner, M. (2006) “NPI-Licensing and Focus Movement”, In the Proceedings of E. Georgala and J.
Howell (eds.): SALT XV. Ithaca, NY: CLC Publications.

Modular rollback through free monads

Conor McBride∗ Olin Shivers† Aaron Turon‡

September 14, 2011

There are countless situations in which a simple input-consuming program
is obscured by code for error robustness or interactive features. For example,
lexers, parsers, typecheckers and servers must all potentially deal with erroneous
input. Interactive development environments allow input to change over time,
without incurring the cost of a complete reprocessing. And so on. Ideally, the
code for basic input processing would be separate from the code to handle errors
or make interactive changes. In a paper to appear in ICFP 2011, Shivers and
Turon propose a programming pattern, modular rollback through control logging,
for accomplishing this task.

The basic idea is to write the input-processing program against an abstract
interface (API) for retrieving its input: as simple as a “next character” function
for a lexer, or a tree destructurer for a typechecker. The code is written without
any knowledge of or assumptions about error handling or user interaction.

A separate input-provider module implements the abstract interface. It uses
first-class control (call/cc) to discover the computation performed by the input
processor. It does this by control logging : at every invocation of “next char-
acter”, for example, a continuation is captured. These captured continuations
allow the input provider to return to previous control states of the input proces-
sor, attempting error repairs or simply allowing alternative input to be provided.
The only knowledge shared between the provider and processor modules is the
input API; it is therefore possible to plug together varying combinations of these
modules. Finally, if side-effects are performed only via the API, it is possible to
record code to roll back those side-effects as well—as in the case for removing
typed characters when a user pressed the delete key. The API then guarantees
that it is impossible to break the welding of performing a side-effect from logging
the appropriate rollback.

In this talk, we will explore the theoretical underpinnings of the program-
ming pattern using free monads and Filinski’s monadic reflection.

A free monad syntactically records requests to perform the a given set of
side-effecting operations; it does not actually perform them. The operations
themselves are given as a signature from which the monad is freely generated—
and this signature can include Hoare-style specifications via appropriate type

∗University of Strathclyde
†Northeastern University
‡Northeastern University

1

structure. For example, we can think of the “get next character” interface for
a lexer in terms of a monadic operation, next, with precondition Unit (easy to
satisfy) and postcondition Char (the input).

Given a computation c : M(α) of type α within a free monad M , we can
evaluate it, going from syntax to semantics:

eval : ∀α.M(α) → F (α)

where F is an appropriate functor (often, in Haskell, the IO monad).
Supposing we have written our input processor against a free-monadic API,

choices of evaluators correspond to choices of input providers. A straightfor-
ward one goes straight to IO, translating the syntactic requests for input into
real interactions with an underlying input stream. But we can also implement
backtracking via rollback, using an evaluator that maintains an appropriate
stack of rollback instructions. Rather than using powerful control operators,
we take advantage of the fact that, by dint of using a free monad, the input
processor has already exposed its computational structure. Indeed, that struc-
ture is directly available as syntax, which can easily be squirreled away into the
rollback stack.

This technique clarifies the rollback logging process: it’s just a particular way
of mapping from one monad (freely generated from the API) to another (real
IO), whereby the rollback stack becomes a simple accumulator. On the other
hand, it requires that we write the input-processing code in a monadic style,
explicitly using the free monad in anticipation of possibly-different evaluators.

Using Filinski’s reify/reflect operations (from “Representing Monads”), we
can get the best of both worlds, allowing the input processing to be written in
direct style, and using delimited control to shift that code into the free monad.
Thus, the modular rollback pattern is just a particular mode of use of Filinski’s
technique—but unusual, in that we use the technique to shift existing code into
a new monad, in an entirely modular way.

2

Yield, the Control Operator
Applications and a Conjecture

Roshan P. James
Indiana University

rpjames@cs.indiana.edu

Amr Sabry
Indiana University

sabry@cs.indiana.edu

1. Introduction
In previous work [JS11], we presented a generalized version of the
yield control operator, distilled from examining yield in various
programming languages, with the following monadic semantics:

run e → Result e′
if 〈e,�〉 7→∗ 〈return e′,�〉

run e → Susp e′ (λx.run E[return x])
if 〈e,�〉 7→∗ 〈yield e′, E〉

In this brief abstract, (i) we extend that presentation to es-
tablish the connection of yield with dynamic binding, dynamic
scope and generalized stack inspection in the spirit of Kiselyov et
al [KcSS06], (ii) we outline a lightweight workflow infrastructure
in the spirit of Lu and Gannon [LG08], and (iii) we provide a yield
monad transformer that allows yield to be composed with other ef-
fects. Finally, we pose a question of considerable theoretical inter-
est: do delimited continuations expressed using yield in combina-
tion with session types [Hon93a] shed light on answer-type poly-
morphism?

2. Dynamic Binding, Mutable Variables and
Stack Inspection

Dynamic binding, mutable state and stack inspection all have estab-
lished connections with delimited continuations [KcSS06, Fee03,
Mor98]. The reductions below [KcSS06] describe the operational
semantics for dlet, get, set, and inspect with the side condition that
contexts E′ do not have dlet bindings of the variable n.

