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ABSTRACT
For flexible and dynamic resource management in environ-
ments where users collaborate to fulfill their common tasks,
various attempts at modeling delegation of authority have
been proposed using the role-based access control (RBAC)
model. However, to achieve a higher level of collaboration
in large-scale networked systems, it is worthwhile support-
ing cross-domain delegation with low administration cost.
For that purpose, we propose a capability-role-based access
control (CRBAC) model, by integrating a capability-based
access control mechanism into the RBAC96 model. Central
to this scheme is the mapping of capabilities to permissions
as well as to roles in each domain, thereby realizing the del-
egation of permissions and roles by capability transfer. By
taking this approach of capability-based access control, our
model has the advantages of flexibility and reduced admin-
istration costs. We also demonstrate the effectiveness of our
model by using examples of various types of delegation in
clinical information systems.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access Control

General Terms
Security, Theory

Keywords
RBAC, capability-based access control, delegation

1. INTRODUCTION
Role-based access control (RBAC) is a prominent model

for protection of resources in well-structured organizations
such as hospitals, universities, and companies. The central
idea behind this model is that users in an organization are
naturally mapped to roles in the organization, and access
rights are associated with the roles, thereby assigning ap-
propriate permissions to the users belonging to these roles.

.

For flexible and dynamic resource management in envi-
ronments where users collaborate to fulfill their common
tasks, various attempts at modeling delegation of authority
based on the RBAC96 model [14] have been proposed, such
as RBDM [2, 3], RDM2000 [19], PBDM [21], and Atluri-
Warner’s model [1]. Although most studies in the litera-
ture restrict their scope to delegation in a single domain, to
achieve a higher level of collaboration in distributed environ-
ments, it is worthwhile delegating across multiple domains.
For example, considering the infrastructure for large-scale
clinical information systems where medical doctors in differ-
ent hospitals collaborate to treat their patients, delegation of
access rights to electronic medical records is required across
multiple hospitals.

To realize cross-domain delegation, one of the easiest ways
is to prepare in advance tentative accounts for guest users
in each domain. Then, by assigning suitable permissions to
the guest accounts, users in different domains may access re-
sources via these accounts. Another possible way is to regis-
ter users in different domains or to use some mechanism sup-
porting cross-domain authentication such as Kerberos [17].
However, these solutions remain unsatisfactory on the fol-
lowing counts. For the former solution, adequate flexibility
for coping with unusual scenarios is lacking. For example, in
the case of emergency in the networked clinical information
system, it is useful for doctors to be able to immediately
refer to a patient’s medical records stored in different hos-
pitals. However, the solution of using guest accounts would
be cumbersome to deal with in such an emergency due to
the need for administrator operations in assigning suitable
access rights for each case. On the other hand, for the latter
solution, it requires the consolidation of all the users par-
ticipating in the whole network system. This may cause
problems in administration costs if the network includes a
large number of different domains. Moreover, to provide
a high level of collaboration across different domains, es-
pecially when they independently have a hierarchy of roles
based on RBAC, it is worthwhile providing a mechanism
which assigns both permissions and roles of a host domain
to the guest users. However, this would also be difficult
in the case of networked systems that include a number of
domains due to the administration costs.

To address the issue of flexible delegation based on RBAC,
we propose a capability-role-based access control (CRBAC)
model, by integrating a capability-based access control mech-
anism into the RBAC96 model. Capability-based access
control mechanism (cf. [15, 10]) is considered a means for
delegation of authority. In general, a capability, which is



an unforgeable token consisting of an object identifier and
a list of permitted operations for that object. A capability
represents a self-authenticating permission to access a spec-
ified object in permitted operations, whereby owners of the
capability can access the object without any authentication.
Moreover, it is used for cross-domain delegation by means
of middleware such as HomeViews [7] or CapaFS [13].

To integrate a capability-based access control mechanism
into RBAC, our central idea is to extend the RBAC96 model
by introducing a set of capabilities as well as the mappings
from these capabilities to permissions and roles. Thus, in our
model, a user can delegate both permissions and roles by a
capability transfer. By basing the approach on capability-
based access control, our model has the following advan-
tages. First, cross-domain delegation can be achieved with-
out any authentication or specific request to the administra-
tors. This makes flexible and smooth user-to-user delegation
possible even in unusual situations such as an emergency in
clinical systems. Second, by avoiding authentication, the
administration cost is reduced especially in large-scale net-
work systems. Finally, our model supports delegation of
roles across different domains, which also makes it possible
to assign roles in the host domain to invited users from out-
side. In addition, due to the mapping of capabilities to roles,
appropriate permissions are automatically assigned to guest
users even if the structure of roles varies.

On the other hand, since any owner of a capability has
the access right specified in the capability, systems with
capability-based access control has a potential security issue,
namely unintended propagation of capabilities. A simple ex-
ample is that a malicious participant may steal transferred
capability, thus our model requires suitable authentication
for each capability transfer. Moreover, it is possible that a
delegatee transfers a capability to another user while a del-
egator does not intend to delegate authority to the user. In
order to avoid such unintended propagation, in our model
we provide various kinds of constraints on capabilities, such
as lifetime, limitation of creation, and possible number of
delegation steps. In this paper, we demonstrate the effec-
tiveness of our model by using examples of various types of
delegation in clinical information systems.

