
Using a Potential Game for Power Reduction in
Distributed Storage Systems

Koji Hasebe, Takumi Sawada, and Kazuhiko Kato
Department of Computer Science, University of Tsukuba

1-1-1 Tennodai, Tsukuba 305-8573, Japan
hasebe@cs.tsukuba.ac.jp, sawada@osss.cs.tsukuba.ac.jp, kato@cs.tsukuba.ac.jp

Abstract—We present a game-theoretic approach for power
reduction in large-scale distributed storage systems. The key
idea is to use distributed hash tables to dynamically migrate
virtual nodes, thus skewing the workload towards a subset of
physical disks without overloading them. To realize this idea in
an autonomous way (i.e., without any kind of central controller),
virtual nodes are considered to be selfish agents playing a game
in which each node receives a payoff according to the workload
of the disk on which it currently resides. We model this setting
as a potential game, where an increase in the payoff to a virtual
node reduces the power of the system. This game consists of a
pair of global and private utility functions, derived by means
of the Wonderful Life Utility technique. The former function
evaluates the state of the system, and the latter provides criteria
for the migration of each node. The performance of our method is
measured by simulations and a prototype implementation. From
these evaluations, we find that our method reduces the running
time of the disks in active mode by 12.7–18.7%, with an overall
average response time of 50–190 ms.

I. INTRODUCTION

With the advent of cloud computing, power reduction in
datacenters has become a major concern. In particular, as a
high percentage of the total computing system’s energy is
used by data storage systems, there have been a number of
suggestions for reducing the power consumption of massive
storage systems (cf. [1] for a comprehensive survey of this
research area). To reduce power consumption in storage sys-
tems, a commonly observed technique is to skew the workload
(i.e., data accesses) towards a small number of disks, thereby
enabling the others to be in low-power mode. This idea can be
traced back to some prominent early studies, such as MAID
[2] and EERAID [7]; however, when considering datacenter-
scale computing systems, scalability is of major importance.

In this paper, we propose a power-saving method for large-
scale distributed storage systems. As our prime interest is to
realize a higher level of scalability, we investigate autonomic
control to skew data accesses in a storage array without any
kind of central controller. To achieve this objective, we use
distributed hash tables (DHTs) to provide a lookup service
for data accesses (e.g., Chord [14]). Data are stored in virtual
nodes of the underlying DHT, with each node dynamically
migrating over physical nodes (disks) depending on the current
workload of the resident disk. Here, the criteria for migration
are as follows: for each disk, the higher the workload, the
better it is for the system, although overload must be avoided.
In other words, the optimal state is that in which every

disk has as high a workload as possible, while not being
overloaded. This idea was originally introduced in our previous
work [5]. However, in that study, the migration destination
of each virtual node was strictly predetermined in a specific
way, and thus could not migrate freely to another disk that
may yield a better state. Moreover, owing to this restriction,
it was also difficult to change the system configuration by
adding/removing disks (when extending the system or when
node failure occurs), as well as to deal with changes in the
distribution of popularity (i.e., data access frequency).

To overcome the flexibility issue, the key idea is to consider
the virtual nodes as selfish agents, playing a game in which
each of them receives a payoff according to the workload
of the disk on which it currently resides. Here, the payoff
is defined by satisfying certain migration criteria, and every
virtual node can move to any of the neighboring physical disks.
We model this setting as a potential game [9] by introducing
global and private utility functions based on the Wonderful
Life Utility [4], [8] (cf. [11] for an overview of game theory).
In this model, increasing the payoff to any virtual node yields
a better system state with respect to power consumption.

The performance of our method is measured using both
a simulation and a prototype implementation in terms of
the number of active physical nodes, average response time,
and migration cost. In the experiments, we consider various
changes in the environment that were difficult to deal with
in our previous method. From the experiments, we observe
that the number of active physical nodes can be reduced by
12.7–18.7% relative to the configuration without any dynamic
migration. This result indicates that our method effectively
skews the workload while maintaining a preferred response
time (with an overall average of 50–190 ms) by setting suitable
parameters in the utility functions. In addition, the results
confirm that our method improves flexibility.