E[dlet n = v in v′] 7→ E[v′]
E[dlet n = v in E′[get n]] 7→ E[dlet n = v in E′[v]]

E[dlet n = v in E′[set n v′]] 7→ E[dlet n = v′in E′[v′]]
E[dlet n = v in E′[inspect n f]] 7→ E[(λz.dlet n = v in E′[z])(f v)]

To encode dynamic operations, we define a monad Dyn in terms
of the yield monad. Dynamically bound variables are instances of
the opaque type Name, over which equality is defined (satisfies Eq).

type Dyn t r = Yield t (Cmd t) r
data Cmd t = Lookup Name

| Assign Name t

[copyright notice will appear here]

| Inspect Name (t −> Dyn t t)
foldYield : : Monad m => Yield i o r
−> s −> ((o , s) −> m (i , s)) −> m (r , s)

binder : : Cmd t −> (Name , t) −> Dyn t (t , (Name , t))
binder o s@ (x , v) = ev o
where
ev (Lookup x ’) | x == x ’ = return (v , s)
ev (Assign x ’ v ’) | x == x ’ = return (v ’ , (x , v ’))
ev (Inspect x ’ f) | x == x ’ = tag (f v)
ev a = tag (yield a)
tag e = liftM (\x−>(x , s)) e

dlet : : Name −> t −> Dyn t r −> Dyn t r
dlet x v e = liftM fst $ foldYield e (x , v) binder

The implementation can be summarized as follows — the Cmd
represents the abstract commands for each effect and the combi-
nator binder acts as an interpreter for the Cmd. The combinator
dlet installs binder on the stack using the foldYield combinator
(whose straightforward definition is skipped). Operators get, set
and inspect simply dispatch the appropriate Cmd up the stack.

get : : Name −> Dyn t t
get x = yield (Lookup x)

set : : Name −> t −> Dyn t t
set x v = yield (Assign x v)

inspect : : Name −> (t −> Dyn t t) −> Dyn t t
inspect a f = yield (Inspect a f)

An example illustrating all three effects is given below. Here x and
y are predefined Name instances.

dynamicGet _ = get x

exampleAll =
dlet x 1 $
dlet y 1 $
do v1 <− dynamicGet () -- v1 is 1
dlet x 2 $
do v2 <− dynamicGet () -- v2 is 2
set x 3
v3 <− get x -- v3 is 3, v4 is 1
v4 <− inspect y dynamicGet
return ()

3. Asynchronous Workflows
Workflows are units of computation that may do I/O, communicate
with other workflows, and possibly invoke or spawn workflows.
Our example here is an adaption of a library for web service
orchestration by Wu and Gannon [LG08]. In the original example,
basic WS-BPEL constructs are implemented using yield in C#. Our
implementation eliminates several globals needed by the original
C# version that were used to send and receive values from iterators.
Here is a simplified “meta” search-engine workflow:

1 2011/7/3

Request

yahoo.com

workflow2

Request

google.com

Request

live.com

workflow1

workflow1 : : AsyncProc ()
workflow1 =
do v1 <− webRequest "www.google.com"
writeDB (v1 ++ " from google")
(v2 , v3) <− parallel $

(webRequest "www.yahoo.com" , workflow2)
writeDB (v2 ++ " from yahoo")
writeDB (v3 ++ " from workflow2")
v4 <− webRequest "www.live.com"
writeDB (v4 ++ " from live")
return ()

Despite having asynchronous I/O and the ability to spawn par-
allel workflows, the code retains a simple sequential structure. We
model AsyncProc computations as iterators which yield when they
execute a blocking call, thus delegating the blocking semantics of
the operations to some top-level scheduler. The scheduler that re-
ceives I/O requests and suspended iterators can evaluate them in
any desired order.

type AsyncProc a = Yield OperationResult Operation a
data Operation =
WebRequest String | WriteDb . . .

data OperationResult =
WebResult String | DbResult . . .

writeDB : : String −> AsyncProc Bool
parallel : : (AsyncProc a , AsyncProc b)−>AsyncProc (a , b)
webRequest : : String −> AsyncProc String
webRequest url =
do WebResult r <− yield (WebRequest url)
return r

roundRobinEngine : : [AsyncProc ()] −> IO ()

In essence, this implementation abstracts an effect using a de-
limited control operation and delegating its interpretation to a top-
level.

4. Monad Transformer for yield
We provide a monad transformer for yield that allows yield to be
composed with other effects. The implementation is a straightfor-
ward extension of our previous continuation-passing style imple-
mentation [JS11].

data IteratorT i o m r
= Done r
| Susp o (i −> m (IteratorT i o m r))

data YieldT i o m r = YieldT { unYT : : (forall b .
(r −> m (IteratorT i o m b)) −> m (IteratorT i o m b)) }

instance Monad m => Monad (YieldT i o m) where
return a = YieldT (\k −> k a)
(>>=) (YieldT ma) f=YieldT (\k−>ma (\v−>(unYT (f v)) k))

instance MonadTrans (YieldT i o) where
lift m = YieldT (\k −> m >>= k)

We can now define yield and the YieldT version of run as:

yield : : (Monad m) => o −> YieldT i o m i
yield o = YieldT (\k −> return (Susp o k))

runYieldT : : Monad m=>YieldT i o m r−> m (IteratorT i o m r)
runYieldT (YieldT it) = it (return . Done)

5. Answer Type Polymorphism
Communicating sub-processes called iterators are the basic ab-
straction provided by yield. Session types have been proposed as
means of describing the input-output interaction of concurrent pro-
cesses [GVR02, Hon93b]. When viewed as session types, iterators
with the simple type system for yield which have fixed input and
output types, are trivial process descriptions.

