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Abstract

In this paper, we present the dynamic grid quorum, a

technique for reducing the power consumption of large-

scale storage systems. The key idea is to skew the workload

towards a small number of quorums by means of a

novel optimization algorithm. Moreover, this system allows

reconfiguration by exchanging nodes without any data

migration so as to reallocate high-capacity nodes to busier

quorums. We demonstrate that the dynamic grid quorum

saves, on average, 6-12% energy when compared with the

static configurations.

1. Introduction

Service-oriented computing is a key paradigm in achiev-

ing the long-awaited, richer environments in computer

science. To achieve such platforms for large-scale business

computing systems, reliable, available, and cost-effective

data management is required.

The use of quorum systems is a promising approach

for achieving reliable data management in such platforms.

Compared with the traditional read-one write-all technique,

the quorum approach allows flexibility in storage configu-

ration and decentralized management for consistency con-

trol. Since the first quorum paper [7] was presented, much

research has focused on investigating the possibilities of

quorum systems. These studies are wide-ranging, from

desired configurations in quorum systems [11], [1], [3],

[12] to performance optimization methods that minimize

the communication delay [6], [15], [10]. On the other

hand, little attention has been paid to reducing power

consumption in quorum systems, which is necessary in

terms of green computing that has recently become of

prime interest to practitioners.

In this paper, we present the dynamic grid quorum, a

technique for reducing storage power consumption. As its

name implies, our approach is based on a grid quorum

[3], but the key idea of our approach is to skew the

workload towards a small number of quorums. This can

be realized by our optimization algorithm for strategy

(probability distribution over the quorums, determining

which quorum is selected for each read/write request).

Moreover, the dynamic grid quorum provides reconfigu-

ration by exchanging nodes without any data migration.

Although the node exchange idea is used from the study

on tree-based quorums [5], much of the work had to be

adapted for grid quorums. A major difference between grid

and tree quorums is that nodes are naturally exchangeable

in tree-based quorums, whereas this is not the case in

grids. Since we also consider heterogeneity in nodes, this

reconfiguration method allows high-capacity nodes to be

allocated to busier quorums so as to reduce the number of

active nodes. Thus, our dynamic grid quorum can adapt

continuously to any environment, from read-intensive to

write-intensive workloads.

To evaluate the effectiveness of the proposed dynamic

grid quorum, we compared our approach with two static

read-optimized and write-optimized grid configurations.

From the simulations, we observed that our dynamic grid

quorum saved, on average, 6-12% energy compared with

the static configurations when the intensity of the total

workload was changed.

Related work. There have been a number of attempts to

reduce storage power consumption. A commonly-observed

feature in many of these techniques is that they adopt

the approach of skewing the load, which is also used in

this paper. In MAID [4] and PDC [13], popular data are

concentrated on specific disks. In DIV [14], original and

redundant data are separated onto different disks, thereby

allowing read/write requests to be concentrated on the

disks with original data. In RIMAC [18], eRAID [16], and



EERAID [9], a data access on a disk in standby mode is

transformed into accesses on active disks or caches, and

then the required data are reconstructed from the parities

obtained during these accesses. In Hibernator [19] and

PARAID [17], data are collected or spread to adapt to

changes in operational loads.

Paper organization. Sections 2 and 3 introduce the dy-

namic grid quorum and its power consumption model,

respectively. Section 4 gives the definition of our recon-

figuration. Section 5 introduces the algorithm and proves

that it minimizes the power consumption of the dynamic

grid quorum. Section 6 presents the simulation results.

Finally, Section 7 concludes the paper and discusses future

research.

2. System Description

Our proposed system is based on the grid protocol [3],

which is a special kind of write-read coterie [8], in which

the nodes are allocated in a rectangular grid. A write-read

coterie C is a pair 〈CW , CR〉 of collections of node groups,

called quorums, where CW and CR represent write quorums

and read quorums, respectively. Throughout this paper, we

fix the underlying set of nodes U = {ui,j | 1 ≤ i ≤ n∧1 ≤
j ≤ m}, where each node is allocated in a grid with n
columns and m rows. For readability, we use the following

notations. ui,j is used to denote a node at the intersection

of the i-th column (from the left) with the j-th row (from

the bottom). This point is also referred to using the notation

(i, j). Coli and Rowj are respectively used to denote the

sets of nodes in the i-th column (i.e., Coli = {ui,j | 1≤j ≤
m}) and in the j-th row (i.e., Rowj = {ui,j | 1≤ i ≤n}).