There have been a number of attempts at integration of
capability-based access control mechanism with other ac-
cess control models, such as Gong’s identity-based capabil-
ity protection system called ICAP [9], or Neuman’s work
[11] where Kerberos credentials were extended so that they
could be used as capabilities. These studies introduced ca-
pability to realize flexible delegation and reduced adminis-
tration cost. Our work has similar motivation, but we apply
this approach within RBAC, which is not yet thoroughly
investigated. That is the main contribution of this paper.

The rest of this paper is organized as follows. Section
2 presents related work. Section 3 introduces the CRBAC
model. As with RBAC96, we first present the base model,
CRBAC0, then gradually extend it by adding role hierarchy
and/or constraints. We also introduce the formal defini-
tion of delegation of authority, which is represented by state
transitions (i.e., rewriting instances of a model). Section 4
demonstrates how to apply our model by considering some
plausible cases of clinical information systems. Finally, Sec-
tion 5 concludes this paper and presents future work.

2. RELATED WORK
There have been a number of attempts at modeling dele-

gation of authority based on the RBAC96 model. (cf. also
[12] for a comprehensive guide on delegation). The RBDM0
[2] was the first attempt at modeling user-to-user delegation
of roles in the RBAC model. In particular, it considered
the ability of a user in a role to delegate his role member-
ship to another user in some other role. This paper and its
successor (called RBDM1) [3] also considered some exten-
sions such as revocation, partial delegation, multi-step del-
egation, and delegation with role hierarchy. RDM2000 [19]
was an extension of RBDM0 in supporting hierarchical roles
and multi-step delegation but taking a different approach
from RBDM0. This paper also introduced a rule-based lan-
guage for specifying and enforcing delegation. While RBDM
as well as RDM2000 considered only delegation of roles,
PBDM [21] considered delegation based on both roles and
permissions. PBDM also supported various types of dele-
gation, such as user-to-user, temporal, partial, and multi-
step delegation. Crampton and Khambhammettu [6] stud-
ied transfer-delegation for the RBAC model. Although the
models described so far restricted their scope to delegation
in a single domain, recently some models supporting cross-
domain delegation have been proposed. Among these mod-
els, Atluri and Warner [1] addressed the issue of delega-
tion in the context of workflow and presented a conditional
delegation model. In addition, Gomi et al., [8] and Chad-
wick and Otenko [4] considered cross-domain delegation (al-
though these works are not based on the RBAC model).
The main difference between these three papers and ours is
that our motivation is to support flexible delegation with-
out any authentication mechanism. It should be noted that
from a practical viewpoint, there have been many papers
motivated to apply RBAC to various specific information
systems. Among them, [20] as well as [16] considered clin-
ical information systems, which were similar to those used
for our example systems.

3. CRBAC
In this section, we introduce our CRBAC model. In Sec-

tion 3.1, we present a brief overview of our model. In Sec-
tions 3.2 and 3.3, we define the base model, called CRBAC0,
and the delegation of authority in our model. In Sections
3.4 and 3.5, we extend the basic model to CRBAC1 and 2
by introducing role hierarchy and some constraints on capa-
bilities in a similar way to the construction of the family of
RBAC96 models.

3.1 Overview
CRBAC is an extension of the RBAC96 model obtained

by integrating a capability-based access control mechanism
into a RBAC96 model. In a similar manner to the RBAC96
family, the CRBAC is developed from the base model (called
CRBAC0) by adding the role hierarchy (CRBAC1) or var-
ious constraints (CRBAC2). (Although we also considered
the consolidated model, called CRBAC3, in this paper we
omit the definition because it can be obtained directly from
CRBAC1 and 2).

Usually, the delegation based on the capability-based ac-
cess control mechanism is achieved using the following three
steps: (1) delegator (i.e., a user who wishes to delegate au-
thority to another user) creates a capability then (2) assigns
some access rights to the capability, and (3) transfer it to
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Figure 1: The family of CRBAC models

the intended delegatee (i.e., receiver of the capability).1 To
model this delegation process in the RBAC to make it pos-
sible to delegate both roles and permissions across multiple
domains, we extend the RBAC96 by the following process.

First, to construct the CRBAC0 from the original RBAC0
model, we introduce some components to the RBAC0, namely,
a set of capabilities, a mapping to determine the owners of
the capabilities, and the assignment of roles and permissions
to the capabilities. Note that in terms of these assignments
we treat both roles and permissions as delegation units. Ad-
ditionally, we assume that new capabilities are created either
from the delegator’s role or capabilities that were previously
obtained. In our model, the inheritance relation with re-
spect to the creation of capabilities is represented as a tree
structure, which is grown according to the propagation of
capabilities. Moreover, to model cross-domain delegation,
we consider a collection of sub-models, each of which repre-
sents a single domain. On the other hand, in our model, the
delegation process itself is represented as state transitions,
which will be defined after introducing the CRBAC0.

Next, we extend CRBAC0 by introducing role hierarchy in
a manner analogous to the RBAC96 model. We note that,
in the CRBAC1, by means of the assignment of roles to
capabilities, suitable permissions are automatically assigned
to guest users in an environment where the host domain’s
role hierarchy may vary. For example, let us consider the
situation where a user has a capability (say, c) to which a
role (say, r) is assigned. In the RBAC96 model, the user has
all the permissions assigned to r and its junior roles. Then,
if the junior roles change, the permissions assigned to r also
change. In our model, the permissions assigned to c are also
directly reflected via the assignment of r to c.

