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Abstract. This paper is concerned about relating formal and computational models of cryp-
tography in case of active adversaries when formal security analysis is done with first order
logic As opposed to earlier treatments, we introduce a new, fully probabilistic method to as-
sign computational semantics to the syntax. The idea is to make use of the usual mathemati-
cal treatment of stochastic processes, hence be able to treat arbitrary probability distributions,
non-negligible probability of collision, causal dependence or independence, and so on. We
present this via considering a simple example of such a formal model, the Basic Protocol
Logic by K. Hasebe and M. Okada [20], but we think the technique is suitable for a wide
range of formal methods for protocol correctness proofs. We first review our framework of
proof-system, BPL, for proving correctness of authentication protocols, and provide compu-
tational semantics. Then we give a full proof of the soundness theorem. We also comment on
the differences of our method and that of Computational PCL.

Keywords. cryptographic protocols, formal methods, first order logic, computational seman-
tics

1 Introduction

In the past few years, linking the formal and computational models of cryptography has become
of central interest. Several different methods have emerged for both active and passive adversaries.
In this paper we consider the relationship of the two models when formal security analysis is done
with first order logic. Protocol correctness is analyzed by defining a syntax with adding some
additional axioms (expressing security properties etc.) to the usual axioms and inference rules
of first order logic and then proving some security property directly, instead of eliminating the
possibility of successful (formal) adversaries. A logical proof then ensures that the property will
be true in any formal model (semantics) of the syntax. The link to the computational world then
is done by assigning a computational semantics (instead of formal) to the syntax, proving that the
axioms and inference rules hold there, and hence a property correct in the syntax must be true
in the computational model. However, as it turns out, it is not unambiguous how to define the
computational semantics, and when a property should be deemed “true” computationally.

Recently, Datta et al. in [13] gave a computational semantics to the syntax of their Protocol
Composition Logic of [16, 12] (cf. also [1] for a protocol composition logic project overview).
In their treatment, every action by the honest participants is recorded on each (non-deterministic)
execution trace, and bit strings emerging later are checked whether they were recorded earlier and
to what action they corresponded (the only actions of the adversary that are recorded are send and



receive). This way, they first define whether a formula is true on a particular trace (more exactly
this is only true for a formula not containing their predicate Indist), and they say the formula is
true in the model if it is true on an overwhelming number of traces. This method however, since it
focuses on coincidences on individual traces, discards a large amount of information carried by the
probabilistic structure of the protocol execution, and defines satisfaction and validity of formulas
ignoring that information. As the comparisons are done on each trace separately it is not possible
to track independence, correlations. But there are more serious problems too, as we will discuss
later - such as, some of the syntactic axioms are defined through the semantics. We do not claim
that it is impossible to fix these issues in their framework, but we suggest a different viewpoint in
which these issues can be easily eliminated.

Our approach puts more emphasis on probabilities. Instead of defining what is true on each
trace, we say - roughly speaking - that a property is true in the model if a “cross-section” of
traces provides the right probabilities for computational realizations of the property in question.
An underlying stochastic structure ensures that can detect if something depends on the past or does
not. It is not coincidences on traces that we look for, but indistinguishable probability distributions.

We introduce our method on a rather simple syntax, namely, a somewhat modified version of
Basic Protocol Logic (or BPL, for short) by K. Hasebe and M. Okada [20] and leave extensions to
more complex situations such as the Protocol Composition Logic to future work. The reason for
this is partly to avoid distraction by an elaborate formal model from the main ideas, but also that
a complete axiomatization of the syntax used by Datta et al. for their computational PCL has not
yet been published anywhere, important details of the formalization is not yet publicly available.
We would like to emphasize though that our point is not to give a computational semantics to BPL
but to provide a technique that works well in much more general situations as well.

BPL is a logical inference system to prove correctness of a protocol. Originally, it included
signatures as well, but for simplicity, we leave that out from this analysis. BPL was defined to
give a simple formulation of a core part of the protocol logics (PCL) of [16, 12, 11] for proving
some aimed properties in the sense of [25, 22] within the framework of first order logic; all notions
and assumptions are strictly formulated by the first order logical language explicitly. Contrary to
PCL, in BPL there are no explicit encrypt, decrypt, match actions, only nonce generation, send
and receive. The version which we utilized as a simple sample of formal rule-based model in this
paper does not accomodate some correctness proofs such as secrecy-properties although one could
extend BPL to support them. Besides the usual axioms and derivation rules of first order logic,
further axioms set the behavior of equality and subterm relations of terms created via pairing and
encryption, two nonce-veryfication axioms incorporating the notion that only the person with the
correct decryption key can read what is inside an encryption, and an axiom about the order of
events in traces. Although this system is very simple, given a protocol (as we will indicate in the
case of agreement in NSL), the nonce-veryfication axioms forcing certain messages to be included
in others, and then the term axioms restricting what a certain pair of terms in a subterm relation
can possibly be, the required property can be verified.

We first give the axiomatic system in first-order predicate logic for proving the agreement
properties. A message is represented by a first-order term that uses encryption and pairing symbols,
an atomic formula is a sequence of primitive actions (as send, receive and generate) of principals
on terms. We set some properties about nonces and cryptographic assumptions as non-logical
axioms, and give a specific form of formulas, called query form, which has enough expressive
power to specify our intended authentication properties.

Although BPL is sound with respect to formal semantics as shown in [20] with the traditional
(Tarskian) model-theoretic formal semantics based on the free term algebra domain, in order to



ensure soundness for computational semantics, some modifications of the original syntax of BPL
were necessary:

1. Instead of denoting encryptions as {m}A, which was used in the original version of the
purely symbolic model-based BPL inference system, we indicate the random seed of the encryp-
tion as {m}r

A (as Datta et al. do). As it turned out, a consistent computational interpretation is
much harder, if not impossible without the random seed in the syntax.

2. The original subterm and equiterm axioms were not all computationally sound so we just
take a certain subset, the elements of which we know that they are computationally sound. We are
not taking all the sound term axioms, as it is not known how to give a complete characterization
of them. 4

The original BPL also proved completeness for formal semantics with the original set of ax-
ioms, however, we do not consider completeness in this paper. It is an open question whether
anything about completeness can be said in the computational case.

We then define the computational semantics. This involves giving a stochastic structure that
results when the protocol is executed. Principals output bit strings (as opposed to terms) with cer-
tain probability distributions. The bit strings are then recorded in a trace as being generated, sent
or received by some principal. This provides a probability distribution of traces. We show how to
answer whether a bit string corresponding to a term was sent around with high probability or not.
For example a formal term {M}r

A was sent around in the computational model if a cross-section
of all traces provides the correct probability distribution that corresponds to sending {M}r

A. Or, a
nonce N was generated, if another cross- section provides the right probabilities, and that distribu-
tion must be independent of everything that happened earlier. This way we define when a certain
formula in the syntax is true in the computational semantics. We then analyze whether the axioms
of the syntax are true in the semantics, and if they are, then we conclude that a formula that can be
proved in the syntax is also true in the semantics.

Related Work. Formal methods emerged from the seminal work of Dolev and Yao [15],
whereas computational cryptography grew out of the work of Goldwasser and Micali [17]. The
first to link the two methods were Abadi and Rogaway in [3] ”soundness” for passive adversaries
in case of so-called type-0 security. A number of other papers for passive adversaries followed,
proving ”completness” [23, 5], generalizing for weaker, more realistic encryptions schemes [5],
considering purely probabilistic encryptions [19, 5], including limited models for active adver-
saries [21], addressing the issue of forbidding key-cycles [4], considering algebraic operations and
static equivalence [8, 2]. Other approaches including active adversaries are considered by Backes
et al. and Canetti in their reactive simulatability [6] and universal composability [10] frameworks,
respectively. Non trace properties were investigated elsewhere too, however, not in the context of
first order logic. A brief account of this present work was given in [7].

Organization of this paper. In Section 2, we outline the syntax of Basic Protocol Logic. In
Section 3, we give a computational semantics to Basic Protocol Logic, and discuss soundness.
Finally, in Section 4, we conclude and present directions for future work.

4 The uses of subterm and equiterm relations, such as s ⊆ t and s = t, are essential for correctness
proofs of protocols in general, including BPL and PCL. Any symbolic term model, hence, should reflect
the symbolic term structures, and such a term model maybe called a ”standard” model with respect to
subterm and equiterm relations. BPL’s symbolic semantics takes such standard term model which also
satisfy certain properties for nonce-verifications, which are listed as non-logical axioms in our BPL syntax.
Our result 2 above shows that only the truth of a certain useful subset of the subterm theory axioms is
preserved under computational interpretation. As we will show, the nonce-verification axioms turn out to
be sound.



2 Basic Protocol Logic

In this section, we present the syntax of Basic Protocol Logic modified to be suitable for compu-
tational interpretation. For the original BPL, please consult [20].