This paper is organized as follows. Section II discusses
related work, and Section III presents our game-theoretic
model for power-saving. Sections IV and V present evaluations
using simulations and a prototype implementation, respec-
tively. Section VI concludes the paper and presents some ideas
for future work.

II. RELATED WORK

There have been a number of suggestions for power-saving
in storage systems. As explained in the previous section, these



are based on a similar idea, but are classified into the following
categories according to variations in their approach.

The first category, which includes MAID [2] and PDC [12],
focuses on popularity by concentrating popular data on specific
disks. MAID provides specific disks to act as a cache to store
frequently accessed data, thereby reducing accesses to the
other disks. PDC periodically reallocates data in the storage
array according to the latest access frequencies.

The second category uses non-volatile random-access mem-
ory (NVRAM) to extend the standby mode period by caching
data to a write store. A typical example is Pergamum [15],
which uses NVRAM to buffer write accesses and store data
signatures, reducing direct accesses to the disks.

The final category considers redundancy (i.e., data replica-
tion). In DIV [13], original and redundant data are separated
onto different disks, thereby allowing read/write requests to
be concentrated on those disks that contain the original data.
Hibernator [20] applies the idea of PDC to RAID and dynamic
rotations per minute (DRPM) systems. RIMAC [19] provides
two-layered caches, one for storing storage data and the other
for parity conservation. PARAID [18], which is also a power-
saving technique for RAID, allocates the replica in a specific
way, meaning that data are collected/spread to adapt to changes
in operational workloads.

Although the above studies restricted their scope to storage
systems consisting of a relatively small number of disks
(typically up to several dozen), in recent years the target of this
research area has shifted to datacenter-scale systems. Kaushik
et al. [6] proposed the idea of dividing disks in Hadoop
distributed file systems (HDFS) into hot and cold zones. Verma
et al. [16] developed sample-replicate-consolidate mapping
(SRCMap), which gathers accesses to the replicas on active
disks, while Vrbsky et al. [17] proposed a replication approach
called the sliding window replica strategy (SWIN). Finally,
Hasebe et al. [5] reported a power-saving method based on
the DHT technique that skews the workload by dynamically
migrating virtual nodes in the storage array.

The motivation for this research follows that of the recent
studies mentioned above. In particular, this study can be
considered as a direct successor to [5]. However, our main
aim is to increase scalability and flexibility by means of game-
theoretic autonomic control, thereby making it possible to deal
with various changes in the system environment.

III. SYSTEM DESIGN

A. Underlying System

Our proposed method targets storage systems consisting of
hundreds of physical disks with unique IDs. The basic lookup
service is provided by an underlying DHT mechanism, and
the stored data are managed by collaboration between virtual
nodes. Owing to the DHT mechanism, clients may access data
by sending a request to any of the virtual nodes, regardless of
their location. In this setting, to reduce power consumption,
each virtual node can migrate to any of the neighboring
physical disks depending on their current workload. (Note that
a similar idea for the dynamic migration of virtual nodes can

be found in [3] in the context of load balancing.) In the next
subsection, we introduce our modeling of this mechanism as
a potential game.

B. System Model as a Potential Game

Preliminaries. As preliminaries, we first introduce some no-
tation and functions. In the following, N is used to denote
the set of natural numbers. Let P = {p1, p2, . . . , pn} be the
set of physical nodes and V = {v1, v2, . . . , vm} be the set of
virtual nodes. Time progress is represented as steps indicated
by a natural number t = 0, 1, 2, . . . ∈ T , where 0 indicates
the time of the initial state. Every virtual node is stored on a
physical node, with the allocation determined by the function
place : V × T → P . Intuitively, placet(v) = p means that
virtual node v is on p at time t. We also use this function to
denote the set of virtual nodes V ′ ⊆ V that are on physical
node p, i.e., placet(p) = V ′. In addition, the notation v ∈ P
is used to denote this relation. For each physical node, the
capacities of workload and volume are respectively determined
by the functions capload : P → N and capvol : P → N.
The current workload and total volume of stored data of a
virtual node at any time are respectively determined by the
functions load : V × T → N and size : V × T → N.
These functions are also used for physical nodes according to
the following definitions: load(p, t) =

∑
v∈placet(p)

load(v, t)
and size(p, t) =

∑
v∈placet(p)

size(v, t), respectively. Note
that no physical node is allowed to have virtual nodes whose
total stored data volume exceeds its volume capacity (i.e.,
capvol(p) ≤

∑
v∈placet(p)

size(vi, t) for any t). In addition,
p is considered to be overloaded if load(p, t) > capload(p).