Similar to the RBAC96 model, we also consider some con-
straints in the CRBAC0. Although we could consider vari-
ous constraints related to users, sessions, and roles investi-
gated in [14], we focus attention on the constraints on ca-

1When implementing these steps, steps (1) and (2) are usu-
ally regarded as a single step, because in general the ca-
pability consists of an object identifier and permissions for
this object. However, in our model, to categorize the types
of delegation we divide this creation of capability into these
two steps.

pability. In this paper, some constraints that would be use-
ful to protect unintended propagation of capabilities include
lifetime, creation of a new capability, and/or the number of
hops of capability transfer.

3.2 CRBAC0
The CRBAC0 is the base model of the CRBAC family.

The formal definition is as follows. (See Fig 1 for a graphical
presentation of the family of CRBAC models. Here, as we
shall see later, the components with heavy lines are extended
parts of the RBAC96 model.)

Definition 1 (CRBAC0). The CRBAC0 model has the
following basic components:

• Sub, Dom (sets of subjects and domains).

• Rolei, Peri, Sesi, Capi (sets of roles, permissions,
sessions, and capabilities in the i-th domain for each
i ∈ Dom). Here, Peri may contain a special kind of
permission, called creation of capabilities, denoted by
create.

In addition to the above components, the following func-
tions and relations are defined for i-th domain for each i ∈
Dom:

• usr : Dom → 2Sub, a function that determines the
set of users in the i-th domain for each i ∈ Dom. We
also use the notation Usri to denote usr(i) and assume
that Sub =

S

i∈Dom Usri.

• ses ui : Sesi → Usri, a function mapping each session
in the i-th domain to the user who establishes it.

• ses ri : Sesi × 2Rolei , a function mapping each session
in the i-th domain to the set of roles that is activated
by this session.

• URAi ⊆ Usri × Rolei, a many-to-many user-to-role
assignment relation.

• RPAi ⊆ Rolei×Peri, a many-to-many role-to-permission
assignment relation.



• ses ci : Sesi → 2Capi , a function mapping each session
in the i-th domain to a set of capabilities.

• UCAj,i : Usrj → 2Capi , a function mapping each user
in the j-th domain to a set of capabilities.

• CRAi ⊆ Capi ×Rolei, a many-to-many capability-to-
role assignment relation.

• CPAi ⊆ Capi × Peri, a many-to-many capability-to-
permission assignment relation.

These components satisfy the following conditions:

(C0-1) ses ri(s) ⊆ {r|〈ses ui(s), r〉 ∈ URAi}, means any
role activated by a session is one that is assigned to
the user who establishes the session.

(C0-2) Session s has the permissions
S

r∈ses ri(s)
{p|〈r, p〉 ∈

RPAi}.

(C0-3) ses ci(s) ⊆ {c|〈ses ui(s), c〉 ∈ UCAi}, means any
capability activated by a session is owned by the user
who establishes the session.

(C0-4) For any r ∈ Rolei and c ∈ Capi, if 〈c, r〉 ∈ CRAi

then session s has the permissions that are determined
by (C0-2) above, otherwise (i.e., 〈c, r〉 6∈ CRAi) then
s has the permissions

S

c∈ses ci(s)
{p|〈c, p〉 ∈ CPAi}.

As explained in the previous subsection, the CRBAC0 is
a pure extension of the RBAC96 model where the compo-
nents of Capi, ses ci, UCAj,i, CRAi, and CPAi are the
extended parts. These components play the following roles:
Capi denotes the set of capabilities issued in the i-th domain;
function ses ci determines the set of capabilities activated
by each session; function UCAj,i represents the owner of ca-
pabilities; relations CRAi and CPAi determine which roles
and permissions are assigned to each capability, respectively.

3.3 Delegation of authority
Owing to our unified treatment of roles and capabilities,

the CRBAC can support various types of delegations. As
mentioned in Section 3.1, the process of delegation using
capability transfer can be regarded as the sequential com-
position of the following three basic operations:

(Step 1) Creation. A user creates a new capability.

(Step 2) Assignment. A user assigns authority to the ca-
pability.

(Step 3) Transfer. A user sends it to another user.