2.1 Language

Sorts and terms. Our language is order-sorted, with sorts coin , name, nonce and message

such that terms of sorts name and nonce are terms of sort message. Let Cname be a finite set
of constants of sort name (which represent principal names), and Cnonce a finite set of constants
of sort nonce. Let Ccoin be a finite set of constants of sort coin. The sort coin represent the
random input of encryptions. We require countably infinite variables for each sort. We will use
A,B, . . . , A1, A2, . . . (Q, Q′, . . . , Q1, Q2, . . ., resp.) to denote constants (variables, resp.) of sort
name, N,N ′, . . . , N1, N2, . . . (n, n′, . . . , n1, n2, . . ., resp.) denote constants (variables, resp.) of
sort nonce, r, r′, . . . , r1, r2, . . . (s, s′, . . . , s1, s2, . . ., resp.) denote constants of sort coin (vari-
ables of sort coin, resp.). The symbols m,m′, . . . ,m1,m2, . . . are used to denote variables of sort
message and M,M ′, . . . ,M1, M2, . . . to denote constants of sort message (that is, either name
or nonce). Let P, P ′, . . . , P1, P2, . . . denote any term of sort name, let ρ, ρ′, . . . , ρ1, ρ2, . . . denote
anything of sort coin, and let ν, ν′, . . . denote any term of sort nonce. Compound terms of sort
message are built from constants and variables, and are defined by the grammar:

t ::= M | m | 〈t, t〉 | {t}ρ
P .

Where again, M ∈ Cname∪Cnonce, m is any variable of sort message, P is any constant or variable
of sort name, and ρ is any constant or variable of sort coin. For example, 〈〈A1, {〈n,A2〉}r

Q〉,m〉
is a term. We will use the shorter {n,A2}r

Q instead of {〈n,A2〉}r
Q. We will use the meta-symbols

t, t′, . . . , t1, t2, ... to denote terms.
Formulas. We introduce a number of predicate symbols: P generates ν,

P receives t, P sends t, t = t′, t ⊆ t′, t ⊆P t′, t ⊆¬P t′ and |t1 ⊆ t2 ⊆ t3| which represent
“P generates a fresh value ν as a nonce”, “P receives a message of the form t”, “P sends a mes-
sage of the form t”, “t is identical with t′”, “t is a subterm of t′”, “t is a subterm of t′ such that
t can be received from t′ decrypting only with the private key of P ”, “t is a subterm of t′ such
that t can be received from t′ without decrypting with the private key of P ”, “t1 ⊆ t2 ⊆ t3 and
the only way t1 occurs in t3 is within t2”, respectively. The first three are called action predicates,
and the meta expression acts is used to denote one of the action predicates: generates, receives
and sends. We also introduce the trace predicate P1 acts1 t1; P2 acts2 t2; · · · ; Pk actsk tk. A
trace predicate is used to represent a sequence of the principals’ actions such as “P sends a
message m, and after that, Q receives a message m′”. Atomic formulas are either of the form
P1 acts1 t1; P2 acts2 t2; · · · ;Pk actsk tk, or t = t′, or t ⊆ t′, or t ⊆P t′, or t ⊆¬P t′ or
|t1 ⊆ t2 ⊆ t3|. The first one we also call trace formula. We also use α1; · · · ; αk (or α in short) to
denote P1 acts1 t1; · · · ;Pk actsk tk (where k indicates the length of α). When every Pi is iden-
tical with P for 1 ≤ i ≤ k, then αP denotes such a trace formula. For α (≡ α1; · · · ; αm) and
β (≡ β1; · · · ; βn), we say β includes α (denoted by α ⊆ β), if there is a one-to-one, increasing
function j : {1, ...,m} → {1, ..., n} such that αi ≡ βj(i). Formulas are defined by

ϕ ::= α
∣∣∣t1 = t2

∣∣∣t1 ⊆ t2

∣∣∣t1 ⊆P t2

∣∣∣t1 ⊆¬P t2

∣∣∣|t1 ⊆ t2 ⊆ t3|
∣∣∣¬ϕ

∣∣∣ϕ∧ϕ
∣∣∣ϕ∨ϕ

∣∣∣ϕ → ϕ
∣∣∣∀mϕ

∣∣∣∃mϕ

where m is any variable. Those variables in a formula that are bound by the binding operators ∃
and ∀ will be referred to as bound variables, those that are not will be referred to as free variables.



We use the meta expression ϕ[m] to indicate the list of all free variables m occurring in ϕ. We
will also use ϕ[M , m] to specify some constants M that occur in ϕ where m again is all free
variables in ϕ.

Finally, order-preserving merge of trace formulas α (≡ α1; · · · ;αl) and β (≡ β1; · · · ; βm)
is a trace formula δ (≡ δ1; · · · ; δn) if there are one-to-one increasing functions jα : {1, ..., l} →
{1, ..., n}, jβ : {1, ...,m} → {1, ..., n} such that αi ≡ δjα(i), βi ≡ δjβ(i), and the union of the
ranges of jα and jβ cover {1, ..., n}. δ is called a strict order-preserving merge if, furthermore,
the ranges of jα and jβ are disjoint.

Roles. Roles of principals are described by trace formulas of the form αA ≡ A acts1 t1;
· · · ; A actsk tk. Honest principals (those who generate keys, encryptions, nonces honestly, and
don’t share information with the adversary) are denoted by constants. Nonces and coins that these
participants generate are also denoted by constants. Protocols are a set of roles together with a list
of values that the principals have to agree on.

Example 1. (Roles of the Needham-Schroeder-Lowe protocol)

We consider the Needham-Schroeder-Lowe public key protocol [24], whose informal description
is as follows.

1. A → B: {n1, A}r1
B

2. B → A: {n1, n2, B}r1
B

3. A → B: {n2}r2
B

Initiator’s and responder’s roles of the Needham-Schroeder public key protocol (denoted by InitNS

and RespNS , respectively) are described as the following formulas.
InitANSL[Q2, N1, n2, r1, s2, r3] ≡

A generates N1; A sends {N1, A}r1
Q2

; A receives {N1, n2, Q2}s2
A ; A sends {n2}r3

Q2

RespB
NSL[Q1, n1, N2, s1, r2, s3] ≡

B receives {n1, Q1}s1
B ; B generates N2; B sends {n1, N2, B}r2

Q1
; B receives {N2}s3

B

They further have to agree that Q1 = A, Q2 = B, n1 = N1, n2 = N2.

Remark 1. Notice that, for example, in the responder’s role, we wrote B receives {n1, Q1}s1
B in-

stead of B receives {m,Q1}s1
B , although n1 may come from the adversary. This is, because we

will assume in the semantics, that because of tagging, it is recognizable whether a string is a
nonce or not. But, the distribution of n1, if coming from the adversary, may not follow the correct
distribution of nonces.

2.2 The Axioms of Basic Protocol Logic

We extend the usual first-order predicate logic with equality by adding the following axioms (I),
(II) and (III).

Remark 2. For the axioms below to be more understandable, we make a few remarks about the
semantics that we will define later. For each η, names will be interpreted as some constant bit
string names of the participating principals, such that the principals corresponding to constants
will generate nonces, keys and encrypt honestly. Other possible principles may be malicious, cre-
ating encryptions and nonces dishonestly. Nonces will have to have a certain fixed length, the
interpretation of nonce constants will have to have the correct distribution and be independent of
what happened earlier. The interpretation of coins will have to have the correct form for the ran-
dom feed into the encryption, and further, constants of sort coin will have to have the correct



distribution, and when used for encryption, such a constant coin will have to have a distribution
that is independent of the distribution of encrypted plaintext as well as independent of everything
that happened earlier. The public keys of constants will also have to have the correct distributions
and be generated at the very beginning. The interpretation of encryptions and pairing are defined
the intuitive way.

(I) Term axioms. Consider the set C̄ of all variables and constants of each of sort name, sort nonce
and sort coin. Let Ā be the free algebra constructed from C̄ via 〈·, ·〉 and {·}·· (with the appropriate
sorts in the indexes of the encryption terms) not including constants and variables of sort coin.
The elements of Ā are of sort message. Let ⊆Ā denote the natural subterm relation in Ā. Let
t ⊆Ā

P t′ mean that t ⊆Ā t′ such that t can be received from t′ by decrypting encryptions by the
key of P only. Let t ⊆Ā

¬P t′ mean that t ⊆Ā t′ such that t can be received from t′ by decrypting
encryptions that are not done with the key of P .