The dynamic grid quorum is defined as follows.

Definition 1 (Dynamic grid quorum): Let Cf = 〈Cf
W ,

Cf
R〉 be a pair of collections of node groups. Cf is a

dynamic grid quorum (for some f = 0, 1, . . . , min{m, n})

if

• Cf
W is the set of all possible node groups, each of

which (say, Qf
W ) satisfies the following condition.

Qf
W =Colk∪{ui,j | ∀i ∃!j(f <i<k∧1≤j≤m)}∪Sk

for some k (1 ≤ k ≤ n), where

Sk =

{

{ui,k | 1≤ i≤min{k−1, f}} 1≤k≤m

{ui,j | ∀i ∃!j(1 ≤ j ≤ i ≤ f)} otherwise

• Cf
R is the set of all possible node groups, each of

which (say, Qf
R) satisfies the following condition.

Qf
R = {ui,j | ∀i ∃!j(1 ≤ i ≤ n ∧ 1 ≤ j ≤ m)}

such that if ui,j ∈ Qf
R with i ≤ f and i ≤ j ≤

min {n, m} then uj,i ∈ Qf
R.

In this definition, the number f is called the degree of

flexibility (or the degree, for short). We may omit this if it

is clear from the context.

We also use the following notations. The set {ui,i | 1 ≤
i ≤ min{n, m}} is called the diagonal line. Node uj,i is

called the diagonal point of ui,j . For a given degree f , the

set {ui,j | 1 ≤ i ≤ f ∧ i < j ∧ j ≤ min{n, m}} is called

the left-side exchangeable area, while the set {ui,j | 1 ≤
j ≤ f ∧ i > j ∧ i ≤ min{n, m}} is called the lower

exchangeable area. Clearly, these sets are bijective by the

mapping of diagonal points.

Note that each of the write (read, resp.) quorums

satisfies the condition that if the quorum includes a node

in the lower (left-side, resp.) exchangeable area, then it

also includes the diagonal point. (Note, however, that the

converse does not always hold.)

To help the readers understand this definition, we

present an example of write and read quorums in a

dynamic grid quorum with degree f = 2. In this example,

nodes in the write quorum are denoted by horizontal

striped patterns. This write quorum consists of three sets

of nodes: the set of all nodes in the fifth column (i.e.,

Col5), nodes chosen singly from the i-th column for each

i = 3, 4 (i.e., {u3,3, u4,1}), and the set of nodes at the

intersection of the fifth row and the i-th column for each

i = 1, 2 (i.e., {u1,5, u2,5}). On the other hand, nodes in

the read quorum are denoted by gray shading. This read

quorum consists of nodes chosen singly from each column

(i.e., {u1,3, u2,4, u3,1, u4,2, u5,4, u6,3}), where u3,1 and

u4,2 must be included because u1,3 and u2,4 are nodes in

the left-side exchangeable area.

Fig. 1. Example of quorums on dynamic grid
quorum (f =2)

3. Power Consumption Model

We introduce a power consumption model that includes

the following: strategy, load, capacity of nodes, states of

nodes, and power consumption.

Strategy. Each write (read, resp.) request is assigned to a

write (read, resp.) quorum by the probability distribution

P = 〈PW , PR〉 over 〈CW , CR〉, satisfying the following

properties:

• 0 ≤ PW (QW ) ≤ 1 for any QW ∈ CW

• 0 ≤ PR (QR) ≤ 1 for any QR ∈ CR



•

∑

QW ∈CW

PR (QW ) = 1

•
∑

QR∈CR

PR (QR) = 1

We call this probability distribution the strategy.