The central idea. Before giving a formal definition of our
game-theoretic model, we briefly describe the central idea
behind our modeling approach. Our model can be regarded as a
potential game, a kind of strategic game in which the incentive
for any player to change their strategy can be expressed
by a single global function. More specifically, our model is
developed according to the following steps, in conjunction
with the Wonderful Life Utility technique.

In our model, virtual nodes are considered to be selfish
players who select their strategies to remain on the current
physical disk or move to another at regular intervals. After
the decision, each virtual node receives a payoff, and thus
every virtual node looks for a better location that will yield
a higher payoff. In this setting, we first introduce the global
function for evaluating the state of the system with respect to
power-saving and overloading. Next, using the Wonderful Life
Utility technique, we derive a local function, which determines
the payoff to virtual nodes, from the global function. This local
function satisfies the following criteria: if the workload of the
disk on which it resides increases, the payoff to the node also
increases, although the payoff is cut drastically if the resident
disk becomes overloaded. Moreover, the relationship between
the global and local functions can be regarded as a potential
game; that is, increasing the payoff to any virtual node causes
an increase in the value of the global function.



Formal definition of the global function. We first introduce
the global function G to evaluate the state of the system.
However, to respond to rapid changes in the system workload,
it estimates the expected state at some later step provided that
the rate of change in the workload during the past j steps
is the same in the future. The formal definition of the global
function is as follows:

G(placet) =
s∑

i=0

∑
p∈P

(load2pred(p, i, t)− c · over2pred(p, i, t)).

Here, the function loadpred(p, i, t) indicates the expected
workload of p at time i+ t (i.e., i steps later), and is defined
as follows:

loadpred(p, i, t) = load(p, t) +
i

j
(load(p, t)− load(p, t− j)).

The function overpred(p, i, t) indicates the level of overload
for p, and is defined as follows:

overpred(p, i, t) = β · capload(p)− loadpred(p, i, t),

where β (with 0 < β ≤ 1) is a coefficient indicating the
proportion of capacity that may be devoted to migration. For
example, β = 0.6 means that the physical node may spare
60% of its capacity to respond to data access requests, while
the remainder (i.e., 40% of its capacity) is kept for migration.
c is a weighting constant with c > (s+ 1)

∑
p∈P cap2load(p).

In the definition of G, load2pred(p, i, t) gives a positive
evaluation for effectively skewing the workload, whereas
−c · over2pred(p, i, t) gives a negative evaluation according to
the level of overloading. We note that the argument of G (i.e.,
placet) determines the allocation of virtual nodes at time t.
Thus, in game-theoretic terminology, it is a strategy profile of
the virtual nodes.

Formal definition of the local function. Next, in terms of the
Wonderful Life Utility technique, the global function defined
above can be used to derive a local function Lv for node v ∈ V
as follows.

Lv(placet) =
s∑

i=0

[(load2pred(placet(v), i, t)

−load′2pred(placet(v), i, t))

−(c · over2pred(placet(v), i, t)
−c · over′2pred(placet(v), i, t))].

Here, load′pred(p, i, t) and over′pred(p, i, t) denote the values
obtained from loadpred(p, i, t) and overpred(p, i, t), respec-
tively, by removing v from p.

C. Migration algorithm

In our proposed method, every virtual node independently
checks its current payoff at regular intervals, and migrates to
another physical disk if it yields a better payoff. Because the
model introduced above is a potential game, any migration
that improves a virtual node’s payoff increases the value of the
global function. However, owing to the limitation of network

bandwidth in a system, it is difficult to allow all virtual nodes
to migrate as they wish. Thus, we introduce a priority order
according to the degree of contribution to improving the value
of the global function (i.e., the amount by which the value of
the global function increases).