From previous work [JS11], we know that yield-run and shift-
reset can macro express each other. Correspondingly, when en-
coded using yield, the types for shift-reset and also restrictive –
they result in a fixed answer type and a fixed continuation argu-
ment type:

type SR ans r = Yield In (Out ans) r
data In a = In { unIn : : a }
data Out ans a = Out (a −> ans) −> SR ans ans

shift : : ((a −> ans) −> SR ans ans)−>SR ans a
reset : : SR ans ans −> ans

However, if we grant yield a more expressive type system as
in the parametric types discussed in Section 3.1 of our previous
paper [JS11], it results in a more interesting session type for the
corresponding iterator and in a more expressive monadic type for
shift-reset.

type SR i ans r = Yield i ((i −> ans) −> C i ans ans) r
data C i ans r = C { unC : : SR i ans r }

shift : : ((a −> ans) −> SR a ans ans) −> SR a ans a
reset : : SR a ans ans −> ans

This suggests that typing for yield iterators is intimately con-
nected to the seemingly disparate areas of session types and answer
type polymorphism and begs the question, what is the full relation-
ship between these? If we adopt a richer type system for iterators,
does that help relate these areas of research?

References
[Fee03] Marc Feeley. Srfi 39, 2003.

[GVR02] S. Gay, V. Vasconcelos, and A. Ravara. Session types for inter-process
communication. Tech Report, Dept. of Computer Science, Univ. of Glas-
gow, 2002.

[Hon93a] Kohei Honda. Types for dyadic interaction. In Eike Best, editor, CON-
CUR’93, volume 715 of Lecture Notes in Computer Science, pages 509–
523. Springer Berlin / Heidelberg, 1993.

[Hon93b] Kohei Honda. Types for dyadic interaction. In CONCUR’93, volume 715
of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 1993.

[JS11] Roshan P. James and Amr Sabry. Yield : Mainstream delimited continua-
tions. In TPDC, 2011.

[KcSS06] Oleg Kiselyov, Chung chieh Shan, and Amr Sabry. Delimited dynamic
binding. SIGPLAN Not., 2006.

[LG08] Wei Lu and D. Gannon. A Library for Asynchronous Concurrent Service
Orchestration. In eScience, 2008. eScience’08. IEEE Fourth International
Conference on, pages 230–237, 2008.

[Mor98] L. Moreau. A Syntactic Theory of Dynamic Binding. Higher-Order and
Symbolic Computation, 11(3):233–279, 1998.

2 2011/7/3

Correctness of Functions with Shift and Reset

Noriko Hirota Kenichi Asai
Department of Information Science, Ochanomizu University

{hirota.noriko, asai}@is.ocha.ac.jp

1 Introduction

Although shift and reset have become used to write
various interesting functions, the understanding of
those functions is not always simple. As an attempt
to better understand their behavior, we formalize and
prove correct some functions written with shift and
reset in Coq.

The traditional way to prove correctness of those
functions is to first remove shift and reset via CPS
transformation. However, this method does not give
us insight into how to reason about functions writ-
ten with shift and reset. Instead, we formalize
Kameyama and Hasegawa’s axioms for shift and re-
set [1] in Coq and use them to prove correctness of
functions directly. Slightly refining on Sozeau and
Kiselyov’s formalization of shift and reset using Gen-
eralized Continuation Monad (GCM for short) [2], we
write functions in monadic style. They are proven
correct using Kameyama and Hasegawa’s axiom and
the standard monad laws. By carefully not unfold-
ing the definition of monadic operators, we can effec-
tively prove correctness of functions in direct style.
In this abstract, we report on two case studies of
this approach: reverse and times, and mention that
non-trivial generalization of hypothesis is required to
properly characterize the behavior of continuations.

2 Formalization of Axioms

Following Sozeau and Kiselyov’s formalization, we
write functions with shift and reset in (generalized)
monadic style. The monadic type Cont I O A rep-
resents a type of an expression e where the type of

e is A but evaluation of e changes the answer type
from I to O. Internally, it is defined as (A -> I) ->

O, but we will not expand the definition of Cont ex-
cept for proving Kameyama and Hasegawa’s axioms.
The monadic operations bind e λx.M and return e
are expressed x <-- e;; M and ret e, respectively.

In order to represent the problem of answer type
polymorphism, we have slightly changed the formal-
ization of shift following Kiselyov’s suggestion1 as fol-
lows:

Definition shift {tau a s b}

(f : (tau -> a) -> Cont s b s) :

Cont a b tau :=

fun k => f k id_fun.

The difference is in the type of the argument of f. To
make the captured continuation k answer-type poly-
morphic, the type of k is pure rather than monadic.
It means that when k is applied, we have to turn the
result into the monadic context by inserting return.
For example, we have to write ret (k 1) rather than
just k 1.