For each of the first two steps, we can consider the following
two cases. For Step 1, the permission to create new capa-
bilities is assigned to (1) a role or (2) a capability owned by
the creator. For Step 2, the authority consists of (3) a set of
roles or (4) a set of permissions. According these cases, we
classify delegations into four types D1–D4 as shown in the
following table.

``````````̀Assign
Create from

(1) Role (2) Capability

(3) Role D1 D3
(4) Capability D2 D4

Furthermore, for Step 3, we classify each of D1–D4 into
two categories depending on whether the delegation is made
across multiple domains or not.

To provide the formal definition of the delegation of au-
thority in our model, we first represent Steps 1 to 3 as a set
of rules for the state transitions of model. (In the definition,
we use the symbols S, S′, . . . to denote states.) Then, by
considering some sequential compositions of the transitions,
we define the delegation of types D1–D4.

Before presenting the definition of delegation, to represent
the relation of the capabilities with respect to the creation,
we here introduce the creation tree as follows.

Definition 2 (Creation tree). A creation tree is a
tree structure consisting of the following components:

• For each tree, the root node is a role in Rolei,

• rci ⊇ Rolei × 2Capi ,

• cci ⊇ Capi × 2Capi .

For readability, throughout we use the infix notations →rci

and →cci to denote rci and cci, respectively. Intuitively,
〈r, c〉 ∈ rci and 〈c1, c2〉 ∈ cci represent that capability c and
c2 are created from role r and capability c1, respectively. In
such a case, we often say “r (c1, resp.) is the parent of c (c2,
resp.)”. The reflexive asymmetric transitive closure of cci is
denoted by cc∗i . Additionally, we use the notation CTi to
denote rci ∪ cc∗i , thus it determines the creation relation of
the capabilities in i-th domain.

The relations rci and cci satisfy the following conditions
for each i ∈ Dom.

(C0-5) If r →rci c then 〈r, create〉 ∈ RPAi.

(C0-6) If c →∗
cci

c′ then 〈c, create〉 ∈ CPAi.

(C0-7) If r →rci c then

{p|〈r, p〉 ∈ RPAi} ⊇ {p|〈c, p〉 ∈ CPAi}.

(C0-8) If c →∗
cci

c′ then

{p|〈c, p〉 ∈ CPAi} ⊇ {p|〈c′, p〉 ∈ CPAi}.

Intuitively, the former two represent the requirement that
a new capability can be created whenever the right of cre-
ation is assigned to the parent. On the other hand, the latter
two represent the requirement that the permissions assigned
to a created capability are weaker than the those assigned
to the parent.

Definition 3 (Basic operations for delegation).
The basic operations for delegation (i.e., creation, assign-
ment, and transfer) are defined by the following rules of
state transitions for a model.

Creation rule: Let S be a state in which u ∈ Usri, c ∈
Capi.

(1) If r ∈ Rolei with 〈u, r〉 ∈ URAi and 〈r, create〉 ∈ RPAi

in S, then this rule can be applied to S and defines new
state S′ by replacing Capi and CTi in S with Cap′

i and
CT ′

i , respectively, such that:

• Cap′
i := Capi ∪ {c′} where c′ 6∈ Capi;

• CT ′
i := CTi ∪ 〈r, c〉.
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(b) State S′ (after the delegation)

Clinic C Hospital H

Usr Charlie Bob
Role doctor1 doctor2

Per create, may(DB, read),
may(DB, write)

Cap [c1]
URA 〈Charlie, doctor1〉 〈Bob, doctor2〉
RPA 〈doctor1, create〉,

〈doctor1, may(DB, read)〉,
〈doctor1, may(DB, write)〉

UCA [〈Bob, {c1}〉]
CPA [〈c1, may(DB, read)〉]
CT [doctor1 → c1]

Figure 2: Example 1

(2) If p ∈ Peri with 〈u, c〉 ∈ UCAi and 〈c, create〉 ∈ CPAi,
then this rule can be applied to S and defines new state
S′ by replacing Capi and CTi in S with Cap′

i and CT ′
i ,

respectively, such that:

• Cap′
i := Capi ∪ {c′} where c′ 6∈ Capi;

• CT ′
i := CTi ∪ 〈c, c′〉.

The state transitions of these types are denoted by S
cre(u,r,c′)

;

S′ (for Case (1)) and S
cre(u,c,c′)

; S′ (for Case (2)), respec-
tively, and we can say“capability c′ is created by user u from
his role r (from his capability c, resp.)”

Assignment rule: Let S be a state in which u ∈ Usri and
c′ (∈ Capi) is created by u.

(3) If R′ ⊇ R ⊇ Rolei in S such that 〈u, r〉 ∈ URAi for any
r ∈ R, then this rule can be applied to S and defines
new state S′ by replacing CRAi in S with CRA′

i :=
CRAi ∪ {〈c′, r〉|r ∈ R′}.

(4) If P ⊇ Peri in S, then this rule can be applied to S
and defines new state S′ by replacing CPAi in S with
CPA′

i := CPAi ∪ {〈c′, p〉|p ∈ P}.

State transitions of these types are denoted by S
asg(R′,c′)

; S′

(for Case (3)) and S
asg(P ′,c′)

; S′ (for Case (4)), respectively,
and we can say “roles R′ (permissions P ′, resp.) is assigned
to capability c”.

Transfer rule: Let S be a state in which u ∈ Usri, u′ ∈
Usrj , c′ ∈ Capi, and c′ is created by u (where i and j may
be the same domain number). Then this rule can be applied
to S and defines new state S′ by replacing UCAi,j in S
with UCA′

i,j := UCAi,j ∪ {〈u′, c′〉} . State transitions of

this type are denoted by S
trans(u,u′,c′)

; S′ and we can say
“capability c′ is transferred from user u to the other user u′”.
In particular, such transfer is called a cross-domain transfer
if i 6= j.

By combining these basic operations, we define the dele-
gations of types (D1) to (D4).

Definition 4 (Delegation). The delegations of types
(D1) to (D4) are sequential compositions of basic operations
Creation, Assignment, and Transfer as follows (where “;” is