Load. We define the load of a system, ld = 〈ldWS, ldRS〉,
as the number of write/read requests per unit time. Using

functions loadW and loadR, the loads of the write and

read quorums (say, QW and QR) are respectively defined

as follows.

• loadW (QW ) = ldWS · PW (QW ) (1)

• loadR (QR) = ldRS · PR (QR) (2)

Additionally, we extend these functions to represent the

load of a node as follows.

• loadW (u) =
∑

QW ∈CW ,QW ∋u

loadW (QW ) (3)

• loadR (u) =
∑

QR∈CR,QR∋u

loadR (QR) (4)

• load (u) = loadR (u) + loadW (u)

Capacity. We assume that each node u ∈ U has a capacity

cap (u), which represents the upper bound of load (u)
defined by the following condition.

load (u) ≤ cap (u) for any u ∈ U

States of nodes. We define a Boolean function On over the

set of nodes, such that if load (u) 6= 0, then On (u) = 1.

Intuitively, we model the state of nodes by this function: if

On (u) = 1 then node u is active, whereas if On (u) = 0
then u is on standby and consumes no power. Note that

On (u) may be 1 even if load (u) = 0. This means

that node u is active even though it is not executing any

operations.

Power consumption. We assume that every node in an

active state consumes the same power in the active state.

Thus we define the power consumption of a system as the

number of active nodes.

4. Reconfiguration

In order to reduce the power consumption in an envi-

ronment where the load varies, our system enables recon-

figuration by exchanging a node with the corresponding

diagonal point.

Definition 2 (Reconfiguration): The dynamic grid quo-

rum C′ is the reconfigured system obtained from C by

exchanging node ui,j in the exchangeable areas, if C′ =
{π (Q, ui,j) |Q ∈ C}, where the function π is defined as

follows.

π (Q, ui,j) =










(Q ∪ {uj,i}) − {ui,j} (ui,j ∈ Q ∧ uj,i 6∈ Q)

(Q ∪ {ui,j}) − {uj,i} (ui,j 6∈ Q ∧ uj,i ∈ Q)

Q otherwise

Note that any system obtained through this reconfigu-

ration is also a dynamic grid quorum. Also note that this

reconfiguration is done without any data migration.

An example of this reconfiguration is presented be-

low. Fig. 2 shows the capacity of all nodes in the

4 × 4 dynamic grid quorums C1
1 and C1

2 , where C1
2 is

obtained by exchanging the following pairs of nodes

in C1
1 : 〈u1,2, u2,1〉, 〈u1,3, u3,1〉, and 〈u1,4, u4,1〉 (within

the heavy-line frames). Here we consider the case that

ldWS = 1 and ldRS = 3. In this instance, as the upper two

systems in Fig. 2 indicate, the minimum number of active

nodes in C1 and C2 are 9 and 7, respectively. On the other

hand, where ldWS = 3 and ldRS = 1, as the lower two

systems indicate, the minimum number of active nodes are

7 and 10, respectively. This shows that our reconfiguration

may remap nodes with heterogeneous capacity, thereby

reducing the power consumption of the system when the

ratio of write/read requests varies.

Fig. 2. Example of dynamic grid quorum (f =1)

Although such reconfiguration is indeed useful for re-

ducing the power, it may violate the consistency of the

replicated data. Our reconfiguration, however, preserves

the property of consistency called one-copy serializability

(cf. [2]), which guarantees that any read-operation returns

the data installed by the last committed write operation.

More precisely, the following proposition holds.

Proposition 1: Let C′ = 〈C′
W , C′

R〉 be a dynamic grid

quorum obtained from C = 〈CW , CR〉 by any number of

reconfigurations. For any QW ∈ CW , Q′
W ∈ C′

W , and

Q′
R ∈ C′

R, the following properties hold: QW ∩ Q′
R 6= φ

and QW ∩ Q′
W 6= φ.