Using these definitions, we can formalize
Kameyama and Hasegawa’s axioms as lemma
in Coq and prove them correct with respect
to CPS semantics. For example, the axiom
〈F [SM]〉 = 〈M(λx.〈F [x]〉)〉 where x does not occur
free in F (reset-S) is formalized as follows in Coq:

Lemma reset_S : forall {A B C I O}

(M: (A -> O) -> Cont B C B)

(F: A -> Cont I O I),

reset (x <-- shift M;; F x) =

1Personal communication.

1

(reset (k <-- ret (fun x =>

run (reset (F x)));;

M k) : Cont a a C).

Because the axiom is written in monadic style, the
pure context can be simply represented as F and thus
the captured continuation as fun a => run (reset

(F a)) where the function run transforms a monadic
type into a pure type.

We provide two useful tactics, apply-axioms and
apply-axioms-in, that automatically simplify a goal
expression and a hypothesis, respectively, by apply-
ing simple axioms as much as possible. More com-
plex axioms whose eager application would lead to
non-termination have to be applied manually.

3 Case Studies

In this section, we prove the correctness of two recur-
sive functions, reverse and times. Our study here
may suggest some general direction for the correct-
ness proof of other recursive functions.

3.1 Reverse

The definition of reverse using shift and reset is as
follows:

Fixpoint rev {A} (lst: list A) :=

match lst with

| nil => ret (nil:list A)

| (e :: rest) => shift (fun k =>

y <-- rev rest;;

a <-- ret (k y);;

ret (e :: a))

end.

Definition reverse {A} (lst: list A) :=

reset (a := list A) (rev lst).

We want to prove that reverse lst is always
equal to the reverse of lst.

As usual, we cannot directly prove it by induction
on lst, because the induction hypothesis is too weak.
Instead, we generalize the context of rev suitably so
that the equation holds for any pure context k:

Lemma lemma1 : forall {A} (lst: list A)

(k: list A ->

Cont (list A) (list A) (list A)),

reset (k nil) = k nil ->

reset (a <-- rev lst;; k a) =

(reset (x <-- k nil;;

ret (reverse0 lst ++ x))

: Cont a a (list A)).

where reverse0 calculates the reverse of its argu-
ment in a standard way (without using shift and re-
set). The lemma is then proved by induction on lst,
using the axioms and monad laws, without unfolding
monadic operators. Using this lemma, we can ob-
tain the following theorem by instantiating k as an
identity continuation, that is, ret.

Theorem theorem1 : forall {A} (lst: list A),

reverse lst = ret (reverse0 lst).

It is not immediately clear how to generalize an
equation to hold for an arbitrary context. In the
reverse case, we needed to add two things. The first
one appears to be natural: k should be pure (when
applied to nil). The second one is more complicated:
we need to consider how the delimited context is used
and embed it into the equation.

In the reverse case, the generalized lemma1 has
been derived by considering the following four steps:

(i) We start by trying to prove the main theorem
(theorem1). We simplify the inductive case by
applying apply-axioms. For theorem1, we ob-
tain the following goal:

reset (y <-- rev lst;;

a0 <-- ret y;;

ret (a :: a0)) =

ret (reverse0 lst ++ a :: nil)

(ii) By comparing the current goal with the origi-
nal theorem, we identify the context in which
recursion occurs. In the current example, the
recursion rev lst occurs in the context a0 <--

[];; ret (a :: a0).

2

(iii) We generalize the context as a variable k, and use
it to obtain the generalized lemma. In our case,
we notice that passing nil to the above context
yields almost what we want in the right-hand
side, leading to the main sentence of lemma1.

(iv) We prove the generalized lemma. During the
proof, we may find that additional condition on
the context is needed. In our case, we need the
purity of k. We add such condition to the lemma.

3.2 Times

The definition of times, using shift to return 0 imme-
diately when 0 is found in the argument, is as follows:

Fixpoint time (lst: list nat) :=

match lst with

| nil => ret 1

| 0 :: rest => shift (fun k => ret 0)

| a :: rest => x <-- time rest;; ret (a * x)

end.

Definition times {A} (lst: list A) :=

reset (time lst).

To prove that this definition actually calculates the
product of the argument list, we again need to gen-
eralize the equation to hold for contexts other than
the identity context:

Lemma lemma2 : forall (lst : list nat)

(k : nat -> Cont nat nat nat),

reset (k 0) = ret 0 ->

reset (x <-- time lst;; k x) =

reset (k (times0 lst)).

This time, we needed not only to generalize the
context but also to add a condition that reset (k

0) evaluates to ret 0. We could derive lemma2 using
the same steps as lemma1. Once we come up with this
lemma, it is straightforward to prove it by induction
on lst. However, we again needed to devise a non-
trivial lemma from the theorem we want to prove.

Using the lemma, we can obtain the following the-
orem by instantiating k as an identity continuation.

Theorem theorem2 : forall (lst : list nat),

times lst = ret (times0 lst).

References

[1] Kameyama, Y., and M. Hasegawa “A Sound
and Complete Axiomatization of Delimited Con-
tinuations,” ICFP’03, pp. 177–188 (September
2003).

[2] Sozeau, M., and O. Kiselyov “The Proved Pro-
gram of The Month - Type-safe printf via delim-
ited continuations,” http://mattam.org/repos/
coq/misc/shiftreset/GenuineShiftReset.html
(January 2008).