Let |t1 ⊆Ā t2 ⊆Ā t3| mean that t1 ⊆Ā t2 ⊆Ā t3 and the only way t1 occurs in t3 is within
t2. That is: |t1 ⊆Ā t2 ⊆Ā t3| := t1 ⊆Ā t2 ⊆Ā t3 ∧ ∀t(t1 ⊆Ā t ⊆Ā t3 → t2 ⊆Ā t ∨ (t ⊆Ā

t2 ∧ ∀t4(t2 ⊆Ā t4 → 〈t, t4〉 ̸⊆Ā t3 ∧ 〈t4, t〉 ̸⊆Ā t3))).
We postulate the following term axioms. Here, and also later by using ⊆(¬)P we mean two

sentences, one with and one without ¬. Let m be all variables occurring in the corresponding
terms. We require these for all A,B ∈ Cname:

(a) If t = t′ is true in Ā, then ∀m(t = t′) is axiom. If t ⊆Ā t′ is true in Ā, then ∀m(t ⊆ t′) is axiom. If
t ⊆Ā

P t′ is true in Ā, then ∀m(t ⊆Ā
P t′) is axiom. If ∀mQ(Q ̸= P1 ∧ ... ∧ Q ̸= Pk → t ⊆Ā

¬Q t′) is
true in Ā for all (possibly equal) constant or variable substitutions to m and Q, then it is an axiom.

(b) ∀m(t1 = t2 → t2 = t1), ∀m(t1 = t2 ∧ t2 = t3 → t1 = t3), ∀m(t1⊆ t2 ∧ t2⊆ t3 → t1⊆ t3),
(c) ∀mP (t1 ⊆(¬)P t2 → t1 ⊆ t2), ∀mP (t1 = t2 → t1 ⊆(¬)P t2), ∀mP (t1 ⊆(¬)P t2 ∧ t2 ⊆(¬)P t3 →

t1⊆(¬)P t3)

(d) ∀mQss′({t1}s
Q ={t2}s′

Q → t1 = t2),
(e) ∀m(〈t1, t2〉=〈t3, t4〉 → t1 = t3 ∧ t2 = t4)
(f) ∀mQs({t}s

Q ̸= 〈t1, t2〉), ∀mQsn({t}s
Q ̸= n), ∀mQQ′s({t}s

Q ̸= Q′)
(g) ∀mn(〈t1, t2〉 ≠ n), ∀mQ(〈t1, t2〉 ≠ Q)
(h) ∀m(t ⊆ 〈t1, t2〉 → t ⊆ t1 ∨ t ⊆ t2 ∨ t = 〈t1, t2〉), ∀mQs(t1 ⊆ {t2}s

Q → t1 = {t2}s
Q ∨

∃mQ′s′({t2}s
Q = {m}s′

Q′ ∧ t1 ⊆ m))
(i) ∀mP (t ⊆P 〈t1, t2〉 → t ⊆P t1 ∨ t ⊆P t2 ∨ t = 〈t1, t2〉), ∀mQsP (t1 ⊆P {t2}s

Q → t1 =

{t2}s
Q ∨ ∃ms′({t2}s

Q = {m}s′
P ∧ t1 ⊆P m)), ∀msP (t1 ⊆P {t2}s

P → t1 = {t2}s
P ∨ t1 ⊆P t2))

(j) ∀mP (t ⊆¬P 〈t1, t2〉 → t ⊆¬P t1 ∨ t ⊆¬P t2 ∨ t = 〈t1, t2〉), ∀mQsP (t1 ⊆¬P {t2}s
Q → t1 =

{t2}s
Q ∨ ∃mQ′s′(Q′ ̸= P ∧ {t2}s

Q = {m}s′

Q′ ∧ t1 ⊆ m))
(k) ∀mn(m⊆n → m=n), ∀mQ(m⊆Q → m=Q)

(l) ∀m|t1 ⊆ t2 ⊆ t3| is an axiom if |t1 ⊆Ā t2 ⊆Ā t3|[M/m] holds for all M vector of constans of ap-
propriate sort.

(II) Rules for trace formulas. We postulate that β → α for α ⊆ β and γ1 ∨ · · · ∨ γn ↔ α ∧ β,
where γi’s are the list of order-preserving merges of α and β. These axioms express the intuition
that if a trace “happens”, then a subtrace of it also happens, and two traces happen if and only if
one of their possible merges happen.

(III) Axioms for relationship between properties. We introduce the following set of formulas
as non-logical axioms. These axioms represent some properties about nonces and cryptographic
assumptions.

(1) Ordering:
∀Q1Q2nm(n ⊆ m → ¬(Q2 sends/receives/generates m; Q1 generates n)).



(2) Nonce verification 1: For each A, B constants of sort name, r constant of sort coin, we
postulate
∀Qn1m5m6(A generates n1; Q receives m5 ∧ n1 ⊆¬B m5

∧ ∀m7(A sends m7 ∧ n1 ⊆ m7 → |n1 ⊆ {m6}r
B ⊆ m7|)

→ ∃m2m3m4(A sends m2; B receives m3; B sends m4; Q receives m5

n1 ⊆ m2 ∧ {m6}r
B ⊆B m3 ∧ n1 ⊆ m4))

(3) Nonce verification 2: For each A, B C of sort name (where A and C may coincide), r1, r2

constants of sort coin, we postulate we postulate
∀n1m5m6m8(A generates n1; C receives m5 ∧ n1 ⊆¬B m5

∧ ∀m7(A sends m7 ∧ n1 ⊆ m7 → |n1 ⊆ {m6}r1
B ⊆ m7|)

∧ ∀m4(B sends m4 ∧ n1 ⊆ m4 → |n1 ⊆ {m8}r2
C ⊆ m4|)

∧ ∀m10(¬(C sends m10 ∧ n1 ⊆ m10) ∨ A = C)
→ {m8}r2

C ⊆C m5

There are other possible axiomatizations, but the authors of [20] found this particularly useful
(more exactly a somewhat less general version). The meaning of the Ordering axiom is clear.
Nonce verfication 1 and 2 are based on the idea of the authentication-tests [18]. Nonce verification
1 means that if A generated a nonce n1 that Q received in m5, and A only sent n1 encrypted with
the public key of B always in a given form {m6}r

B , and Q received this nonce in some other form,
then the encrypted nonce had to go through B, and before that, it had to be actually sent out by
A. The reason that we require A and B to be names and not arbitrary variables is that we do not
want to require any principals in an arbitrary run to encrypt securely. Nonce verification 2 means
that with the premises of Nonce verification 1, and if B sends n1 only inside {m8}r2

C , and C never
sends n1 unless C = A, then C had to receive {m8}r2

C so that it is accessible to him.

2.3 Query form and correctness properties

We introduce a general form of formulas, called query form, to represent our aimed correctness
properties. In order to make the discussion simpler, we consider only the case of two party authen-
tication protocols, however our query form can be easily extended so as to represent the correctness
properties with respect to other types of protocols which include more than two principals.

Definition 1. (Query form) Query form is a formula of the following form: ∃mHonest(αA) ∧
βB ∧ Only(βB) → γ

We present the precise definition of Only(αB) and of Honest(αA) in the Appendix. Only(αB)
means that B performs only the actions of αB , and nothing else, whereas Honest(αA) rep-
resents “A performs only a run of an initial segment of αA which ends with a sending action
or the last action of αA”. For example, from responder’s (namely, B’s) view, the non-injective
agreement of the protocol Π = {αA[B/Q2, N1, n2, r1, s2], βB [A/Q1, n1, N2, s1, r2]} can
be described as the following formula: ∃n1n2s1s2Honest(αA)[Q2, N1, n2, r1, s2] ∧ (βB ∧
Only(βB)[A/Q1, n1, N2, s1, r2]) → αA[B/Q2,N1, N2/n2, r1, r2/s2] ∧ n1 = N1

Example 2. (Agreement property in the responder’s view of the NSL protocol)
The initiator’s honesty of the NSL protocol is Honest(InitANSL)[Q1, N1, n2, r1, s2, r3] ≡

0

@

0

@

∀n3¬(A generates n3)
∧∀m4¬(A sends m4)
∧∀m5¬(A receives m5)

1

A ∨

0

B

B

@

A generates N1; A sends {N1, A}r1
Q1

∧∀n3(A generates n3 → n3 = N1)
∧∀m4(A sends m4 → m4 = {N1, A}r1

Q1
)

∧∀m5¬(A receives m5)

1

C

C

A



∨

0

B

B

@

A generates N1; A sends {N1, A}r1
Q1

; A receives {N1, n2, Q1}s2
A ; A sends {n2}r3

Q1

∧∀n3(A generates n3 → n3 = N1)
∧∀m4(A sends m4 → m4 = {N1, A}r1

Q1
∨ m4 = {n2}r2

Q1
)

∧∀m5(A receives m5 → m5 = {N1, n2, Q1}s2
A )

1

C

C

A

1

C

C

A

We refer to Remark 1 for an explanation why nonce variables are used for even those nonces that
are sent by the adversary.