Proof: Due to space limitations, we only show the first

property. In this proof we use the notation u′
i,j to indicate

the node at (i, j) in the grid of C′. From the definition of a

dynamic grid quorum, there exist i and j such that Coli ⊆
QW and u′

i,j ∈ Q′
R. Here we consider the following cases:

(1) u′
i,j is in the lower exchangeable area; (2) u′

i,j is in

the left-side exchangeable area; (3) otherwise.

Case (1): By the definition of reconfiguration, if u′
i,j is

exchanged then u′
i,j = uj,i, otherwise u′

i,j = ui,j . By

the definition of a dynamic grid quorum, ui,j , uj,i ∈ QW ,

because QW has the corresponding diagonal node if QW

has a node in the lower exchangeable area. Thus QW ∩
Q′

R ∋ u′
i,j .

Case (2): By the definition of reconfiguration, if u′
i,j is

exchanged then u′
j,i = ui,j , otherwise u′

i,j = ui,j . By

the definition of a dynamic grid quorum, u′
i,j, u

′
j,i ∈ Q′

R,

because Q′
R has the corresponding diagonal node if Q′

R

has a node in the left-side exchangeable area. On the other

hand, ui,j ∈ QW . Thus QW ∩ Q′
R ∋ ui,j .

Case (3): Because u′
i,j is never exchanged, ui,j = u′

i,j .

Thus QW ∩ Q′
R ∋ ui,j .

5. Optimization Algorithm

Our idea of power optimization is to skew the load

towards a small number of quorums. This is realized by our

optimization algorithm which shall be introduced below.

To make our discussion simpler, throughout this section we

consider the following restrictions on the states of nodes.

(C1) For any i (1 < i ≤ n) and j (1 ≤ j ≤ m),
if loadW (ui,j) 6= 0 then On (uk,l) = 1 for all

1 ≤ k < i and 1 ≤ l ≤ m.

(C2) For any i (1 ≤ i ≤ n) and j (1 < j ≤ m),
if loadR (ui,j) 6= 0 then On (ui,l) = 1 for all

1 ≤ l < j.

Under these restrictions, we consider the following

problem.

Problem 1: For a given dynamic grid quorum C, a

capacity cap, and a system load ld of C, find a strategy P
that minimizes the power consumption of C.

In order to solve this problem, generally, the number of

quorums increases exponentially with the number of nodes.

This results in an explosion of the search space for the

optimization. On the other hand, the power consumption

of the system is determined only by the total load of each

node. From this observation, the key idea in optimizing the

strategy is to first divide each quorum into its components

and to consider only the loads thereof. Then we limit the

search space to a subset created from a special type of

load, denoted by load′, from which we obtain our aimed

optimal strategy.

In terms of load′, we find an optimal solution to

Problem 1 by the following procedure: we first find an

optimal load′ then construct an optimal strategy from this

optimal load′. Here, P opt is used to denote a strategy

obtained by this procedure. Then the following theorem

holds.

Theorem 1: P opt is an optimal solution to Problem 1.

The outline of the proof of Theorem 1 is as follows.

First, we define load′. Next, we prove Lemmas 1 and

2, which verify that an optimal strategy can be obtained

from an optimal load′. Finally, we prove Lemma 3, which

confirms that we can find an optimal load′ using our

algorithm.

Definition 3 (Special type of load): For a given system

Cf and its load ld, we define load′ consisting of the

following four functions.

• load′WN : {ui,j | 1 ≤ i < n ∧ 1 ≤ j ≤ m} → R
+

• load′WC : {Coli | 1 ≤ i ≤ n} → R
+

• load′RN : {ui,j | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ i} → R
+

• load′RT : T → R
+

where T is the set of ~t = 〈t1, . . . , tf 〉 defined as follows.

• ti ∈ {0, i+1, i+2, . . . , m}
• If ti = j then tj = 0 for any i.
• If ti = k and k 6= 0 then tj 6= k for any i 6= j.

Here load′ satisfies conditions (5) to (10) given below.