3

The Limit of the CPS Hierarchy

Josef Svenningsson

Chalmers University of Technology
josef.svenningsson@chalmers.se

Abstract. When encoding several control feature of a programming lan-
guage in term of continuations one needs several levels of continuations so
as to not mix up the control features. Allowing multiple levels of contin-
uations gives rise to the CPS hierarchy which is a sequence of languages
with an increasing number of continuations. However, each language only
allows for a fixed number of continuations.
We present a language which we refer to as the limit of the CPS hierarchy.
It allows for an unbounded number of levels of continuations. We present
a semantics in the form of an abstract machine.

1 Introduction

Continuations is one of the most powerful tools in the toolbox of programming
language semantics. They can be used to encode numerous control features such
as concurrency and backtracking search, not to mention arbitrary jumps. How-
ever, care is required when using two or more such encodings for language fea-
tures. It is important that these features not use the same continuations or they
will interact in very unpredictable ways. A solution to this problem is to have
multiple levels of continuations so that each language feature can be correctly
encoded without interfering the others.

Allowing multiple continuations give rise the CPS hierarchy [DF90]. Specifi-
cally, the CPS hierarchy consists of a sequence of languages with an increasing
number of continuations. Each language in the hierarchy can be given a seman-
tics in terms of its predecessor by means of CPS conversion. Furthermore, each
language is equipped with control operators, one set for each level of continua-
tion (in [DF90] they use shift and reset and we will also stick with those for the
remainder of this paper). Thus each language in the hierarchy forms a kind of
meta language which allows a certain number of control features to be encoded
into it.

The CPS hierarchy pose a problem though. Which language in the CPS
hierarchy should we choose to work with? How many continuations will we need
at most? As always, any choice apart from zero, one and infinity would be an
arbitrary choice. Clearly infinity is the choice we would like to make but each
language in the CPS hierarchy only allows a fixed number of continuations.

In this paper we present a language which supports an unbounded number
of continuations. We refer to this language as the limit of the CPS hierarchy
because it includes all the languages in the hierarchy. When considering the CPS

hierarchy it is not at all clear that it is possible to define such a language, because
a straight forward attempt would require an infinite number of CPS conversion
and an infinite number of continuations in the denotational semantics. The key
to making this work is to use an operational semantics which introduces new
levels of continuations as they are needed.

We will assume familiarity with the CPS hierarchy. We recommend the papers
[DF90,BBD05] as a good background to the present paper.

2 An abstract machine for the CPS hierarchy

In this section we will present the syntax and semantics of the limit of the cps
hierarchy. It should come as no surprise that we cannot give the semantics in
the form of iterated cps conversion, that would require an infinite number of
conversions and continuations. Instead we will give the semantics in the form of
an abstract machine.

Our presentation is heavily influenced by the abstract machines developed
for the CPS hierarchy in [BBD05].

2.1 Syntax

First of all, the way we specify the syntax of our language is somewhat nonstan-
dard. We will use indexed syntactic categories, which varies depending on the
index. Variables ranging over the categories will have a subscript which indicates
which index in the category it belongs to. This should not be confused with the
praxis of using subscripts to denote different variables ranging over the same
category.

V alue 3 V ::= n | λx.N | ctxtn

Term 3 N,M ::= v | x |N M | succN | shiftn N | resetn N

Contextn 3 ctxtn ::= ctxtcontnctxtn|◦

ContextCont0 3 ctxtcont0 ::= [·]N | V [·] | succ
ContextContm+1 3 ctxtcontn+1 ::= ctxtlistm

ContextList0 3 ctxtlist0 ::= ctxt0
ContextListm+1 3 ctxtlistm+1 ::= ctxtm+1ctxtlistm

ContextStackn 3 ctxtstackn ::= ctxtnctxtstackn+1 | •

The starting point of our language is the lambda calculus with natural numbers.
The first oddity is that a context is counted as a value. The reason for this is that
the semantics does not reify a continuation to a function, they are just kept as

they are but can still be applied to values to invoke them. The control operators
shift and reset are indexed by which level of continuations they operate on.

The notion of context is what we normally think of as a stack. However, it
only contains stack-like elements at index 0. At higher indices it will contain lists
of stacks representing the continuations.

The ContextStackn is really a stack of stacks of continuations. It is the key
component in this abstract machine as it allows for the hierarchy of continua-
tions. It is grown as needed by the abstract machine.

2.2 Machine states

The abstract machine which we will present has a number of states which are
presented as tuples. Here we describe what these states look like and as also
present some guiding intuition about their rôle in the abstract machine.

Eval 〈Term,ContextStack0〉eval
The Eval state takes care of ordinary evaluation of lambda terms
using a call-by-value reduction strategy.

Cont 〈n ∈ Nat, Contextn, V alue, ContexStackn+1〉cont
The Cont state goes through the context stack in search for the
next continuation to invoke on the value which was computed in
the Eval state.

Cont0 〈Context0, V alue, ContextStack1〉cont0
Cont0 takes care of the actual reductions in the abstract machine.
It applies the current continuation to the recently computed value
and transfers the control to the appropriate state.

The Cont0 state is not strictly necessary but it factors out a well defined
task from the already complex transitions in the Cont state.

2.3 The Abstract Machine

The abstract machine is presented in figure 1. The first transition rule takes care
of starting the evaluation in the eval state. The rules for application and the
successor function are straightforward, they push the appropriate continuation
on the stack and proceeds with the evaluation. Once the evaluation has reached
a value the cont state is invoked to find the next continuation ready to accept
the value and proceed with the evaluation. Evaluating shift and reset requires a
bit of stack fiddling which is handled by the primitive functions shiftStack and
resetStack.