As the degree of contribution, we consider the increase
in the payoff of migration divided by the time required to
complete the migration. The formal definition is as follows:

Migeval(v, pfrom, pto) =
Lv(place

′)− Lv(place)

Migtime(v, pfrom, pto)
,

where pfrom and pto (∈ P ) denote the source and destination
of migration, respectively, and Migtime represents the time
required to migrate v from pfrom to pto. This function is defined
as follows:

Migtime(v, pfrom, pto) =
diff(v, pfrom, pto)

min{bw(pfrom), bw(pto)},
where diff denotes the total amount of data that must be trans-
ferred for the migration of v from pfrom to pto, and bw repre-
sents the bandwidth of p, defined as bw(p) = (1−β)capload(p)
(with 0 < β ≤ 1). Note that β is the same predefined constant
as in the global function.

In a real system, the evaluation of payoffs and migration
are autonomously controlled by the physical nodes on the
basis that the virtual nodes behave as selfish agents. Roughly
speaking, every physical node (denoted by p) independently
collects information to evaluate the payoffs from its neigh-
boring nodes. (As we shall see in Section IV, the set of
neighbors for each physical node is predetermined. This set
consists of 100 neighbors in our simulation.) Then, p selects
the best migration, and sends a request to the destination.
The destination node decides whether to accept or reject the
request. If it is accepted, the migration starts immediately;
otherwise, it is rejected. Note that, to reduce the migration
cost, physical nodes are allowed to send or receive one virtual
node at a time.

More precisely, every physical node (denoted by p ∈ P )
independently executes the following steps at regular intervals.
(Here, the current time is indicated by t ∈ T .)

1) p obtains the following information from each of its
neighboring nodes (denoted by p′ ∈ P ).

• Estimated workload: loadpred(p′, i, t);
• Amount of free space: capvol(p′)− size(p′);
• The value of the migration that p is executing:

Migeval(v, pfrom, pto), where v is the virtual node
that is currently migrating from/to p′.

2) Among all possible migrations for the virtual nodes in
p and the migrations previously requested to p, find the
best migration (whose virtual node is denoted by v)
yielding the largest Migeval(v, p, p

′). If there is no such
v (i.e., Migeval(v, p, p

′) ≤ 0 for any v), then p quits and
returns to Step 1 in the next time interval. Note that the
currently migrating virtual node is also included as a
candidate.

3) Execute one of (3-a)–(3-d) according to the current state:



(3-a) If v is currently migrating from p to p′, then
the migration continues;

(3-b) If v ∈ p and p is asking its neighbor to receive
v, but this has not yet been approved, then p
continues to wait for a response;

(3-c) If v ∈ p and p has not asked its neighbor to
receive v, then p drops its current request that
was previously sent to a neighbor, and asks the
destination to receive v.

(3-d) If v ̸∈ p, then p drops the request that was
previously sent by p to a neighbor and the
migration currently being executed, and then
approves the migration of v;

4) Reject all other requests from the neighbors.

In closing this section, we comment on the migration cost.
Instead of moving all data stored in a virtual node, there is an
alternative that reduces the volume of data to be migrated.
That is, when a virtual node is removed from a disk, the
stored data remain in the disk and are reused at the time of
the next migration. This enables the migration to proceed by
copying only those data that are different from the previous
residence at that physical node. Indeed, the advantage of this
technique is the trade-off with the disk space. However, if the
system has enough space on the disk and can afford to create
some redundancy, this technique can be useful for effective
migration. We adopt this technique in our simulation and
experiments, as reported in later sections.

IV. SIMULATION RESULTS

To understand the scalability of our method for storage
systems consisting of thousands of physical nodes, we con-
ducted a series of simulations in various environments. These
evaluated the performance by observing the change in the
number of active physical nodes, average response time, and
cumulative number of migrations.

A. Parameters and Settings

In the evaluation, we considered a system consisting of
1,000 physical nodes whose volume and workload (i.e., maxi-
mum transfer rate of data access) capacities are 500 GB and 55
MB/s, respectively. As per the suggestion in [14], the number
of virtual nodes is 10 times the number of physical disks.
The system stores 200 million files, each of size 500 KB, and
these are randomly allocated between the virtual nodes. In
the intended usage environment, we assumed that the system
workload varies over a day.