•

m
∑

j=1

load′WN (ui,j) =

n
∑

k=i+1

load′WC (Colk)

for any i (f < i < n) (5)

•

i
∑

j=1

load′WN (ui,j) =
n

∑

k=m+1

load′WC (Colk)

for any i (1 ≤ i ≤ f) (6)

• load′WN (ui,j) = load′WC (Colj)

for any ui,j in the left-side exchangeable area (7)

•

n
∑

k=1

load′WC (Colk) = ldWS (8)

•

∑

~t∈T,ti=j

load′RT

(

~t
)

≤ load′RN (uj,i)

for any ui,j in the left-side exchangeable area (9)

•

i
∑

j=1

load′RN (ui,j) +

m
∑

j=i+1

∑

~t∈T,ti=j

load′RT

(

~t
)

= ldRS

for any i (1 ≤ i ≤ f) (10)

The intuitive meaning of load′ is as follows. A write

quorum can be divided into a single column and the



other part. load′WC (Col) represents the total write load

of column Col, while load′WN (u) represents the total

write load of node u in the other part. On the other hand,

load′RT

(

~t
)

represents the total read load of that part of the

read quorum, included in the left-side exchangeable area.

Here ~t represents this part. More precisely, ti ∈ ~t denotes

that the part includes node ui,j with j = ti. load′RN (u)
represents the total read load, where u is not in the left-side

exchangeable area.

Using the notion of load′, instead of loadW and loadR

(introduced by Eqs. 3 and 4), we can also define load′W
and load′R, the total write and read loads, respectively, of

each node, as given below.

• load′W (ui,j) = load′WN (ui,j) + load′WC(Coli) (11)

• load′R (ui,j) =






∑

~t∈T,ti=j load′RT

(

~t
) ui,j is in the left-side

exchangeable area

load′RN (ui,j) otherwise
(12)

Moreover, in terms of this definition, we can naturally

define the power consumption, similarly to loadW and

loadR. Then, we obtain the following lemma.

Lemma 1: For any system Cf , any system load ld of

Cf , and any load′, we can obtain a strategy P whose power

consumption is the same as load′.

Proof: It is sufficient to show that loadW (u) =
load′W (u) and loadR (u) = load′R (u) for any u. We

define PW and PR as (13) and (14), respectively.

• PW (QW ) =
load′WC (Colk)

ldWS

·
∏

ui,j∈QW ,f<i<k

load′WN (ui,j)
∑m

l=1 load′WN (ui,l)

·
∏

ui,j∈QW ,i≤f

g1 (ui,j , k)

where k is a number such that Colk ⊆ QW (13)

• PR (QR) = load′RT

(

~t
)

·
∏

ui,j∈QR

g2 (ui,j)

g3 (QR, ui,j)

where ~t satisfies ti=j6=0 iff ui,j∈QR and i<j (14)

Here g1, g2, and g3 are functions defined as follows.

• g1 (ui,j , k) =

{

1 k ≤ m
load′

WN (ui,j)
P

i
l=1

load′

WN
(ui,l)

otherwise

• g2 (ui,j) = load′RN (ui,j) −
∑

~t∈T,tj=i

load′RT (~t )

• g3 (QR, ui,j) =














































i
∑

l=1

load′RN (ui,l) −

f
∑

k=1

∑

~t∈T,tk=i

load′RT

(

~t
)

(Case1)

ldRS −

f
∑

k=1

∑

~t∈T,tk=i

load′RT

(

~t
)

(Case2)

load′RN (ui,j) −
∑

~t∈T,tj=i

load′RT (~t ) (Case3)

where Case 1 covers i ≤ f , uj,i 6∈ QR, and ui,j in the

lower exchangeable area; Case 2 deals with i > f and,

if uj,i ∈ QR then j > f ; and Case 3 covers all other

possibilities.

Then by the definitions of 〈loadW , loadR〉 (i.e., (1)-(4)),

load′ (i.e., (5)-(10)), and 〈load′W , load′R〉 (i.e., (11)-(12)),

we can derive our required equations.

Also, the following lemma, which is the converse of

Lemma 1, is provable.

Lemma 2: For any system Cf , any system load ld of

Cf , and any strategy P , we can obtain a load′ whose power

consumption is the same as P .