The Cont state searches though the stack of stacks to find the next stack
ready for proceeding with the evaluation. The first rule matches if the stack we
are currently looking at is empty and we have to take the next stack in the
stack. The second rule transfers control to the Cont0 state when we have found
a continuation of level 0. The third rule takes care of the situation when we have
found a continuation higher up in the hierarchy. It needs some massaging to turn
it into level zero continuation. The last rule in the Cont state terminates the
evaluation when we have come to the end of the stack of stacks.

t ⇒ 〈t, ◦•〉eval
〈v, ctxt0ctxtstack1〉eval ⇒ 〈0, ctxt0, v, ctxtstack1〉cont

〈N M, ctxt0ctxtstack1〉eval ⇒ 〈N, (([·]M)ctxt0)ctxtstack1〉eval
〈succ N, ctxt0ctxtstack1〉eval ⇒ 〈N, ((succ [·])ctxt0)ctxtstack1〉eval
〈shiftn x N, ctxtstack0〉eval ⇒ 〈N ′, ctxtstack′0〉eval
where (ctxtn, ctxtstackn+1) = shiftStack n ctxtstack0

and N ′ = [x := ctxtn]N
and ctxtstack′0 = pad ctxtstackn+1

〈resetn N, ctxtstack0〉eval ⇒ 〈N, ctxtstack′0〉eval
where ctxtstack′0 = resetStack n ctxtstack0

〈n, ◦, v, ctxtn+1ctxtstackn+2〉cont ⇒ 〈n+ 1, ctxtn+1, v, ctxtstackn+2〉cont
〈0, ctxtcont0ctxt0, v, ctxtstack1〉cont ⇒ 〈ctxtcont0, v, ctxt0, ctxtstack1〉cont0

〈n, ctxtcontnctxtn, v, ctxtstackn+1〉cont ⇒ 〈0, ctxt′n, v, ctxtstack′n+1〉cont
where ctxt′n = getZeroContextL ctxtcontn

and ctxtstack′n+1 = stack n (ctxtnctxtcontn) ctxtstackn+1

〈n, ctxtn, v, •〉cont ⇒ v

〈[·]V, v, ctxt0, ctxtstack1〉cont0 ⇒ 〈V, ((v[·])ctxt0)ctxtstack1〉eval
〈(λx.N)[·], v, ctxt0, ctxtstack1〉cont0 ⇒ 〈[x := v]N, ctxt0ctxtstack1〉eval
〈(ctxtn)[·], v, ctxt0, ctxtstack1〉cont0 ⇒ 〈0, ctxt0, v, ctxtstack′1〉cont

where (ctxt0ctxtstack
′
1) = unwind ctxtn(resetStack ctxtstack1 (n+ 1))

Fig. 1. The abstract machine

As mentioned previous Cont0 administers the reductions in the abstract
machine. The first two rules should be familiar from the standard reductions
in the lambda calculus. The third rule takes care of applying contexts. The
function unwind sprinkles the contents of the continuation over the stack of
stacks to restore the control state saved by the context.

2.4 Primitive functions

The abstract machine relies several primitive functions, such as pad and reset-
Stack, which we present separately in figure 2. They are treated as primitives in
the same sense as substitution is taken as a primitive in many abstract machines.
We could have chosen to model these functions as more machine states with as-
sociated reductions in the abstract machine but we feel that this presentation is
clearer. Each function will be explained in turn.

resetStack is the workhorse for executing the reset operator. It takes the
current context and places it at the right level in the context stack, using the
functions pushContext and contextToList to deal with some of the adminis-
tration.

shiftStack is used to give semantics to the shift operator. It splits the context
stack in two depending on what level the shift operator works on. However, it
might be that the context stack is not deep enough because continuations of
the level used by the present shift operator hasn’t been used before. Therefore
the build function is used which extends the context stack by adding empty
contexts as needed. This is the key step in the abstract machine which makes

it possible at all possible to define the limit of the cps hierarchy. The function
pad is also used in the semantics of shift to pad the context stack with empty
contexts to make it a valid zero level context stack.

unwind deals with the case when a continuation is invoked. It installs the
corresponding context at the right place in the context stack with the help of
unwindList.

Finally, getZeroContextL and stack is used to find the next context when
a value has been computed. The function getZeroContextL is used to retrieve
the new zeroth-level context which will be used to reduce the current value while
stack realigns the context stack.

Many of the primitive functions searches through the context stack and have a
linear time complexity in its size. This means that the transitions in the abstract
machine are not constant time which one usually expects. However, if we consider
the continuation level n as fixed for the control operators shift and reset then
the transitions are indeed constant time. The operations will be more expensive
as we use more continuations but the cost will always be bounded. Furthermore,
in an implementation of this abstract machine some operations could perhaps
be implemented more efficiently by indexing into the contexts and the context
stack instead of linearly searching through them.

3 Conclusion and Future work

It is possible to define a language with an unbounded number of control levels
which supersedes the whole CPS hierarchy. The semantics is specified using
an abstract machine which introduces new levels of continuations as they are
needed.