During the course of a day, as modeled by discrete time
intervals t (s) with 0 ≤ t ≤ 3, 600 ∗ 24, the workload of all
virtual nodes is initially at its lowest, then increases until the
middle of the day, before decreasing until the end, where the
gap is 4-fold. As suggested by many studies (e.g., [3], [12],
[10]), we assumed that the data access frequency conforms
to a Zipf distribution [21]. According to this law, the access
frequency of the r-th most popular file is determined by the

 0

 200

 400

 600

 800

 1000

 2  2.5  3  3.5  4  4.5  5  5.5  6  6.5  7

T
h
e 

n
u
m

b
er

 o
f 

ac
ti

v
e 

p
h
y
si

ca
l 

n
o
d
es

Time (day)

Fig. 1. Number of active physical nodes

following formula:

loadr(t) = loadsys(t)
1
rα∑F
i=1

1
iα

,

where F is the total number of files, loadsys indicates the
total number of data accesses, and α is a coefficient. In
our simulation, we consider the case where α = 0.7. Thus,
the workload of the system is determined by the following
formula:

loadsys(t) =

{
22, 000 ∗ ( 3t

12∗3,600 + 1) (0≤t<12∗3,600)

22, 000 ∗ (− 3t
12∗3,600 + 7) (12∗3,600≤t<24∗3,600).

For example, the total number of accesses is 22,000 during
the off-peak period, rising to 88,000 at peak time. Note that if
we consider a static configuration (i.e., without our method),
it is necessary to make 800 physical nodes active to deal with
the workload in this setting.

As mentioned in Section III, after migrating a virtual node,
the stored data remain at the source physical disk unless it
overflows. Thus, we reuse the remaining unchanged data when
the virtual node returns to its original position. We assumed
that 10% of files are rewritten by write accesses during the
course of a day.

Finally, the remaining parameters were as follows: In the
global function defined in Section III-B, we set s = 30 ∗ 60,
β = 0.9, j = 15. The neighbors for each physical node pi are
{pj | i − 50 ≤ j ≤ i − 1, i + 1 ≤ j ≤ i + 50}. Note that
the future workload was estimated using only the workloads
of 15 and 30 minutes ago.

B. Number of Active Physical Nodes

Fig. 1 indicates the change in the number of active phys-
ical nodes for the 5 days following the initial configuration.
(Throughout this section, we omit results from the first 2 days,
because from the 3rd day, reusable data are spread across the
system by the migrations in the first 2 days.) Fig. 1 shows
that the number of active physical nodes, indicating the total
running time, was reduced by an average of 17.3% relative to
the static configuration.



 0

 200

 400

 600

 2  2.5  3  3.5  4  4.5  5  5.5  6  6.5  7
 0

 20000

 40000

 60000
A

v
er

ag
e 

re
sp

o
n
se

 t
im

e 
(m

s)

M
ax

im
u
m

 r
es

p
o
n
se

 t
im

e 
(m

s)

Time (day)

Average response time
Maximum response time

Fig. 2. Response time

TABLE I
SIMULATION RESULTS FOR CASES 1–4

Num. of Nodes [%] Ave. Res. [ms] Max Res. [ms]
Case 1 14.4 142 79,638
Case 2 12.7 190 159,358
Case 3 18.7 130 157,345
Case 4 16.9 128 56,124

C. Response Time and Migration Cost

Figs. 2 and 3 indicate the change in the overall average
and maximum response time and the cumulative number of
migrations during the 5 days, respectively. Fig. 2 shows that
the overall average response time was 121 ms, although the
maximum was 44,134 ms. The results of this experiment show
that roughly the same number of virtual nodes were migrating
regardless of the system workload. For each virtual node, there
were an average of 5.27 migrations. In our previous work [5],
the number of migrations required of each virtual node was
about 2 in a similar environment, which is fewer than half the
number required using this method.

Our method has room for improvement in the response time
at peak times, as well as in reducing the number of migrations.
On the whole, however, our method effectively skews the
workload while keeping a preferred overall average response
time in a large-scale system.

D. Flexibility toward Various Environments

To evaluate our method in various environments, we con-
sidered the following cases, which cannot be treated using our
previous method [5]:

Case 1:Peak times of some virtual nodes are different from
others.