The main steps of proving agreement from the responder’s view are the following:

∃n1s1s3RespB
NSL ∧ Only(RespB

NSL)[A/Q1, n1, N2, s1, r2, s3]

implies by the 1st nonce verification axiom that

∃m3m4(B sends {n1, N2, B}r2
A ; A receives m3; A sends m4;B receives {N2}s3

B ∧
∧{n1, N2, B}r2

A ⊆A m3 ∧ N2 ⊆ m4)).

Then from this together with ∃Q1n2s2Honest(InitANSL)[Q1, N1, n2, r1, s2, r3] it follows that

{n1, N2, B}r2
A ⊆A {N1, n2, Q1}s2

A .

From this, using the term axioms (f), (i) and (k), we get that {N1, n2, Q1}s2
A = {n1, N2, B}r2

A ,
and then from (d) and (e) that n1 = N1, n2 = N2, Q1 = B. Then with a similar argument
{N1, A}r1

B = {n1, A}s1
B and {n2}r3

B = {N2}s3
B are also proven, from which finally the com-

pleted initiator’s role, InitANSL[B,N1, N2, r1, r2, r3] follows. That is, the initiator also finished
the protocol and the values agree.

3 Computational Semantics

3.1 Computational Asymmetric Encryption Schemes

The fundamental objects of the computational world are strings, strings = {0, 1}∗, and families
of probability distributions over strings. These families are indexed by a security parameter η ∈
param := {1}∗ ≡ N (which can be roughly understood as key-length).

Definition 2 (Negligible Function). A function f : N → R is said to be negligible, if for any
c > 0, there is an nc ∈ N such that |f(η)| ≤ η−c whenever η ≥ nc.

Pairing is an injective pairing function [·, ·] : strings×strings → strings. We assume that chang-
ing a bit string in any of the argument to another bit string of the same length does not influence
the length of the output of the pairing. An encryption scheme is a triple of algorithms (K, E ,D)
with key generation K, encryption E and decryption D. Let plaintexts, ciphertexts, publickey and
secretkey be nonempty subsets of strings. The set coins is some probability field of (possibly
infinite) bit-strings that stands for coin-tossing, i.e. feeds randomness into the Turing-machines
realizing the algorithms.

Definition 3 (Encryption Scheme). A computational asymmetric encryption scheme is a triple
of algorithms E = (K, E ,D) where:

– K : param×coins → publickey×secretkey is a key-generation algorithm with param = {1}∗,
– E : publickey × plaintexts × coins → ciphertexts ∪ {⊥} is an encryption algorithm, and
– D : secretkey × strings → plaintexts ∪ {⊥} is such that for all (e, d) ∈ publickey × secretkey

and c ∈ coins

D(d, E(e,m, c)) = m for all m ∈ plaintexts and (e, d) output of the key generation.



All these algorithms are computable in polynomial time with respect to the length of their input.

In this paper, we assume that the encryption scheme satisfies adaptive chosen ciphertext secu-
rity (CCA-2) defined the following way:

Definition 4 (Adaptive Chosen Ciphertext Security). A computational public-key encryption
scheme E = (K, E ,D) provides indistinguishability under the adaptive chosen-ciphertext attack if
for all PPT adversaries A and for all sufficiently large security parameter η:

|Pr[ (e, d) ←− K(1η); b ←− {0, 1} ;
m0,m1 ←− AD1(·)(1η, e);
c ←− E(e,mb);
g ←− AD2(·)(1η, e, c) :
b = g ] − 1

2 | ≤ neg (η)

The oracle D1(x) returns D(d, x), and D2(x) returns D(d, x) if x ̸= c and returns ⊥ otherwise.
The adversary is assumed to keep state between the two invocations. It is required that m0 and m1

be of the same length. The probability includes all instances of randomness: key generation, the
choices of the adversary, the choice of b, the encryption.

In the above definition, what the brackets of the probability contains, is a commonly used short-
hand for the following game: First a public key-private key pair is generated on input 1η, as well
as a random bit b with probabilities 1/2 – 1/2. Then, the adversary is given the public key, and a
decryption oracle, which it can invoke as many times as wished, and at the end it comes up with a
pair of bit strings m0, m1 of the same length, which it hands to an encryption oracle. Out of these
two messages, the oracle encrypts the one determined by the initial choice of random bit b, and
hands the ciphertext back to the adversary. The adversary can further invoke the decryption oracle
(which decrypts everything except for the ciphertext computed by the encryption oracle). At the
end, the adversary has to make a good guess for b. This guess is g, and the adversary wins if the
probability of making a good guess significantly differs from 1/2.

It was shown in [9] that the above definition is equivalent with another that seems stricter at
first, namely, when an n-tuple of encryption and decryption oracles are given, each with separate
encryption and decryption keys, but using the same bit b to choose from the submitted plaintexts.
The adversary is allowed to invoke the oracles in any order but it cannot submit a message that
was received from an encryption oracle to the corresponding decryption oracle.

3.2 Filtrations and Stopping Times

In the following, we discuss the mathematical objects that we use to represent a computational
execution of a protocol. Our plan is to define a computational semantics, show that the syntactic
axioms hold if the encryption scheme is CCA-2 secure, and, as a result, if the query-form (or
anything else) is provable in the syntax, it must be true in any computational model.

First, since probabilities and complexity are involved, we need a probability space for each
value of the security parameter. Since time plays an important role in the execution, what we need
is the probability space for a stochastic process. For the presentation here, we limit ourselves to
finite probability spaces as explaining the notion of measurability and stochastic processes is much
simpler this way, but for anyone familiar with these notions in infinite spaces it is near to trivial to
generalize the method to allowing infinite steps (but polynomial expected runtime). So, here we
assume that for each security parameter, there is a maximum number of execution steps nη. The
following notions that we introduce are standard in probability theory.



We will denote the finite probability space for an execution of a protocol with security pa-
rameter η by Ωη, subsets of which are called events. Let Fη denote the set of all subsets of Ωη

(including the empty set). A subset containing only one element is called an elementary event. The
set Ωη is meant to include all randomness of an execution of the protocol. A probability measure
pη assigns a probability to each subset such that it is additive with respect to disjoint unions of sets
(so it is enough to assign a probability to each element of Ωη , then the probability of any subset
can be computed). When it is clear which probability space we are talking about, we will just use
the notation Pr.

In order to describe what randomness was carried out until step i ∈ {0, 1, ..., nη}, we assign
a subset Fη

i ⊆ Fη to each i, such that Fη
i is closed under union and intersection, and includes ∅

and Ωη, and Fη
i ⊆ Fη

i+1. We also assume that Fη
nη = Fη , that is, Ω does not include information

irrelevant to the protocol execution. The set {Fη
i }nη

i=1 is called filtration. Since everything is finite,
Fη

i is atomistic, that is, each element of it can be obtained as a union of disjoint, minimal (with
respect to inclusion) nonempty elements. The minimal nonempty elements are called atoms. We
introduce the notation

Pr = {(Ωη, {Fη
i }

nη

i=0, p
η)}η∈param.

We included Fη
0 to allow some initial randomness such as key generation. A discrete random

variable on Ωη is a function on Ωη taking some discrete value. Since Fη
i contains the events

determined until step i, a random variable gη depends only on the randomness until i exactly if
gη is constant on the atoms of Fη

i ; this is the same as saying that for any possible value c, the
set [gη = c] := {ω | gη(ω) = c} is an element of Fη

i . In this case, we say that gη is measurable
with respect to Fη

i . We will, however need a somewhat more complex dependence-notion. We will
need to consider random variables that are determined by the randomness until step i1 on certain
random paths, but until step i2 on other paths, and possibly something else on further paths. For
this, we have to first consider a function Jη : Ωη → {0, 1, ..., nη} that tells us which time step to
consider on each ω. This function should only depend on the past, so for each i ∈ {0, 1, ..., nη},
we require that the set [Jη = i] ∈ Fη

i . Such a function is called stopping time. The events that
have occurred until the stopping time Jη are contained in

Fη
J := {S | S ⊆ Ωη, and for all i = 0, 1, ..., nη, S ∩ [Jη = i] ∈ Fη

i }.

Then, a random variable fη depends only on the events until the stopping time Jη iff for each c
in its range, [fη = c] ∈ Fη

J . Furthermore, a random variable hη on Ωη is said to be independent
of what happened until Jη iff for any S ∈ Fη

J and a c possible value of hη , Pr([hη = c] ∩ S) =
Pr([hη = c]) Pr(S). Finally, it is easy to see that for each random variable fη , there is a stopping
time Jη

f such that fη is measurable with respect to Fη
Jf

, and Jη
f is minimal in the sense that fη is

not measurable with respect to any other Fη
J if there is an ω such that Jη(ω) < Jη

f (ω).