used to denote the sequential-composition operator):

• (D1): S
cre(u,c′,r)

; ;
asg(R′,c′)

; ;
trans(u,u′,c′)

; S′.

• (D2): S
cre(u,c′,r)

; ;
asg(P ′,c′)

; ;
trans(u,u′,c′)

; S′.

• (D3): S
cre(u,c′,c)

; ;
asg(R′,c′)

; ;
trans(u,u′,c′)

; S′.

• (D4): S
cre(u,c′,c)

; ;
asg(P ′,c′)

; ;
trans(u,u′,c′)

; S′.

For readability, we also use the following notations to denote
delegations of these types:

• (D1): S
D1(u,u′,c′,r,R′)

; S′.

• (D2): S
D2(u,u′,c′,r,P ′)

; S′.

• (D3): S
D3(u,u′,c′,c,R′)

; S′.

• (D4): S
D4(u,u′,c′,c,P ′)

; S′.

Finally, to help the readers understand the formal defini-
tions we provide a simple example of a scenario in a clinical
information system. (See Fig 2 (a) for the graphical presen-
tation). Larger and more realistic examples are presented in
Section 5.

Example 1. One day, Alice suddenly loses consciousness
and is transferred to emergency hospital H. The result of
the urgent examination indicates that she is in hypoglycemic
shock. Bob, a doctor in the hospital, immediately starts to
treat Alice and looks for her primary care doctor to refer to
her medical record, because he suspects she has severe dia-
betes mellitus on the basis of her symptoms. Subsequently,
from her ID card, Bob identifies her primary care doctor as
Charlie in local clinic C. Charlie then allows Bob to refer to
the medical record stored in a database of the clinic by creat-
ing new capability c1 and assigning permission may(DB, r)
(i.e., permission to read the contents of the database) and
passes it on to Bob.

Let us consider that the delegation is done by D2, that is,
Charlie creates the new capability c1 by activating his role
doctor1 and assigns only the permission to read the con-
tents of a database. In this case, the basic components are
as shown in the table of Fig 2 (b), where the columns list the



components of clinic C or hospital H. (We omit some com-
ponents if they do not explicitly appear in this instance.)
In this table, the items surrounded by square brackets in-
dicate the new ones which are added by the delegation of
c1. The expression “may(o, r)” represents the permission to
access the object o with a certain right r (e.g. read, write,
or execution).

More precisely, the delegation process can be described by
the following state transitions. First, by the creation of rule
cre(Charlie, c1, doctor1), we obtain a new state by respec-
tively replacing CapC and CTC (components of the initial
state) with:

• Cap′
C := CapC ∪ {c1},

• CT ′
C := CTC ∪ 〈doctor1, c1〉.

Then by the assignment rule asg(may(DB, read), c1), we
obtain a new state by replacing CPAC with:

• CPA′
C := 〈c1, may(DB, read)〉.

Finally, by the transfer rule trans(Charlie, Bob, c1), we ob-
tain a new state by replacing UCAC with:

• UCA′
C := UCAC ∪ 〈Bob, {c1}〉.

Moreover, the activation of capability c1 by Bob to read the
clinical record can be represented by the state transition:

• Ses′C := SesC ∪ {s}

(where SesC is the set of sessions in the adjacent state) with

• ses u′
C(s) = Bob,

• ses c′C(s) = {c1}.

Remark 1. So far we explained the base model and the
delegation in CRBAC. We discuss here how this model can
be implemented. A possible way is to implement RBAC per-
missions using access control list (ACL) approach and the
capability-based permissions are implemented by extension
of the ACL approach. That is, the i-th domain (for each
i) has a server that manages RBAC permissions by ACL-
based access control mechanism with two matrices speci-
fying URAi and RPAi. When a user in the j-th domain
accesses an object in the i-th domain by activating his capa-
bility (say, c), the server checks the validity of this capability
then dynamically adds a tentative user, whose name is just
specified as “guest”, to the matrix of URAi. If some roles
are assigned to c, then these roles are assigned to this ten-
tative user in the matrix of URAi, thereby the guest user
may activate these roles. On the other hand, if some per-
missions are assigned to c, then the specific role, called r∗, is
assigned to the tentative user in the matrix of URAi, while
a list which specifies that all the permissions of c are as-
signed to r∗ is also added to the matrix of RPAi, thereby
the guest user has all the permissions. (Note that r∗ plays
a role in associating the guest user with the permissions.)
Then, after closing the session, the server removes both the
tentative user and the corresponding permissions from the
matrices. In other words, in our model, capability plays a
role of token that invokes such an automatic revision of ACL
instead of asking the administrator of such a revision.

Actually, this dynamic revision of ACLs would burden
the server, especially when the number of objects specified

in a capability is large. However, this mechanism makes it
possible to avoid the administrator operations and authenti-
cation, thus in the case of emergency, users may delegate au-
thority without sending the password of the prepared guest
user account and without any request to the administrator.

3.4 CRBAC1
Based on the CRBAC0 model, we develop an extended

model named CRBAC1 by introducing role hierarchy. This
extension is essentially the same as for RBAC1. That is,
CRBAC1 is defined as follows:

Definition 5 (CRBAC1). The CRBAC1 model con-
sists of the following components:

• Sub, Rig, Dom, and usr are unchanged from CR-
BAC0.

• The sets Rolei, Capi, Obji, Sesi, Peri, ses ui, ses ri,
URAi, UCAi,j , RPAi, CPAi, and CRAi are also de-
fined as in the CRBAC0 for each domain i.

• rhi, a partial order over Rolei, called role hierarchy.
(The infix notation r′ ≥rhi r is also used to denote role
hierarchy and we can say “r′ is senior role of r” or “r is
junior role of r′” in the same sense as in the RBAC96
model.)

In addition to the above setting, the following conditions are
satisfied for each i.

(C1-1) ses ri(s) ⊆ {r | ∃r′ ≥rhi r(〈ses ui(s), r
′〉 ∈ URAi)}.

(C1-2) For each session s ∈ Sesi, it has the set of permis-
sions

S

r∈ses ri(s)
{p | ∃r′′ ≤rhi r(〈r′′, p〉 ∈ RPAi)}.

(C1-3) For each session s ∈ Sesi, it has the set of per-
missions

S

r′∈{r | 〈ci,r〉∈CRAi∧ci∈ses ci(s)}{p | ∃r′′ ≤ r′

(〈r′′, p〉 ∈ RPAi)}

The former two are related to the role hierarchy, that are the
same as in the RBAC96. Intuitively, the condition (C1-1)
means the requirement that every role activated by session
s is less or equally powerful (junior) to any role of a user
who establishes the session s. (C1-2) means the requirement
that the permissions in session s are those directly assigned
to the session’s roles and all of their junior roles. On the
other hand, the third condition guarantees the inheritance
of permissions with respect to the role hierarchy. In other
words, (C1-3) means that if a role is assigned to a capability
and it is activated, then all the permissions are assigned to
this role and to all the junior ones. More specifically, we
explain this by using a slightly extended version of Example
1 as follows:

Example 2. After urgent treatment for Alice (described
in Example 1), Bob is invited to clinic C to treat Alice in
collaboration with Charlie. For that purpose, Charlie dele-
gates to doctor1 via the capability c2. In clinic C, the role
doctor1 has a nurse as a junior role, so Bob may have all
the permissions assigned to the nurse by activating c2. One
day, the role structure in clinic C changes, so doctor1 also
has a technician as a junior role.

The state (say, S′′) after the delegation of c2 can be specified
by taking RPA′′

C and CRA′′
C as follows and all the other

components as the table in Fig 2. (Here p1 and p2 are certain
permissions.)



• RPA′′
C := {〈doctor1, p1〉, 〈nurse, p2〉}.

• CRA′′
C := {〈c2, doctor1〉}.

For this state, when Bob activates c2 by session s2 (i.e.,
ses ci(s2) = {c2} and ses ui(s2) = Bob), by condition (C1-
3) he has the permissions p1 and p2. (Note that, in this
case, the variable r′ in (C1-3) ranges over the singleton
{doctor1}.) Again, after adding the new role technician
(with 〈technician, p3〉 ∈ RPA′′

C), when Bob activates c2, by
condition (C1-3) he also has permission p3 in addition to p1

and p2.
As this example indicates, this inheritance is useful for

environments where users in different domains collaborate
on a specific domain performing as roles in this domain and
the role hierarchy may vary.

3.5 CRBAC2
Similar to the development process of the RBAC96 fam-

ily, we here develop another extension named CRBAC2. In
this paper, we focus attention on the constraints related to
the capability. In particular, we consider the following five
constraints, that would be useful for prohibiting unintended
propagation of capabilities.

(R1) Lifetime

(R2) The number of activations

(R3) The number of creations of new capabilities

(R4) The inheritance of permissions related to role hierar-
chy

(R5) The number of hops of capability transfer

There are also other constraints such as the depth of inheri-
tance of permission to create new capabilities. On the other
hand, here we do not consider the constraints on the desti-
nation of capability transfer, because it is not plausible from
the viewpoint of the implementation.

From now on, we present the formal definitions of con-
straints R1–R5 below:

R1 (Lifetime): To make the discussion simpler, we assume
that all the users as well as all the system components (e.g.,
terminal computers) refer the unique global clock. To for-
malize the notion of lifetime, we first introduce the following
constant and function:

• time (∈ Z+), the current time of the global clock rep-
resented by non-negative integer;

• lifei : Capi → Z+ × Z+, a function mapping each
capability in the i-th domain to the time from which
it can be activated and the time from which it expires.

Note that we may omit the onset and expiry time by setting
them as 0 and +∞, respectively.

By means of these constants and functions, the lifetime of
a capability can be represented by the following conditions
for any c ∈ Capi and for any i ∈ Dom:

• fst(life(c)) < time ⇒ ses ci(c) 6∈ Sesi.

• snd(life(c)) > time ⇒ ses ci(c) 6∈ Sesi.

Here fst and snd are the first and second projection of the
input.

R2 (The number of activation): To define this constraint
we first introduce the following functions:

• lim acti : Capi → N;

• cnt acti : Capi → N.

The former determines the possible number of activations,
while the latter counts the number of activations so far.
Thus, by using these functions, this constraint can be rep-
resented as the following condition for any c ∈ Capi and for
any i ∈ Dom.

lim acti(c) ≥ cnt acti(c).

R3 (The number of creations): For a constraint of this