Case 2:Distribution of popularity changes over time.
Case 3:Some physical nodes are added to the system.
Case 4:Some physical nodes are removed from the system.
For Case 1, we considered the environment where 80% of

the virtual nodes encounter peak time at noon, while for the
others this occurs at midnight. For Case 2, we changed the
difference in workload between peak and off-peak times to
be 8-fold for 10% of the virtual nodes, and to be a factor of
32/9 for the other 90%. For Cases 3 and 4, we added 50 and
removed 30 physical nodes, respectively.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 2  2.5  3  3.5  4  4.5  5  5.5  6  6.5  7

C
u
m

u
la

ti
v
e 

n
u
m

b
er

 o
f 

V
N

 m
ig

ra
ti

o
n
s

Time (day)

Fig. 3. Cumulative number of migrations

The results for each case are summarized in Table I. (Here
“Num. of Nodes”, “Ave. Res.”, “Max Res.” denote the results
of reducing the number of active physical nodes relative to
the static configuration, overall average response time, and
maximum response time, respectively.) Overall, although in
some cases the performance worsened, our method was able
to effectively skew the workload, adapting to various changes
in environment.

V. IMPLEMENTATION EXPERIMENTS

We conducted experiments with the current prototype im-
plementation to evaluate the applicability of our method to
real systems. In the experiments, we measured the change in
the number of active physical nodes and the response time in
an environment with a variable system workload.

Our prototype consisted of 28 PC servers, each of which
was equipped with Intel Core i7 2.67 GHz × 8 CPUs,
11.8 GB memory, and a single 500 GB ATA disk. In this
implementation, we omitted the DHT mechanism.

A. Parameters and Settings

The system consisted of 300 virtual nodes, each of which
stored 5.6 million files of size 500 KB. In this experiment,
the distribution of data access frequency was also assumed to
conform to Zipf’s law. At off-peak times, the system workload
was 1,209,600 accesses/s, and this increased to 4,838,400
accesses/s at peak times, similarly to the simulations.

For this setting, if we consider a static configuration, it is
necessary to make 23 physical nodes active to deal with the
workload.

B. Number of Active Physical Nodes

Applying this configuration, we observed the performance
for 24 h. Fig. 4 indicates the change in the number of active
physical nodes. The figure shows that our method reduced
this number by an average of 14.1% relative to the static
configuration. This result shows that our method adjusts the
number of physical nodes to changes in workload, and reduces
power consumption effectively.



 0

 10

 20

 30

 0  4  8  12  16  20  24

T
h
e 

n
u
m

b
er

 o
f 

ac
ti

v
e 

p
h
y
si

ca
l 

n
o
d
es

Time (hour)

Fig. 4. Number of active physical nodes

 0

 50

 100

 150

 200

 0  4  8  12  16  20  24
 0

 2000

 4000

 6000

 8000

A
v
er

ag
e 

re
sp

o
n
se

 t
im

e 
(m

s)

M
ax

im
u
m

 r
es

p
o
n
se

 t
im

e 
(m

s)

Time (hour)

Average response time
Maximum response time

Fig. 5. Response time

C. Response Time

Fig. 5 indicates the change in the average and maximum
response times. This figure shows that the overall average
response time was 50 ms, while the maximum was 6,573 ms.
We observed some long delays in responses at peak time, but
on the whole, our method retains an intended latency in the
real system.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a game theoretic approach
for reducing power consumption in datacenter-scale storage
systems. To enhance the scalability in a commonly-observed
technique, our method was based on DHTs to dynamically
migrate virtual nodes, thereby skewing the workload and
avoiding overloads. Moreover, to improve the flexibility prob-
lem in the method of [5], we investigated a technique that
allowed virtual nodes to freely migrate to any neighboring
disks, thereby enabling autonomous adaptation to various
changes of environment, such as changes in the popularity
distribution, extension of a system, and node failures. For this
objective, the idea behind our method was to consider virtual
nodes as selfish agents, and play a game in which each node
receives a payoff according to the workload of the disk on
which it currently resides. This idea was modeled as a potential
game using the Wonderful Life Utility technique. We also eval-
uated the performance of our method using simulations and a
prototype implementation. The results showed that our method
effectively skewed the workload while maintaining a preferred

response time in a large-scale distributed environment.
In future work, we will improve the migration algorithm

so as to reduce the latency at peak-time. We are also inter-
ested in an evolutional mechanism to allow virtual nodes to
autonomously change the parameters of local payoff functions
according to the current environment, with the aim of achiev-
ing a better optimization.