The abstract machine as it is currently specified is very complex and uses
many primitive functions. We find this complexity rather unsatisfactory and
hope that there are ways to simplify the presentation.

The abstract machine presented in this paper is in desperate need of a cor-
rectness proof given how complicated this is. We imagine a theorem stating that
every language in the CPS hierarchy can be faithfully evaluated by the abstract
machine.

It should be possible, although tedious, to derive a direct-style evaluator for
our language by using the syntactic correspondence investigated by Danvy et al.
[ABDM03,BD07].

Another interesting thing would be to develop a type system for our language.
It should follow rather straightforwardly from Danvy and Filinski’s work [DF90]
on typing the CPS hierarchy.

Having an unlimited number of continuation levels gives a new interesting
possibility. It would be possible to let the indices on the control operators be
dynamic. In this paper the control operators have all come with a fixed number
which statically fixes which level of continuation they work on. But with the
semantics we have given there is really nothing stopping us from making this
number an argument which is computed at runtime. This would mean that

the programmer could dynamically choose what control feature to use in any
particular situation. On the other hand we’re not sure whether this would be a
good idea in practice. Programming with continuations is difficult as it is.

References

[ABDM03] M.S. Ager, D. Biernacki, O. Danvy, and J. Midtgaard. A functional corre-
spondence between evaluators and abstract machines. In Proceedings of the
5th ACM SIGPLAN international conference on Principles and practice of
declaritive programming, pages 8–19. ACM, 2003.

[BBD05] Malgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy. An opera-
tional foundation for delimited continuations in the cps hierarchy. Logical
Methods in Computer Science, 1(2), November 2005.

[BD07] M. Biernacka and O. Danvy. A syntactic correspondence between context-
sensitive calculi and abstract machines. Theoretical Computer Science,
375(1-3):76–108, 2007.

[DF90] O. Danvy and A. Filinski. Abstracting control. In Proceedings of the
1990 ACM conference on LISP and functional programming, pages 151–
160. ACM, 1990.

pad : ContextStackn → ContextStack0
pad ctxtstack0 = ctxtstack0
pad ctxtstackn = pad (◦ ctxtstackn)

resetStack : ContextStack0 → (n : Nat)→ ContextStackn
resetStack ctxtstack0 0 = ctxtstack0
resetStack ctxtstack0(n+ 1) = pushContext ctxt ctxtstackn+1

where (ctxt ctxtstackn) = resetStack ctxtstack0 n

pushContext : Contextn → ContextStackn+1 → ContextStackn+1

pushContext ctxtn (ctxtn+1ctxtstackn+2) = ((contextToList n ctxtn)ctxtn+1)ctxtstackn+2

contextToList : Contextn → ContextListn
contextToList ctxt0 = ctxt0
contextToList (ctxtlistnctxtn+1) = ctxtn+1 ctxtlistn

shiftStack : (n : Nat)→ ContextStack0 → (Contextn, ContextStackn+1)
shiftStack 0 (ctxt0ctxtstack1) = (ctxt0, ctxtstack1)
shiftStack (n+ 1) ctxtstack0 = build ctxtn ctxtstackn+1

where (ctxtn, ctxtstackn+1) = shiftStack n ctxtstack0

build : Contextn → ContextStackn+1 → (Contextn+1, ContextStackn+2)
build ctxtn • = ((contextToList ctxtn)◦, •)
build ctxtn (ctxtn+1 ctxtstackn+2) = ((contextToList ctxtn)ctxtn+1, ctxtstackn+2)

unwind : Contextn → ContextStackn+1 → ContextStack0
unwind ctxt0ctxtstack1 = ctxt0ctxtstack1
unwind (ctxtListnctxtn+1)ctxtstackn+2 = unwindList ctxtListn(ctxtn+1ctxtstackn+2)

unwindList : ContextListn → ContextStackn+1 → ContextStack0
unwindList ctxt0 ctxtstack1 = ctxt0ctxtstack1
unwindList (ctxtn+1ctxtListn) ctxtstackn+2 = unwindList ctxtListn(ctxtn+1ctxtstackn+2)

getZeroContextL : ContextListn → ContextList0
getZeroContextL ctxt0 = ctxt0
getZeroContextL (ctxtn+1ctxtListn) = getZeroContextL ctxtListn

stack : ContextListn → ContextStackn+1 → ContextStackn+1

stack ctxtList0 ctxtstack1 = ctxtstack1
stack (ctxtn+1 ctxtListn)ctxtstackn+2 = stack ctxtListn (ctxtn+1 ctxtstackn+2)

Fig. 2. Primitive functions used in the abstract machine

Non-Deterministic Search Library

Kenichi Asai Chihiro Kaneko
Ochanomizu University

{asai,kaneko.chihiro}@is.ocha.ac.jp

1 Introduction

Non-deterministic programming has been used as a
non-trivial application of (delimited) continuations.In
particular, in the presence of first-class delimited con-
tinuation constructs, such as shift and reset [1], it
becomes possible to write a back-tracking program
without converting the program into continuation-
passing style (CPS). However, the lack of serious sup-
port for first-class delimited continuation constructs
(especially in a typed setting) prevented us from writ-
ing such applications. In this abstract, we report
on our experience of using Caml Shift [2], an ex-
tension of Caml Light with (polymorphically typed)
shift and reset, to write a search problem using
non-deterministic operators. We provide a library
for non-deterministic operations implemented using
shift and reset and show how it enables us to write
a search problem in direct style.