Example 3. Let coins be tossed three times, one after the other. Then Ω = {(a, b, c) | a, b, c =
0, 1}. Let (1, ·, ·) := {(1, b, c) | b, c = 0, 1}. (0, ·, ·), etc. are defined analogously. At step i = 1,
the outcome of the first coin-tossing becomes known. So, F1 = {∅, (0, ·, ·), (1, ·, ·), Ω}. At step
i = 2, the outcome of the second coin becomes known too, therefore F2, besides ∅ and Ω, contains
(0, 0, ·), (0, 1, ·), (1, 0, ·) and (1, 1, ·) as atoms, and all possible unions of these. F3 is all subsets. A
function g that is measurable with respect to F1, is constant on (0, ·, ·) and on (1, ·, ·), that is, g only
depends on the outcome of the first coin tossing, but not the rest. Similarly, an f measurable on
F2, is constant on (0, 0, ·), on (0, 1, ·), on (1, 0, ·) and on (1, 1, ·). A stopping time is for example
the J that equals the position of the first 1, or 3 if there is never 1: J( (a1, a2, a3) ) = i if ai =
1 and ak = 0 for k < i, and J( (a1, a2, a3) ) = 3 if ak = 0 for all k = 1, 2, 3. The atoms of FJ

are (1, ·, ·), (0, 1, ·), {(0, 0, 1)} and {(0, 0, 0)}.



We will also have to assume that the stopping times are such that they are polynomially decidable,
that is, in the execution of a PPT algorithm, the computation of value of a stopping time on an
execution trace should not destroy the polynomial bound. This is not really a restriction as in
case of security properties, stopping times are just decided simply by the position of the protocol
execution, carrying out some decryptions, and matching values.

3.3 Stochastic Model for the Computational Execution of BPL

For each value of the security parameter, an execution of the protocol involves some princi-
pals. Each principal has a distinct name, a bit-string not longer than the upper bound nη . Each
principal generates an encryption-key, decryption-key pair at the initialization. Hence, if Pr =
{(Ωη, {Fη

i }nη

i=0, p
η)}η∈param is the stochastic space of the execution of the protocol, let Pη be a set

of (polynomially bounded number of) elements of the form (Aη, (eη
A, dη

A)) where Aη ∈ {0, 1}nη

,
and (eη

A, dη
A) is a pair of probability distributions on Ωη measurable with respect to Fη

0 such that
Pr[ω : (eη

A(ω), dη
A(ω)) ̸∈ Range(K(η, ·))] is a negligible function of η. We assume that if A = B,

then (eη
A, dη

A) = (eη
B , dη

B). The set {Pη}η∈param describes all the principals, corrupted and uncor-
rupted, that take part in the execution at a given security parameter, along with their public and
secret keys. Let P = {Pη}η∈param.

For nonces, we choose the following definition. Since CCA-2 security is length-revealing, we
have to assume that nonces are always of some fixed length mη for each security parameter η. We
assume mη is at most polynomial in η, and 1/2mη

is negligible. Let N be a set of elements of
the form {Nη}η∈param where Nη : Ωη → {0, 1}mη ∪ {⊥} (taking the value ⊥ means Nη has
no bit-string value on that particular execution). This set describes the nonces that were generated
during the execution of the protocol. The nonces generated by honest participants must have some
fixed distribution (uniform for example) over set of bit strings with the given length and also have
to be independent of what happened earlier when they are being generated, but we will require this
later in the definition of interpretation of constants and at the definition of the satisfaction of the
formula A generates N .

Let R be a set of elements of the form R = {Rη}η∈param where Rη : Ωη → coins ∪ {⊥}.
Messages: Let the set of messages be M elements of the form M = {Mη}η∈param, where

Mη : Ωη → {0, 1}nη ∪ {⊥}. For any two messages, M1, M2, we will denote that M1 ≈ M2 iff
pη[ω : M1(ω) ̸= M2(ω)] is a negligible function of η. This way, ≈ is an equivalence notion on
the set of messages. Let DM := M/≈, let DN := N/≈ ⊂ DM , and let

DP := {A ∈ M : (Aη, (eη
A, dη

A)) ∈ Pη for some (eη
A, dη

A)}/≈ ⊂ DM

We have to define what we mean by a computational pairing and encryption. For any X,X1, X2 ∈
DM , we write that X =C 〈X1, X2〉, if for some (hence for all) M1 = {Mη

1 }η∈param ∈ X1 and
M2 = {Mη

2 }η∈param ∈ X2, the ensemble of random variables {ω 7→ [Mη
1 (ω),Mη

2 (ω)]}η∈param
is an element of X . Further, if A ∈ P , and R ∈ R, then we will write that X =C {X1}R

A if
for any (hence for all) M1 = {Mη

1 }η∈param ∈ X1, the ensemble of random variables {ω 7→
E(eη

A(ω),Mη
1 (ω), R(ω))}η∈param is an element of X . If the value of any of the input distributions

is ⊥ then we take the output to be ⊥ as well. This way, we can consider an element of the free
term algebra T (DM ) over DM as an element of DM . Let ⊆T (DM ) denote the subterm relation on
T (DM ). This generates a subterm relation ⊆C on DM by defining X1 ⊆C X2 to hold iff there
is an element X ∈ T (DM ) such that X1 ⊆T (DM ) X and X2 =C X . Let for P ∈ DP , let the
notions analogous to ⊆P (⊆¬P respectively) be denoted by ⊆T (DM )

P and ⊆C
P (⊆T (DM )

¬P and ⊆C
¬P

respectively).



For any set of subsets Dη ∈ Fη , D = {Dη}η∈η with non-negligible pη(Dη), we say that
for P ∈ DP , X1, X2 ∈ DM , X1 = X2 on D if there are M1 = {Mη

1 }η∈param ∈ X1 and
M2 = {Mη

2 }η∈param ∈ X2 with Mη
1 (ω) = Mη

2 (ω) for all ω ∈ Dη . We say that X1 ⊆C X2

(or, X1 ⊆C
(¬)P X2) on D iff there is an element X ∈ T (DM ) such that X1 ⊆T (DM ) X (or,

X1 ⊆T (DM )
(¬)P X) and X2 =C X on D.

Execution trace: The execution trace is defined as Tr = {Trη}η∈param where Trη : ω 7→
Trη(ω) with either

Trη(ω) = P η
1 (ω) actsη

1(ω) sη
1(ω); ...;P η

nη(ω)(ω) actsη
nη(ω)(ω) sη

nη(ω)(ω)

where for each η security parameter, ω ∈ Ωη, nη(ω) is a natural number less than nη, P η
i (ω) ∈

DP , actsη
i (ω) is one of generates, sends, receives and sη

i (ω) ∈ {0, 1}∗; or Trη(ω) = ⊥
with nη(ω) = 0 meaning that no generate, send or receive action happened. For each η, ω, and
i ∈ {1, ..., nη}, let

Trη
i (ω) =

{
P η

i (ω) actsη
i (ω) sη

i (ω) if i ∈ {1, ..., nη(ω)}
⊥ otherwise

We also require that for each i there is a stopping time Ji with Jj(ω) < Jj+1(ω) for all ω and j
such that Trη

i is measurable with respect to Fη
Ji

for all i. Moreover, we require that any of Tr is
PPT computable from the earlier ones.

3.4 Computational Semantics

We now explain how to give computational semantics to the syntax, and what it means that a
formula of the syntax is true in the semantics. For a given security parameter, an execution is
played by a number of participants.

Assumptions. In a particular execution, we assume that the principals corresponding to names
in the syntax (that is, they correspond to elements in Cname) are regular (non-corrupted). We assume
that these participants generate their keys and encrypt correctly (that is, the keys are properly dis-
tributed, and also r is properly randomized) with a CCA-2 encryption scheme, and never use their
private keys in any computation except for decryption. For other participants (possibly corrupted),
we do not assume this. (Encrypting correctly is essential to able to prove the nonce verification
axioms.) We further assume that pairing of any two messages differs from any nonce and from
any principal name on sets of non-negligible probability (this can be achieved by tagging; in any
case, we will call this tagging condition), and that honestly generated nonces have some fixed dis-
tribution over a set of bit strings with fixed length such that their collision probability is negligible
in η. The network is completely controlled by an adversary. The sent and received bit strings are
recorded in a trace in the order they happen. Freshly generated bit-strings produced by the regular
participants are also recorded. The combined algorithms of the participants and the adversary are
assumed to be probabilistic polynomial time. We also assume that at one time only one action
happens.

Such a situation, with the definitions of the previous section, produces a computational trace
structure associated with the execution of the form

M = (Π, E, [·, ·],N0,Pr,P, Tr, ΦC , D),

where D = {Dη}η∈η, Dη ∈ Fη a sequence of subsets where we focus our attention with pη(Dη)
non-negligible; N0 = {N η

0 }η is the distribution of correctly generated nonces; ΦC is a one-to-
one function on Cname ∪ Cnonce ∪ Ccoin such that (i) ΦC(A) ∈ DP for any A ∈ Cname such that



(eη
ΦC(A), d

η
ΦC(A)) is measurable with respect to F0 and has the correct key distribution, and for

different constants are independent of each other; (ii) ΦC(N) ∈ DN for any N ∈ Cnonce and
for different constants the interpretations are not equal on D, and we further require that over
{0, 1}mη

, ΦC(N)η has the distribution (up to negligible probability) fixed for nonces (i.e. N η
0 , e.g.

uniform), and ΦC(N)η is independent of Fη
JΦC(N)−1 for all η on the condition that [ΦC(N)η ̸= ⊥].