Proof: We define load′WN , load′WC , load′RN , and

load′RT as (15), (16), (17), and (18), respectively.

• load′WN (ui,j) =
∑

QW ∈CW ,QW ∋ui,j ,QW 6⊇Coli

loadW (QW ) (15)

• load′WC (Colk) =
∑

QW ∈CW ,QW ⊇Colk

loadW (QW ) (16)

• load′RN (ui,j) =
∑

QR∈CR,QR∋ui,j

loadR (QR)

for any ui,j ∈ U such that
ui,j is not in the left-side exchangeable area (17)

• load′RT

(

~t
)

=
∑

QR∈T (~t )

loadR (QR) (18)

Here T
(

~t
)

in (18) is a class of read quorums such that

for any QR ∈ T
(

~t
)

, if ti = j and j 6= 0, then ui,j ∈ QR

for any i and j, and ui,j is in the left-side exchangeable

area.

From Eqs. (15) to (18) and Eqs. (1) to (4) we can derive

(5) to (10). This guarantees that load′ defined by (15) to

(18) satisfies conditions (5) to (10). Moreover, in addition

to the above derivation, by (11) and (12) we can obtain

our required equations.

The algorithm (called OL) to obtain an optimal load′, is

presented in Fig. 3. The algorithm can be divided into three

steps. Step 1, comprising lines 1 to 7 in Fig. 3, minimizes

the number of active nodes for write requests (called the



write-area) so as to satisfy (5) to (10). At the end of Step

1, a minimum V for the write-area has been obtained.

Step 2, comprising lines 8 to 14, minimizes the number

of active nodes for read requests (called the read-area)

so as to satisfy (5) to (7). At the end of Step 2, V is

the union of the minimum write-area and minimum read-

area. Because Step 2 disregards (10), some active nodes

might be added to satisfy (10). We call this set of nodes

the additional-area. Step 3, comprising the rest of this

algorithm, minimizes the additional-area and then returns

an optimal solution.

Next we explain the details of sub-algorithms LP1 and

LP2 used in Steps 1 and 3, respectively. LP1 consists of

linear programming, which returns true if and only if there

exists a basic feasible solution of load′ to the constraints

represented by the following conditions.

• (5) to (10).

• The condition of capacity.

• load′WC (Coli) = 0 for all i(K < i ≤ n) .

In Step 1, if there is no feasible area even with K = n,

then there exists no solution. In this case, the algorithm

terminates without finding a solution.

LP2 also consists of linear programming, which returns

one of the basic feasible solutions of load′, if it exists,

to the constraints represented by the following conditions;

otherwise it returns nil.

• (5) to (10).

• The condition of capacity.

• load′W (ui,j)+load′R(ui,j) = 0 for ui,j 6∈V and k<i.

Now we show that the load′ obtained by this algorithm

is optimal.

Lemma 3: For any dynamic grid quorum Cf , any sys-

tem load ld of Cf , and any capacity cap, Algorithm OL

returns an optimal solution load′, which minimizes the

power consumption.

Proof sketch: Let S be the set of active nodes

determined by the solution obtained by this algorithm.

Here we consider SW , SR, and SA, which are the write-,

read-, and additional-areas of S, respectively. Thus, to

prove this lemma it is sufficient to show that each of SW ,

SR, and SA is minimum.

Clearly, for SW and SR, these are the minimum sets to

handle the given load ldWS and ldRS , respectively. That is

because if this were not the case, Step 1 or the inner loop

of Step 2 controlled by I would terminate prematurely.

To find SA, Step 3 repeatedly generates a set (say, Cs,t
A )

of candidates, by the following operations OP1 and OP2

so as to enumerate all possible candidates.