2 Interface

The interface of the non-deterministic search library
we have implemented is shown in Figure 1. The li-
brary consists of five search algorithms: depth first,
breadth first, best first, the one that collects all the
results, and the one for game search implementing
the alpha/beta pruning.

A search process is initiated by applying start

to a thunk. In the thunk, one can use two non-
deterministic constructs, fail and choice. The for-
mer aborts the current search and the latter chooses
an element non-deterministically from its argument.
There are two kinds of function types: -> and =>.
The former denotes a type of standard pure func-
tions. The latter denotes a type of functions that
incurs control effects and thus their answer types are
not polymorphic. We omit the interface for collecting
all the solutions. It is identical to the depth/breadth-
first search except for start which has type (unit

=> ’a) -> ’a list because it returns all the possi-

Depth/breadth-first search:

start : (unit => ’a) -> ’a

fail : unit => ’a

choice : ’a list => ’a

Best-first search:

start : (unit => ’a) -> ’a

fail : unit => ’a

choice : ’a list -> ’b => ’a

Alpha-beta search:

start : (unit => ’a) -> ’a

return : ’a -> int => ’b

choice_max : ’a list => ’a

choice_min : ’a list => ’a

Figure 1: Search library interface

ble results.
Note that the impure types without answer types

still describe the library functions informatively. One
can forget about answer types to use this library.

3 Implementation Overview

Basically, start is implemented as reset, fail is
abort, i.e., shift (fun k -> ()), and choice is re-
alized by first capturing the current continuation and
then applying it to all the possible choices. However,
details differ for each kind of search. In particular, all
the cases pass a state to maintain a search process by
making the context higher-order (effectively imple-
menting the store monad). In the depth-first search,
the remaining choices together with a continuation
(stored in a stack) is passed. In the breadth-first
search, a queue is used instead of a stack. Best-first
search reorders the remaining choices according to
the cost. However, the details of the implementation
are beyond the scope of this abstract.

1

tile 1 tile 2 tile 3
row 1 [M] [M] [M; F; M]

row 2 [M; F; F; F] [F; M] [F]

Figure 2: A party puzzle

4 Application

Using the search library, we have solved party puz-
zles1. We are given three tiles, each consisting of two
sequences of people of mixed gender (male M or female
F). Figure 2 shows an example. The task is to find
a sequence of tiles where at each column, we have a
matching couple (of M and F), if all the lists of each
row are appended in order. The solution to the puz-
zle in Figure 2 is [3; 1; 2; 3] giving the following two
rows:

row 1: [M; F; M]@[M]@[M]@[M; F; M]

row 2: [F]@[M; F; F; F]@[F; M]@[F]

On the web page, we are given five such puzzles.

Breadth-first program. It is immediately clear
that the depth-first search is not feasible for this puz-
zle. Using the library for the breadth-first search, we
can write the following program.

(* search : state_t => int list => int list *)

let rec search state solution =

let num = choice [1; 2; 3] in

let tile = get_tile num in

let state’ = place tile state in

let solution’ = num :: solution in

if complete state’ then solution’

else search state’ solution’ ;;

Using choice to choose the right tile non-determin-
istically, we can write a search program in a straight-
forward manner. By calling this function as follows:

start (fun () -> search (State ([], [])) [])

we can obtain (the reverse of) the solution for the
first three puzzles out of five.

Adding history. For the fourth puzzle, the search
space is much larger. To eliminate redundant search,
we introduce a history mechanism:

(* add_state ’_a => unit *)

let add_state state =

if mem state !history then fail ()

else history := add state !history ;;

1http://wonderfl.net/c/wcnb

Best-first program. Adding history was not enough
to solve the fourth puzzle. Breadth-first search led to
a partial solution where one row is much longer than
the other row. To this end, we switch to best-first
search where we take the length of the unmatched
people as the cost. The change of the search strategy
is easy. We simply replace the library to be included.
With these changes, we could obtain the solution to
the fourth puzzle.

(* search : state_t => int list => int list *)

let rec search state solution =

add_state state;

let diff = state_length state in

let num = choice [1; 2; 3] diff in

... ;;

Limiting depth. Finally, the last puzzle searches
for a result too deeply even if we use the best-first
search. To solve the last puzzle, we needed to limit
the depth of the search as follows:

(* search : state_t => int list => int =>

int list *)

let rec search state solution n =

add_state state;

if n > 600 then fail () else

...

if complete state’ then solution’

else search state’ solution’ (n + 1) ;;

5 Conclusion

This abstract reported on our experience of using
non-deterministic search library to solve party puz-
zles. Once a proper library is provided, writing a
search problem becomes much easier: we are not clut-
tered by the control flow, but can concentrate on the
search process itself. We can switch search strategy
by replacing the library. We can also include vari-
ous kinds of pruning. We will further investigate the
usefulness of the library in the future.

References

[1] Danvy, O., and A. Filinski “Abstracting Control,”
Proceedings of the 1990 ACM Conference on Lisp
and Functional Programming, pp. 151–160 (June
1990).

[2] Masuko, M., and K. Asai “Caml Light + shift/reset
= Caml Shift,” Theory and Practice of Delimited
Continuations (TPDC 2011), pp. 33–46 (May 2011).

2