kind, there are two options: the number of creations and
the depth of descending from a single capability. In either
case, we can represent these constraints as the restrictions
on the width and depth of the creation tree, respectively.
That is, we first introduce the following functions:

• lim cre wi : Capi → N;

• lim cre di : Capi → N.

Then the constraints are represented by the following con-
ditions for any c ∈ Capi and for any i ∈ Dom:

• lim cre wi(c) ≥ |{c′|c →cci c′ ∧ c ∈ Capi}| ;

• There is no sequence of capabilities c1, c2, . . . ck with
k = lim cre di(c) such that c →cci c1 →cci · · · ck−1 →cci

c′.

R4 (The inheritance of permissions): Although there are
various constraints of this kind, they can be defined in com-
mon by some modification of condition (C1-3) introduced
in the previous subsection. One of the simplest examples is
the constraint prohibiting any inheritance of permissions of
junior roles that can be defined by replacing (C1-3) with the
following condition:

(C1-3′) For each session s ∈ Sesi, it has the set of per-
missions

S

r′∈{r | 〈ci,r〉∈CRAi∧ci∈ses ci(s)}{p | (〈r′, p〉 ∈
RPAi)}.

R5 (The number of hops of capability transfer): To define
this, we first introduce the following functions:

• lim hopi : Capi → N, a mapping of each capability to
the limited number of times of capability transfer;

• cnt hopi : Capi → N, a mapping of each capability to
the number of the capability transfers that have been
executed so far.

As a formalization of R2, the former determines the possi-
ble number of hops of capability transfer, while the latter
counts the number of hops so far. Thus, the constraint is
represented as the following condition for any c ∈ Capi and
for any i ∈ Dom:

lim hopi(c) ≥ cnt hopi(c).
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(b) State S′′ (after the delegation)

Dept. of Surgery (D1) Dept. of SI (D2)

Usr David, Eliza Doctor, Technician
Role supervisor, residency doctor, technician
Per create, may(Dev, operate), may(Dev, setup)
Cap [c2] [c1]
URA 〈David, residency〉, 〈Eliza, supervisor〉 〈Doctor, doctor〉, 〈Technician, technician〉
RPA 〈doctor, create〉, 〈doctor, may(Dev, operate)〉,

〈technician, may(Dev, setup)〉
UCA [〈Eliza, {c1}〉, 〈David, {c2}〉]
CPA [〈c2, may(Dev, operate)〉]
CRA [〈c1, doctor〉]
CT [c1 → c2] [doctor → c1]

Figure 3: Case 1

The constraints presented above are indeed useful to avoid
security issues with respect to delegation based on the ca-
pability transfer. For example, considering the scenario of
Example 1, it would be better to restrict the lifetime (i.e.
R1) and/or the number of activations (i.e. R2) of capabil-
ity c1, and it is also the case for constraints R3 and R5 in
prohibiting unwanted propagation of the permission in hos-
pital H. Additionally, for the case of Example 2, if Bob does
not need to activate roles other than doctor1 for collabora-
tion purposes, it would be better to cut off the inheritance
relationship of doctor1 by the constraint R4.

4. CASE STUDY
In this section we demonstrate how to apply our model

to some specific environments. For this purpose we consider
two cases of clinical information systems.

4.1 Case 1
The first case is a scenario where delegations are done both

in a single domain and across multiple domains. (See also
Fig 3 (a) for the graphical presentation of this case.) This
case also includes the creation of capabilities both from a role
and another capability. We also consider some constraints
on the capabilities.

Case 1. David starts his new post of residency in the
department of surgery in hospital H, where Eliza is his su-
pervisory doctor. In this hospital, Eliza has charge of a
special investigation, so she has the capability (called c1),
which is created from role doctor by a doctor in the depart-
ment of special investigation, to operate the computer device

for the investigation. In the department of special investi-
gation, other than doctors, there are some technicians who
engage in the setup of this device. So, they are assigned the
role technician to permit only the setup of the device. Two
months later, David has gained sufficient training to han-
dle this special device, thus Eliza creates a new capability
(called c2) from c1 to operate the device and passes it to
him. Here, the lifetime of c2 is set as his residency period.

The basic components of the state after the delegations of
c1 and c2 are presented in the table of Fig 3 (b), where the
components surrounded by square brackets are newly added
by the delegation process.

The delegation process can be specified by the following
state transitions:

• S ; S′ by
D1(Doctor, Eliza, c1, doctor, {doctor});

• S′ ; S′′ by
D4(Eliza, David, c2, c1, {may(Dev, operate)}).

Here, S, S′, and S′′ are initial state, the state after the first
delegation, and the state after the second delegation. More
precisely, according to the D1 rule, the intermediate state
S′ can be obtained by the following replacement:

• Cap′
D2 := CapD2 ∪ {c1};

• CT ′
D2 := CTD2 ∪ {〈doctor, c1〉};

• UCA′
D2 := UCAD2 ∪ {〈Eliza, {c1}〉};
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(b) State S′′′ (after the delegation)

Clinic C Hospital H

Usr Fritz George, Hillary
Role doctor1 doctor2

Per create, may(DB1, access) create, may(DB2, access)
Cap [c1, c3] [c2]
URA 〈Fritz, doctor1〉 〈George, doctor2〉, 〈Hillary, doctor2〉