(More precisely, there is an N ′ ∈ ΦC(N) such that N ′η is independent of Fη
JN′−1 on the condition

that [N ′η ̸= ⊥]. For Jη
f see the paragraph before Example 3); (iii) ΦC(r) ∈ R for any r ∈ Ccoin,

and for different constants the interpretations are not equal on D, and we further require that
over coins, Φ(r)η has the distribution fixed for coins (e.g. uniform), and ΦC(r)η is independent of
Fη

JΦC(r)−1 for all η on the condition that [ΦC(r)η ̸= ⊥].

An extension of ΦC to evaluation of free variables is a function Φ that is the same on constants
as ΦC , and for variables Q, n, m, s of sort name, nonce, message, and coin respectively, Φ(Q) ∈
DP , Φ(n) ∈ DN , Φ(m) ∈ DM , and Φ(s) ∈ R hold. Let Φ̄ be defined to be the same as Φ on
constants and variables, and let’s extend the definition of Φ̄ to any term such that it takes values in
T (DM ) by the rules (i) Φ̄(〈t1, t2〉) = 〈Φ̄(t1), Φ̄(t2)〉 ; (ii) Φ̄({t}r

P ) = {Φ̄(t)}Φ(r)
Φ(P ). Finally, for any

t term, let Φ(t) ∈ DM be defined by Φ(t) =C Φ̄(t).
We say that an ensemble of random variables M = {Mη}η∈param such that Mη is defined

on Dη is a realization of the term t through Φ on D, which we denote M ≪Φ,D t, if there is
an M1 ∈ Φ(t) with Mη

1 (ω) = Mη(ω) ̸= ⊥ for all ω ∈ Dη; and if also t = {t′}r
P , r being a

constant, then we further require that there is an M ′ ∈ Φ(t′) such that M ′ ≪Φ,D t′ and Φ(M ′) is
measurable with respect to Fη

Jr−1.
In the following, we give the interpretation of BPL. Note, that the interpretation of conjunction,

disjunction, negation and conclusion are defined in the most standard manner. We first define when
a formula ϕ is satisfied by Φ (remember, D = {Dη}η∈η with Dη ∈ Fη from M):

– For any terms t1, t2, ϕ ≡ t1 = t2 is satisfied by Φ, iff Φ(t1) = Φ(t2) on D, ϕ ≡ t1 ⊆ t2
is satisfied by Φ iff Φ(t1) ⊆C Φ(t2) on D, ϕ ≡ t1 ⊆(¬)P t2 is satisfied by Φ on D iff
Φ(t1) ⊆C

(¬)Φ(P ) Φ(t2) on D.

– For any terms t1, t2, t3, |t1 ⊆ t2 ⊆ t3| is satisfied by Φ, iff there are X1, X2, X3 ∈ T (DM )
such that Φ(t1) =C X1, Φ(t2) =C X2 and Φ(t3) =C X3 on D, such that the bottom of the
parsing tree of Xi agrees with the parsing tree of ti, and the interpretation of constants and
variables in ti is given on D by the sub-trees rooted in the corresponding positions in Xi, and
further that also |X1 ⊆T (DM ) X2 ⊆T (DM ) X3| holds where this is defined the same way on
T (DM ) as we defined it on Ā, that is, X1 occurs in X3 only within X2.

– For any term u and acts = sends/receives, ϕ ≡ P acts u is satisfied by Φ iff there is a
polynomially decidable stopping time Jη such that apart from sets of negligible probability,
Trη

Jη(ω)(ω) is of the form Aη acts Mη(ω) for ω ∈ Dη where M := {Mη}η∈param ≪Φ,D u

and A := {Aη}η∈param ≪Φ,D P . We also require that the interpretation of every constant and
variable in u be measurable with respect to Fη

J . We will denote this as TrJ ≪Φ,D P acts u.
– If acts = generates then the u above is a nonce ν, and so M := {Mη}η∈param ≪Φ,D u

means there is an N ∈ Φ(ν) such that Mη|Dη ≈ Nη|Dη in this case, and we further require
that over {0, 1}mη

, Nη has the distribution fixed for nonces (i.e. N η
0 ), and Nη is independent

of Fη
J−1 for all η on the condition that [N ̸= ⊥].

– ϕ ≡ β1, ..., βn sequence of actions is satisfied by Φ if each of βk (k = 1, ..., n) is satisfied by
Φ, and if Jk is the stopping time belonging to βk, then we require that Jk < Jl on D whenever
k < l (that is, for each η ∈ param and ω ∈ Dη, Jη

k (ω) < Jη
l (ω).



– For any formulas ϕ, ϕ1, ϕ2, ¬ϕ is satisfied by Φ iff ϕ is not satisfied by Φ; ϕ1 ∨ϕ2 is satisfied
by Φ iff ϕ1 is satisfied by Φ or ϕ2 is satisfied by Φ; ϕ1 ∧ ϕ2 is satisfied by Φ iff ϕ1 is satisfied
by Φ and ϕ2 is also satisfied by Φ. ϕ1 → ϕ2 is satisfied by Φ iff ¬ϕ1 ∨ ϕ2 is satisfied by Φ.

– If ϕ is a formula, m a variable, then ∀mϕ (or ∃mϕ, resp.) is satisfied by Φ iff ϕ is satisfied by
each (or some, resp.) Φ′ extension of ΦC when Φ′ only differs from Φ on m.

A formula ϕ is true in the structure M, iff ϕ is satisfied by every Φ extension of ΦC .
If in a structure, the Basic Protocol Logic axioms are true (in which case the structure is called

model), then by standard arguments of first order logic, it follows that everything provable in the
syntax is true in the model. In particular, if the query form is provable in the syntax, then it must
be true in any model. We now turn our attention to whether the axioms are satisfied by a structure.

Truth of the Term axioms.

(a) These axioms are true since if terms are equal in the free algebra Ā, then their interpretations
are also equal, no matter how Φ is extended to variables. Further, if t ⊆ t′ holds in the free
algebra, then the way we receive t′ from t by pairing and encryptions carries over to the
computational world, no matter how Φ is evaluated on variables. Same is true for ⊆P . As for
⊆¬Q, it is made sure that in the free algebra t can be received from t′ without encrypting with
the key of the substitution for Q as long as it is not equal the P ’s. Since the explicit inclusion
in the free algebra carries over to the interpretation, the formula must be satisfied.

(b) These axioms hold as computational equality is also symmetric, reflexive and transitive. Fur-
ther, subterm relation is also transitive for the interpretations.

(c) Almost the same as (b). Equality implies computation subterm relation by definition of com-
putational subterm. Subterm reachable using only decryption with respect to the private key
of a specific principal (or other than a specific principal) is also clearly a general subterm.

(d) If the interpretations of {t1}s
Q and {t2}s′

Q are computationally equal up to negligible prob-
ability, then the interpretations of t1 and t2 must also be equal up to negligible probability
as the decryptions of both sides with the decryption key of Q give the interpretations of the
encrypted terms: Φ(t1) = D(dΦ(Q), Φ({t1}s

Q)) and Φ(t2) = D(dΦ(Q), Φ({t2}s′

Q)) and the
right-hand sides are equal up to negligible probability.

(e) Soundness of this axiom follows as we supposed that computational pairing is one-to-one.
(f) These follow from the tagging condition as tagging ensures that encryption is never confused

with pairs, nonces, names.
(g) Follows from tagging.
(h) Soundness of the first formula follows as if t ⊆ 〈t1, t2〉 is satisfied, then either the interpreta-

tions of the two sides are equal (up to negligible probability) and hence t = 〈t1, t2〉 is satisfied,
or (by definition of satisfaction of t ⊆ 〈t1, t2〉) the interpretation of 〈t1, t2〉 can be received
from the interpretation of t via encryptions and pairing, of which the last has to be pairing
because the tags have to match; then by soundness of (e), it follows that the paired items must
in fact be interpretations of t1 and t2, which implies that either of the interpretations of t1 or
of t2 was received from the interpretation of t via pairing and encryptions, which means that
either t ⊆ t1 or t ⊆ t2 is satisfied, and that proofs the soundness of this formula. As for the
second formula, if t1 ⊆ {t2}s

Q is satisfied, then either the interpretations of the two sides are
equal, or the interpretation of {t2}s

Q can be received from the interpretation of t1 via encryp-
tions and pairing, of which the last has to be encryption because the tags have to match, and
so soundness follows.