(OP1) Generate Cs,t+1
A from Cs,t

A by adding ui,j to each

candidate S′
A ∈ Cs,t

A , where ui,j satisfies i ≤ f ,

ui,j 6∈ S′
A∪SR, and ui,l ∈ S′

A∪SR for all l < j.

input:U, n, m, cap, ld

01: {Step 1 starts here.}
02: K ← 0 ;
03: while LP1 returns false

04: if K = n then
05: exit “NO SOLUTION” ;
06: K ← K + 1 ;
07: V ←

SK
l=1 Coll ;

08: {Step 2 starts here.}
09: if ldRS 6= 0 then

10: for I = 1 to n
11: for J = 1 to m
12: V ← V ∪

˘

uI,J

¯

;
13: if

P

u∈V,u∈ColI
cap (u) ≥ ldRS then

14: break ;
15: {Step 3 starts here.}
16: V ← {V }, V ′′ ← U , P ← nil, L← K ;
17: loop

18: for all V ′ ∈ V
19: if LP2 returns some load′ then

20: if |V ′| < |V ′′| then
21: V ′′ ← V ′, P ← load′ obtained by LP2 ;

22: if |V ′′ − V | ≤
PL+1

i=k
(m− |V ∩Coli|) then

23: return P ;
24: else

25: V ← {V ∪ ColL+1}, L← L + 1 ;
26: next loop ;
27: W ← φ ;
28: for all V ′ ∈ V
29: for I = L + 1 to n
30: T ← max

˘

j | uI,j ∈ V ′
¯

;
31: if T < f then

32: W ←
˘

V ′ ∪
˘

uI,T

¯¯

∪W ;
33: V ← W ;
34: if V = φ then

35: V ← {V ∪ ColL+1}, L← L + 1 ;

Fig. 3. Algorithm OL

(OP2) Generate Cs+1,0
A from Cs,0

A by adding Col′s+1 ⊆

Cols+1 to each candidate S′
A ∈ Cs,0

A such that

u ∈ Col′s+1 if and only if u 6∈ SR.

Let ~C0
A, ~C1

A, . . . , ~Ch
A be the sequence of sets of candidates

generated in Step3, where for each 0 ≤ s ≤ h, ~Cs
A =

Cs,0
A , Cs,1

A , . . . , Cs,hs

A for some hs. Here, for any s and

t, each candidate in Cs,t
A satisfies (C1) and (C2). In this

sequence, there exists Cs,t
A ∋ SA for some s and t, where

SA is the minimum among all the candidates for each of

which LP2 returns a solution. Here, there is no smaller

candidate than SA in Cs′,t′

A nor Cs′′,t′′

A for any s′, s′′, t′, and

t′′ such that s′ > h and s′′ ≤ h and t′′ > hs′′ . Therefore,

SA is a minimum additional-area.

Proof of Theorem 1: Let load′ be the solution

obtained by Algorithm OL. Then, by Lemma 3, load′ is an

optimal solution in the set of special type of loads. Thus,

by Lemma 1, we can obtain a strategy P opt whose power

consumption is the same as load′. Moreover, P opt is an

optimal strategy, because if there exists another strategy

(say, P ′) whose power consumption is smaller than that

of P opt, then by Lemma 2, a better solution also exists in



the set of special type of loads. This contradicts Lemma

3.

Remark: restrictions on the state of nodes. If we

disregard either of the restrictions (C1) or (C2), there may

be a better solution than that obtained by our algorithm.

For example, let SR be the read-area, k the number of

columns in the write-area, and load′ a special type of load

obtained by the algorithm. If there is some set of nodes

S′
R ⊆ SR that satisfies

∑

u∈(S′

R
∩Coli) cap (u) ≥ ldRS for

any Coli, and
∑

~t∈T,ti=j load′RT

(

~t
)

= 0 for any ui,j such

that 1 ≤ i ≤ k < j ≤ min {n, m} and uj,i 6∈ VR, then the

nodes SR−S′
R can be reduced if we disregard assumption

(C2).

Remark: computational complexity. By using the notion

of load′, the computational complexity of our proposed

algorithm is decreased. Indeed, as far as our experiments

are concerned, we can find optimal solutions in feasible

time for all cases of the simulations in the next section.

However, the following two factors may still cause a search

space explosion: the number of loops in Step 3 (even

though this step is not used in many cases) and the number

of constraints for load′RT , where the computational com-

plexities are O(fn) and O(mf ), respectively. A possible

way to avoid such exponential growth is to restrict the

degree f to a small number, but an improvement to our

algorithm is still needed. This shall be investigated as one

of our future works.