RPA 〈doctor1, create〉, 〈doctor1, may(DB1, access)〉 〈doctor2, create〉, 〈doctor2, may(DB2, access)〉
UCA [〈Fritz, {c3}〉] [〈George, {c1}〉, 〈Hillary, {c2}〉]
CPA [〈c1, create〉, 〈c1, may(DB, access)〉] [〈c2, may(DB, access)〉]
CT [doctor1 → c1] [c1 → c2, doctor2 → c3]

Figure 4: Case 2

• CRA′
D2 := CRAD2 ∪ {〈c1, doctor〉}.

Again, according to the D4 rule, the final state S′ can be
obtained from S1 by the following replacement:

• Cap′′
D1 := Cap′

D1 ∪ {c2};

• CT ′′
D1 := CT ′

D1 ∪ {〈c1, c2〉};

• UCA′′
D1 := UCA′

D1 ∪ {〈David, {c2}〉};

• CPA′′
D1 := CPA′

D1 ∪ {〈c2, {may(DB, operate)〉}.

In this case we may consider the following constraints.
First, with the delegation of c1, Eliza may operate the com-
puter device by activating the role doctor. Moreover, in
domain D2, if doctor is in a senior role to the technician
then she is also allowed to set up the device by the condi-
tion (C1-3) in either CRBAC1 or CRBAC3. Otherwise, if
Eliza does not need to set up the device, it is possible to
introduce constraint R4 to forbid her to do so. In addition
to the above constraint, Eliza can weaken the authority of
c2 by adding lifetime or by disabling any new creation or
transfer using R1, R3, R5, respectively. We note that such
constraints can be naturally represented in our model by
using some special functions introduced in Section 3.5.

4.2 Case 2
The second case is a more complex scenario. (See also Fig

4 (a) for the graphical presentation of this case.)

Case 2. Alice regularly sees Fritz, her primary care doc-
tor at a clinic C. One day, Alice’s medical condition takes
a turn for the worse, so he puts Alice in touch with George,
a doctor for cardiovascular internal medicine in the general
hospital H, to provide an examination by a specialist. At
this time, to allow George to read Alice’s medical record in
the clinic, Fritz creates a new capability (called c1) from his
role doctor1 and passes it to him. Then he performs physical
examinations referring to Alice’s past medical record. As a
result, George considers that she requires hospitalization to
undergo cardiac surgery. He consults Hillary, a doctor in
the department of cardiac surgery and allows her to read
Alice’s medical record by making another capability (called
c2) from this capability c1. Hillary agrees with George’s
assessment and admits Alice to hospital H. Then Hillary
makes a plan for diagnoses and treatments based on the ex-
aminations and the past medical record. In addition, Fritz is
accepted as a care member for Alice by the regional referral
system, so Hillary makes a capability (called c3) to access
Alice’s medical chart in Hospital H, and passes it to him.

The basic components of the final state are presented in
the table of Fig 4 (b). The delegation process can be speci-
fied by the following state transitions:

• S ; S′ by
D2(Fritz, George, c1, doctor1,

{create, may(DB1, access)})

• S′ ; S′′ by
D4(George, Hillary, c2, c1, {may(DB1, access)})



• S′′ ; S′′′ by
D2(Hillary, Fritz, c3, c2, {may(DB2, access)})

Similar to the previous case, here we may consider some
constraints on the delegation. First, when Fritz creates c1,
he can set the limit number of creations (i.e., R3) as well as
the number of hops of capability transfer (i.e., R5). So, if he
wants to forbid any propagation of the permission assigned
to c1, he can set the numbers of both lim hopC(c1) and
lim cre wC(c1) as 0. In this case, George cannot propagate
it because it would violate the conditions of R3 and R5.

In closing the case study, we would like to stress the follow-
ing points. First, as these scenarios indicate, our model sup-
ports a flexible user-to-user delegation of both roles and per-
missions without any authentication. This would be helpful
for collaboration between different domains. Next, as pre-
sented in the explanations, our model provides delegators
to set various constraints on the propagation of capability
by combining basic constraint rules R1–R5. This would
be useful to compensate for the intrinsic weakness in the
capability-based access control.

5. CONCLUSIONS AND FUTURE WORK
We proposed an access control model named CRBAC in-

tegrating a capability-based access control mechanism into
the RBAC96 model. Owing to the flexibility of capability-
based access control, our model supported both delegation
of roles and permissions in terms of capability transfer. Ad-
ditionally, CRBAC made possible cross-domain delegation
without any authentication, which should reduce the ad-
ministration costs. Similar to the RBAC96 model, we also
addressed some extensions by introducing role hierarchy as
well as various types of constraints on the capability-based
delegation, thereby providing a high level of collaboration
between different organizations while preventing unintended
propagation of the capabilities.

For future work, one of the most interesting and worth-
while directions is to develop a formal method for security
verification of the CRBAC. In particular, we are interested
in a method for detecting unintended propagation of capa-
bility by searching all possible delegation processes using a
model-checking technique [5]. We are also interested in the
feasibility of the proposed model, which could be investi-
gated through a prototype implementation.
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