REFERENCES

[1] T. Bostoen, S. Mullender and Y. Berbers. Power-reduction techniques
for data-center storage systems. ACM Computing Surveys, vol.45(3), 38
pages, 2013 (to appear).

[2] D. Colarelli and D. Grunwald. Massive arrays of idle disks for storage
archives. ACM/IEEE Conference on Supercomputing, pp.1-11, 2002.

[3] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp and I. Stoica.
Load balancing in dynamic structured p2p systems. INFOCOM, vol.4,
pp.2253-2262, 2004.

[4] R. Gopalakrishnan, J. R. Marden and A. Wierman. An architectural view
of game theoretic control. SIGMETRICS Perform. Eval. Rev., vol.38, no.3,
pp.31-36, 2010.

[5] K. Hasebe, T. Niwa, A. Sugiki and K. Kato. Power-saving in large-scale
storage systems with data migration. IEEE International Conference on
Cloud Computing Technology and Science (CloudCom’10), pp.266-273,
2010.

[6] R. T. Kaushik and M. Bhandarkar. GreenHDFS: towards an energy-
conserving, storage-efficient, hybrid Hadoop compute cluster. 2010 in-
ternational conference on Power aware computing and systems (Hot-
Power’10), pp.1-9, 2010.

[7] D. Li and J. Wang. EERAID: energy efficient redundant and inexpensive
disk arrays. 11th ACM SIGOPS European Workshop, Article no.29, 6
pages, 2004.

[8] J. R. Marden and A. Wierman. Distributed welfare games. Operations
Research, vol.61, no.1, pp.155-168, 2013.

[9] D. Monderer and L. S. Shapley. Potential games. Games and Economic
Behavior, vol.14, no.1, pp.124-143, 1996.

[10] J. Okoshi, K. Hasebe, and K. Kato. Power-Saving in Storage Systems for
Internet Hosting Services with Data Access Prediction. 4th International
Green Computing Conference (IGCC 2013), 10 pages, 2013.

[11] M. J. Osborne and A. Rubinstein. A course in game theory. The MIT
Press, 1994.

[12] E. Pinheiro and R. Bianchini. Energy conservation techniques for disk
array-based servers. International Conference on Supercomputing, pp.68-
78, 2004.

[13] E. Pinheiro, R. Bianchini and C. Dubnicki. Exploiting redundancy to
conserve energy in storage systems. ACM SIGMETRICS Conference on
Measurement and modeling of computer systems, pp.15-26, 2006.

[14] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek and H. Balakrishnan.
Chord: a scalable peer-to-peer lookup service for internet applications.
ACM SIGCOMM, pp.149-160, 2001.

[15] M. Storer, K. Greenan, E. Miller and K. Voruganti. Pergamum: replacing
tape with energy efficient reliable, disk-based archival storage. USENIX
Conference on File and Storage Technologies (FAST’08), pp.1-16, 2008.

[16] A. Verma, R. Koller, L. Useche and R. Rangaswami. SRCMap: energy
proportional storage using dynamic consolidation. 8th USENIX Confer-
ence on File and Storage Technologies (FAST’10), pp.154-168, 2010.

[17] S. V. Vrbsky, M. Lei, K. Smith and J. Byrd. Data replication and power
consumption in data grids. 2010 IEEE Second International Conference
on Cloud Computing Technology and Science (CloudCom’10), pp.288-
295, 2010.

[18] C. Weddle, M. Oldham, J. Qian, A. Wang, P. Reiher and G. Kuenning.
PARAID: a gear-shifting power-aware RAID. USENIX Conference on
File and Storage Technologies (FAST’07), pp.245-260, 2007.

[19] X. Yao and J. Wang. RIMAC: a novel redundancy-based hierarchical
cache architecture for energy efficient, high performance storage systems.
ACM SIGOPS/EuroSys European Conference on Computer Systems,
pp.249-262, 2006.

[20] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton and J. Wilkes. Hiber-
nator: helping disk arrays sleep through the winter. ACM symposium on
Operating systems principles, pp.177-190, 2005.

[21] G. K. Zipf. Human behavior and the principle of least effort. Addison-
Wesley Press, 1949.