6. Simulation Results

In the evaluation of this section, we consider the follow-

ing three systems for a 10×10 grid: dynamic grid quorum

with reconfiguration (DG), and fixed allocation of nodes

optimized for write requests (WG) and read requests (RG),

respectively. First we evaluate the impact of the write/read

ratio for each case where the system load is low, medium

or high. In contrast to the above settings, we also evaluate

the impact of system load, where the write/read ratio is

fixed but the total number of requests varies.

Parameters and Settings. Each system in the evaluation

consists of 70 nodes with capacity c and 30 nodes with

capacity 2c. In the WG and RG, the nodes with 2c are

allocated in Coli and Rowi (1 ≤ i ≤ 3), respectively.

The DG is a dynamic grid quorum with degree f = 3,

whose node allocation is the same as in the WG. For the

impact analysis of the write/read ratio, we use 2.5c, 5c,

and 7.5c as the values for low, medium, and high loads in

the system, respectively. This setting arises from the fact

that the write and read capacity for a grid of the same

size, comprising homogeneous nodes with capacity c is

10c and 6.5c, respectively. For the impact analysis of the

system load, we consider the write/read requests to be 1/3,

which is also used as the default parameter in [14].

Impact of write/read ratio in the case of low load. Fig.

4 shows that the power consumption of the DG is less than

that of both the WG and RG for all ratios. Additionally,

compared with the WG and RG, our system saves on

average 12% and 13%, respectively, and up to 27% and

32% of power, respectively, for all ratios. The results of this

simulation show that our system effectively reduces power

consumption when compared with both the WG and RG.

Impact of write/read ratio in the case of medium load.

Fig. 5 shows that the power consumption of the DG is the

least for the range 0% to 70% of the write ratio. Above

70% of the write ratio, our system consumes more power

than the WG. The DG, however, does not exceed the power

consumption of the RG for all ratios. Considering more

detailed results, the DG consumes on average 0.2% more

power than the WG and 10% less than the RG for all ratios.

Moreover, compared with the WG and RG, our system

saves up to 28% and 24% of power, respectively, although

it consumes twice as much as the WG in the worst case.

The results of this simulation show that our system is less

effective for all write ratios with medium load than with

low load. However, our system is still efficient for a wide

range of write ratios.

Impact of write/read ratio in the case of high load.

Where ldWS + ldRS = 7.5c, the DG cannot handle a write

ratio above 70%, whereas the WG and RG can. However,

compared with the WG and RG, our system saves on

average 1% and 6%, respectively, for a write ratio in the

range 0% to 70%. The results of this simulation show that

our system may not be able to handle a high write ratio

with high load. However, our system is still able to save

some power for other write ratios.

Impact of load growth. Fig. 6 shows that the power

consumption of the DG is the least of all the systems for

all system loads. Compared with the WG and RG, our

system saves on average 12% and 6%, and up to 27% and

22% of power, respectively, for all ratios. The results of

this simulation show that our system is effective for any

system load.

7. Conclusions and Future Work

In this paper, we presented a power-aware quorum

system called the dynamic grid quorum. To reduce power

consumption, we introduced an optimization algorithm for

skewing the workload towards a small number of quorums.

Moreover, we proposed a reconfiguration technique that

allows the exchanging of nodes without data migration. We

also evaluated our technique by comparing the proposed

system with static quorums. The results showed that our

system saved on average between 6 and 12% with a 1/3
write operation ratio.



Fig. 4. Number of active nodes(ldWS+ldRS =2.5c)

Fig. 5. Number of active nodes (ldWS+ldRS =5c)

There are several possible directions in which this work

can be developed. As mentioned in Section 5, we are

interested in an improvement to our algorithm to avoid the

case that results in a search space explosion. We are also

interested in some extensions of our technique, especially

by modeling heterogeneity of power consumption and time

required for the state transition of nodes, that were not

considered in this paper.
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