(i) Proof for the first and second formulas are the same as in (h), For the third, if the premise holds,
then the interpretation of {t2}s

P can be received from the interpretation of t1 with pairing with



others and encrypting only with the encryption key of P . Therefore there is some t and s′

such that t1 ⊆P t ∧ {t}s′

P = {t2}s
P is satisfied. But then from (d) it follows that t = t2 and so

t1 ⊆P t2.
(j) Similar to (h) and (i).
(k) Also follows from tagging.
(l) This follows trivially from the interpretation and that we assumed that the interpretations of

constants are distinguishable. So if |t1 ⊆Ā t2 ⊆Ā t3|[M/m] holds for all M vector of con-
stans of appropriate sort, then with X1 = Φ̄(t1), X2 = Φ̄(t2) and X3 = Φ̄(t3), the relation
|X1 ⊆T (DM ) X2 ⊆T (DM ) X3| must also hold as the parsing tree of Φ̄(ti) is the same as that
of ti, and further, for differing constants in ti the interpretations are assumed to differ, and
although the interpretations of differing variables may coincide, the relation in T (DM ) must
hold as we assumed that |t1 ⊆Ā t2 ⊆Ā t3|[M/m] holds for all M vector of constans of
appropriate sort (hence also replacement by identical constants).

Truth of the Ordering axiom. Suppose that there is an extension Φ and a domain D such that
the formula Q2 sends m; Q1 generates n is satisfied on D with non-negligible probability as well
as the formula n ⊆ m. Then, there are stopping times Jη

1 , Jη
2 such that TrJ1 ≪Φ,D Q sends m,

and TrJ2 ≪Φ,D Q generates n, and J1 < J2. Then, TrJ1 ≪Φ,D Q sends m implies that there
is M ≪Φ,D m such that Mη is measurable with respect to Fη

J1
and since n ⊆ m is satisfied,

some N ∈ Φ(n) can be obtained as a series of decryptions and breaking up pairs from M . Since
there is no new randomness used there, Nη only depends on the randomness until J1, so Nη

is measurable with respect to Fη
J1

. But, TrJ2 ≪Φ,D Q generates n implies that Φ(n) has an
element N ′η measurable with respect to Fη

J2
and independent of Fη

J2−1 on [N ′η ̸= ⊥], and hence
independent of Fη

J1
and of Nη on [N ′η ̸= ⊥]. So, N and N ′ only differ up to negligible probability,

but Nη and N ′η are independent for all η, which is possible only if Pr[N ′η ̸= ⊥] is negligible.
That means D has negligible probability, a contradiction.

Truth of the Nonce verification axioms. In order to show that the axioms are satisfied, we use
the assumption that regular participants (the ones represented by constants) encrypt with a CCA-2
secure encryption scheme. For the first nonce-verification axiom, suppose there is a Φ and non-
negligible D such that the premise of the axioms are satisfied by Φ on D, but the conclusion is not.
Then, if the conclusion is not satisfied, that means that either A never sends the nonce out (which
clearly cannot happen with non-negligible probability as later Q receives it and the probability of
collision of nonces is negligible), or {m6}r

B does not go through B between A sending it and Q
receiving it with non-negligible probability. The premise however says that n1 shows up in m5

later in another form, and it can be recovered from there up to negligible probability via a series
of de-coupling and decryption such that the key of B does not have to be used. We have to show
that a PPT algorithm can be constructed that breaks CCA-2 security.

First observe, that the satisfaction of ∀m7(A sends m7 ∧ n1 ⊆ m7 → |n1 ⊆ {m6}r
B ⊆ m7|)

means that B indeed sent n1 out only in the form of {m6}r
B . The reason is that if, according

to the satisfaction of this formula, there are X1, X2, X3 ∈ T (DM ) such that Φ(n1) =C X1,
Φ({m6}r

B) =C X2 and Φ(m7) =C X3 on D so that X1 occurs in X3, but only within X2,
then there cannot be any way to create X3 at the point when A sends it first out other than from
Φ({m6}r

B), because otherwise without the decryption of Φ({m6}r
B) we could access n1 contra-

dicting the CCA-2 security of Φ({m6}r
B). Why is this encryption CCA-2? Because at the first time

when n1 is sent out, r had to be created by A, and hence never revealed to anyone. The fact that
we assume in the interpretation of {m6}r

B that r has to be independent of what happened earlier
and that m6 has to be part of the earlier history, ensures that this term is not confused by any other
encryption that was sent out by A.



The algorithm that breaks CCA-2 security is simply the protocol execution itself with the
following modifications:

1. The encryption-key decryption-key pair of B is generated by the challenger in the CCA-2
game. The encryption key is accessible to the algorithm, that is, the protocol execution uses it
every time encryption with the public key of B is necessary.

2. Since the algorithm cannot use the decryption-key of B known only to the challenger, the de-
cryption oracle (that the algorithm may access according to the definition of CCA-2 security)
does all decryptions that occur in the protocol execution using the private key dB , except for
the decryption of the interpretation of {m6}r

B .
3. The algorithm generates two samples of n1 when (indicated by the stopping time from the

satisfaction of the formula; notice, that we need to know in polynomial time where it is) the
protocol execution samples n1.

4. From this on, run the protocol parallel with the two values of n1. Hence, when (again, given
by the corresponding stopping time) the protocol execution is to produce m6, compute two
samples of the realization of m6 using the two samples of n1 and using the same samples for
the other parts of m6.

5. Submit to the encryption oracle of the CCA-2 game the pair of samples of m6, and use the
cipher that it outputs in both of the parallel processes whenever {m6}r

B occurs again (that is,
if the protocol execution is defined to use it).

6. If one of the parallel processes happens to crash as that process is running with the wrong
encryption, then output the value of b that corresponds the other process.

7. If the sample for {m6}r
B goes through B in either of the parallel processes, terminate, and

output a random guess of b. If not, continue until the Q receives the sample for m5 (that is,
until the value of the stopping time indicating the point of reception of m5).

8. Recover the sample for n1 via de-coupling and decryption. Since m5 contains m1 not en-
crypted by the key of B, it can be recovered. The bit string hence obtained is the one (out of
the two generated for n1) that was in the plaintext encrypted by the oracle, so the bit value b
of the game can be determined.

9. If any one of 3., 4., or 6. does not happen on an execution trace then proceed to the end and
output a random guess of b.

10. If the premise of the axiom is satisfied, then, of course n1 had to be sent out by A in some
message m2 before Q received it, otherwise whoever Q received it from could only guess n1,
but guessing it correctly has only negligible probability as we assumed.

11. If the premise of the axiom is satisfied but rest of the conclusion is not satisfied, that is,
{m6}r

B does not go through B, but n1 turns up unencrypted by the key of B, then, since
this algorithm determines the value of b in all these cases, the algorithm has probability non-
negligibly different from 1/2 of winning the CCA-2 game to break {m6}r

B as D is non-
negligible.

In order to show the validity of the second nonce-verification axiom, we have to use the modi-
fied version of CCA-2 (equivalent to the original) when there are two encryption - decryption pairs
of oracles, each corresponding to independently generated encryption key - decryption key pairs.
The algorithm then is the following:

1. The encryption-key decryption-key pairs of B and C are generated by the challenger in the
CCA-2 game. The encryption keys are accessible to the algorithm.

2. The decryption oracles (that the algorithm may access according to the modified definition of
CCA-2 security) do all decryptions with the private keys dB and dC .

3. The algorithm generates two samples of n1 when the protocol execution samples n1.



4. From this on, run the protocol parallel with the two values of n1. Hence, when the protocol
execution is to produce {m6}r1

B , compute two samples of the realization of m6 using the two
samples of n1 and using the same samples for the other parts of m6.

5. Submit to the first encryption oracle of the CCA-2 game the pairs of samples of m6, and use
the cipher that it outputs in both of the parallel processes whenever {m6}r1

B occurs again (that
is, if the protocol execution is defined to use it).

6. Skip the step when B decrypts {m6}r1
B .

7. When {m8}r2
C is constructed, compute two samples of m8 just as in the case of m6. Stop if the

samples have different length, otherwise submit the results to the second encryption oracle.
8. If one of the parallel processes happens to crash as that process is running with the wrong

encryption, then output the value of b that corresponds the other process.
9. Continue until C receives the sample for m5.

10. Recover the sample for n1 via de-coupling and decryption. The bit string hence obtained is
the one that was in the plaintext encrypted by the oracles, so the bit value b of the game can
be determined.

11. If any one of 2., 3., 6., or 7. does not happen on an execution trace then proceed to the end and
output a random guess of b. This is again PPT algorithm given that the protocol execution was
PPT, so it breaks CCA-2 security.

Soundness Since the axioms are true in the structure M, by a standard argument of first order
logic, the following theorem is true:

Theorem 1. With our assumptions on the execution of the protocol, if the associated computa-
tional trace structure is M = (Π, E, [·, ·],N0,Pr,P, Tr, ΦC , D), then, if a formula (the query
form in particular) is provable in the syntax with first-order predicate logic and axioms (I), (II),
(III), then it is true in M.

Proof. We have showed that the term axioms and non-logical axioms of BPL are true in the model.
It is routine to check that all the logical axioms and logical inference rules of first order logic are
also true in the model, because we followed the usual first-order logical operations of composed
formulas in the interpretation. Hence the theorem holds.

3.5 Our semantics and Computational PCL

We would like to point out some aspects where problems arise in case of the treatment of Datta et
al. and how they are related to our treatment. We emphasize that we do not claim that these issues
are impossible to be fixed in their framework, we only indicate what our answers are to them.

1. Their treatment is non-deterministic, that is, they rely on counting equiprobable traces. Un-
equal probabilities may be dealt with by counting a trace more then once (although a priori it
is not quite clear whether this will lead to problems), but their method certainly only applies to
executions when the number of possible computational traces for a given security parameter is fi-
nite. Since some formulations of probabilistic polynomial time processes are not limited to finitely
many traces (only the expected termination time must be polynomial), it is better not to exclude
infinite number of traces. Our method works for infinite number of traces and arbitrary probability
distributions. Removing the bound nη from the length of executions is not a difficult step (change
the finite sequence of the filtration to an infinite one, and the definition of measurability to the
standard one for infinite spaces) in our framework, only the presentation of the definition of mea-
surability is more involved in this case, that is why we chose to stick to the bound. It is perhaps
worthwhile to note that although manipulations with expected polynomial time algorithms may



lead out of their realm, the proof of the nonce-verification axioms only involve minor modifica-
tions (no compositions of two expected PT algorithms) of the expected polynomial-time protocol
execution that should not lead out of the realm.

2. As Datta et al. derive the validity of a formula in the model from validity of the formula on
individual traces, they have to make sure that there are not too many accidental coincidences. This
results in a weaker set of syntactic axioms then what would otherwise be possible in our method.
For example, they postulate that ¬Send(X̂, t)[b]X¬Send(X̂, t) is an axiom whenever for all σ
evaluation of variables by bit-strings, σ(b) ̸= σ(Send(X̂, t)). Let us now not be bothered by the
problem that they define a syntactic axiom using the semantics. Here, X̂ is a principle, t is a term,
[b]X is an action b carried out by principal X̂ in thread X assuming also that nothing else is carried
out. In other words, it is an axiom that if X̂ did not send t before action b, then it did not send it
even after action b as long as no σ evaluates b and Send(X̂, t) the same way. However, if there is
even one coincidence in their evaluations, that prevents the axiom. We think this is an unneces-
sary restriction. As long as the probability distributions are different (up to negligibility) for any
computational interpretation of b and Send(X̂, t), we can include ¬Send(X̂, t)[b]X¬Send(X̂, t)
in our axioms. We did not introduce modal formulas here in the syntax, and it is our work in
progress to extend our approach to PCL. As we keep track of the actual probability distributions
and correlations, it should be no problem to define the semantics of modal formulas so that these
axioms hold as long as the interpretations (distributions, not bit-strings) of b and Send(X̂, t) are
different up to negligible probability.

3. A further problem, that even makes the soundness proofs of Datta et al. questionable is the
following: They define a formula (e.g. Send(X̂, t)) to be true in the model if it holds on all traces
except for some with negligible probability. They ignore the fact that the position of Send(X̂, t) on
the traces may vary badly from trace to trace, for example, may depend on the future of the trace.
A simple example of such a situation is when on two traces, which coincide up to step t0, say,
Send(X̂, t) is chosen on one trace for t1 < t0, but on the other trace it is chosen somewhere else.
Since the two traces coincide at step t1, if this time is picked on one trace, it must be picked on
the other trace too. Maybe it is possible to prove that if there is a bad choice of the positions then
there is a good choice as well, but we see no indication of such concerns in the papers of Datta et
al. As we suggest to use the standard tool of filtration, according to which random variables have
to be measurable, dependence on the future is taken care of by measurability.

4. Finally, ignoring probability distributions and correlations give rise to pathologies like this
one, putting further doubts at the correctness of their soundness proofs: Suppose that the encryp-
tion scheme is such that for any n1, n2 bit-strings generated randomly as nonces, any public key
bit-string k2 and any random seed r2 for the encryption, there is another public key bit-string
k1 and a random seed r1 such that {n1}r1

k1
= {n2}r2

k2
. This does not contradict CCA-2 secu-

rity. Suppose principal A generates randomly nonce n1, and then principal B receives {n2}r2
k2

from the adversary. In such a case, it will be true according to the semantics of Datta et al., that
∃N∃R∃K.New(A,N) ∧ Receive(B, {N}R

K). This is however pathologic, and is a consequence
of ignoring the fact that k1, if created by the adversary, cannot correlate with n1, which was not
yet sent around. Furthermore, this seems to contradict their axiom (which though does not appear
in their computational PCL papers) saying that FirstSend(X, t, t′) ∧ a(Y, t′′) → Send(X, t′) <
a(Y, t′′) where X ̸= Y and t subterm of t′′ (meaning in our case that the first send action of A
sending N had to occur before B could do anything with N ) in Section 4.7 of[14]. This problem
persists even if such a coincidence cannot be efficiently computed. In our method, we required that
the distribution of keys are measurable with respect to Fη

0 , and generated nonces are independent
of the past, so this anomaly cannot happen as N and K must have independent interpretations. The
reader may be worried that we don’t require that the generated R has to be dependent of N as R



is generated by the adversary or a corrupted participant. It is true that we could introduce another
filtration that indicates the knowledge of the adversary up to a certain time, which may be needed
in a more complex syntax (for example if we allow corrupted participants to generate their keys
sometime in the middle), however, in BPL this is not necessary as this does not result in undesired
coincidences and the proofs work even without this tool.

4 Conclusions

We have given a computational semantics to Basic Protocol Logic that uses stochastic structures,
and showed a soundness theorem. In order to show that the axioms of BPL were true in the se-
mantics, we had to modify BPL as the original axioms were not all computationally sound. We
showed our method on BPL as it is simple enough for a first, concise presentation. As the idea of
making use of the notions from the theory of stochastic processes in the definition of satisfaction
of formulas does not require the special properties of BPL, we believe that it should not be difficult
to adopt this method to a wide range of formal models such as PCL or strand space models.
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A Definition of Only and Honest

Our aimed correctness properties are described in a special form of formulas, called query form.
Let αA[Q, N ,n, r, s] be a role A acts1 t1;A acts2 t2; · · · ;A actsk tk where each actsi (1 ≤ i ≤
k) is one of sends, receives and generates, ti is a term built from nonces in N = {N1, ..., Ng}
and n = {n1, ..., nh} from coins in r = {r1, ..., ri} and s = {s1, ..., sj} and from names A
and Q = {Q1, ..., Ql}. Let αA

≤i denote an initial segment of αA ending with A actsi ti (for
1 ≤ i ≤ k), i.e., αA

≤i ≡ A acts1 t1; · · ·A actsi ti. Let αA
≤0 ≡ A = A.

The query form includes a formalization of principal’s honesty Honest(αA), which is defined
as follows, the intuitive meaning being that A follows the role αA and does nothing else, but it
may not complete it:
Honest(αA)

def≡
W

i∈{0}∪{j | actsj= sends }∪{k} αA
≤i ∧ Only(αA

≤i)

Only(αA) denotes the following formula, whose intuitive meaning is “A performs only αA”.

Only(αA) ≡ ∀n(A generates n → n ∈ Generates(αA)) ∧ ∀m1(A sends m1 → m1 ∈ Sends(αA))
∧∀m2(A receives m2 → m2 ∈ Receives(αA))

Here, Sends(αA) denotes the set {tj | A sends tj ⊆ αA}, and (Receives(αA), Generates(αA)
are defined similarly. Set theoretical notation as m ∈ Sends(αA) (as well as m ∈ Receives(αA)
and m ∈ Generates(αA)) is an abbreviation of a disjunctive form: for example, if Sends(αA) =
{t′1, . . . , t′j}, then m ∈ Sends(αA) denotes the formula (m = t′1)∨(m = t′2)∨· · ·∨(m = t′j). (As
a special case, if Sends(αA) is empty then m ∈ Sends(αA) denotes A ̸= A, that is, impossible.)

Intuitively, each disjunct αA
≤i ∧ Only(αA

≤i) in Honest(αA) represents a historical record of
P ’s actions at each step of his run: the sequence of actions αA

≤i represents A’s performance until
this step, and Only(αA

≤i) represents that A performs only αA
≤i. Only(αA

≤0) means that nothing
was performed.


