
RULE 2005 Preliminary Version

Completeness and Counter-Example
Generations of a Basic Protocol Logic

(Extended Abstract)

Koji Hasebe 1,2 and Mitsuhiro Okada 1,3

Department of Philosophy
Keio University

2-15-45, Mita, Minato-ku, Tokyo 108-8345, Japan

Abstract

We give an axiomatic system in first-order predicate logic with equality for proving
security protocols correct. Our axioms and inference rules derive the basic inference
rules, which are explicitly or implicitly used in the literature of protocol logics,
hence we call our axiomatic system Basic Protocol Logic (or BPL, for short). We
give a formal semantics for BPL, and show the completeness theorem such that for
any given query (which represents a correctness property) the query is provable iff
it is true for any model. Moreover, as a corollary of our completeness proof, the
decidability of provability in BPL holds for any given query. In our formal semantics
we consider a “trace” any kind of sequence of primitive actions, counter-models
(which are generated from an unprovable query) cannot be immediately regarded
as realizable traces (i.e., attacked processes on the protocol in question). However,
with the aid of Comon-Treinen’s algorithm for the intruder deduction problem, we
can determine whether there exists a realizable trace among formal counter-models,
if any, generated by the proof-search method (used in our completeness proof). We
also demonstrate that our method is useful for both proof construction and flaw
analysis by using a simple example.

Key words: security protocol analysis, first-order predicate logic,
agreement properties, proof-search method.

1 This work was partly supported by Grants-in-Aid for Scientific Research of MEXT, Center
of Excellence of MEXT on Humanity Sciences (Keio University) and Oogata-kenkyu-jyosei
grant (Keio University). The first author was also supported by Fellowship for Japan Young
Scientists from Japan Society for the Promotion of Science.
2 Email: hasebe@abelard.flet.keio.ac.jp
3 Email: mitsu@abelard.flet.keio.ac.jp

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Hasebe and Okada

1 Introduction

For the formal analysis of security protocols, there are two typical approaches
among others: one emphasizing a syntactic method such as BAN-logic [2] and
protocol logics of [9,7,16] (cf. also [1] for a protocol composition logic project
overview), and the other emphasizing a semantic method such as the strand
space method [18] and MSR [4]. The former approach aims at proving a prop-
erty which guarantees a protocol correct in terms of a certain logical inference
system, while the latter approach aims at detecting flaws in a protocol (i.e.,
concrete attacks on a protocol) in terms of a kind of trace-model. In this paper
we take the former approach. That is, our main purpose in this paper is to
give a simple formulation of a core part of the protocol logics of [9,7,16] for
proving protocols correct. We also aim at connecting this formal approach to
a method for the flaw detection. Especially, we concentrate on several types
of agreement properties in the sense of [20,14], and investigate how much one
can formulate a basic part of the protocol logics, which is enough to prove our
aimed properties, within the first-order predicate logic. (Thus, in this paper
we do not go into the secrecy property about nonces or session keys. Such a
property is also an important matter for security analysis because agreement
properties of some protocols depend on their secrecy properties.) Moreover,
we also give a complete formal semantics of BPL, and present how to apply
our framework for both proving correctness and detecting flaws of security
protocols.

For that purpose, we first give an axiomatic system in first-order predicate
logic for proving the agreement properties. In this system, we formalize some
properties about nonces and cryptographic assumptions as non-logical axioms
in first-order predicate logic with equality, and give a special form of formulas,
called query form, which represents an agreement property restricted to the
number of data items (i.e., nonces) in the protocol in question. Then the basic
inference rules, which are explicitly or implicitly used for proving agreement
properties in the protocol logics of [9,7,16], are derived rules of our system.
Hence our formulation is called Basic Protocol Logic (or BPL, for short).

Next, we give a formal semantics for BPL and show the completeness the-
orem such that for any given query, the query is provable in BPL iff it is true
for any model. This theorem is proved by adjusting the usual proof-search
method for the first-order predicate logic into our framework (cf. [17]). As a
direct corollary of the completeness theorem, our proof-search method of the
completeness proof provides a counter-example generation if the given query
is unprovable. Moreover, as a corollary of our completeness proof, the decid-
ability of provability in BPL also holds for any query. (In this paper, we only
sketch out the proofs of the completeness theorem and its corollaries. The
detailed proofs will appear in the full version of this paper.) In our formal
semantics we consider a “trace” any kind of sequence of primitive actions, thus
a counter-example (generated from an unprovable query) cannot be immedi-

2

Hasebe and Okada

ately regarded as a realizable trace (i.e., an attacked process on the protocol
in question). However, with the aid of Comon-Treinen’s algorithm for the
intruder deduction problem [6], we can determine whether there exists a real-
izable trace among formal counter-examples. Therefore, by the combination
of our completeness proof and the Comon-Treinen’s algorithm, for any given
query we can generate attacked processes on the protocol, if any, whenever we
set any upper-bound on the number of data items.

Since our proof construction procedure is directly a counter-example gen-
eration, this work would make a contribution to bridge the gap between the
two different directions of security protocol analysis, namely proving correct-
ness and finding attacks. Finally, we also demonstrate by a simple example
that our method is useful for both proof constructions and flaw detections.

Organization of this paper. In Section 2 we introduce an axiomatic sys-
tem, called Basic Protocol Logic in first-order predicate logic, and formalize
our aimed correctness properties as a special form of formulas, called query
form. In Section 3 we give a trace-based formal semantics and show the
soundness theorem for the query form. In Section 4 we show the completeness
theorem and the decidability of provability for the query form, and explain
how to construct proofs/attacked processes for a given query by means of the
proof-search method and Comon-Treinen’s algorithm for the intruder deduc-
tion problem. Finally, in Section 5 we present the conclusions and outline
some further directions of this research.

2 Basic Protocol Logic

We first fix our language in first-order predicate logic with equality, and give
an axiomatic system, called Basic Protocol Logic. In this system, our aimed
correctness properties are described as a special form of formulas, called query
form.

2.1 Language

Sorts and terms. Our language is order-sorted, which consists of sorts
name, nonce and message. A,B, . . . , A1, A2, . . . (P,Q, . . . , P1, P2, . . ., resp.) are
constants (variables, resp.) of sort name (which represent principal name), and
N, N ′, . . . , N1, N2, . . . (n, n′, . . . , n1, n2, . . ., resp.) are constants (variables,
resp.) of sort nonce. All terms of sorts name and nonce are terms of sort
message. The symbols m,m′, . . . ,m1,m2, . . . are used to denote variables of
sort message. Compound terms of sort message are made by the functions
〈m1, . . . , mn〉, {m}P and {m}P−1 , which represent n-tuple concatenation of
messages, encryption of public key and secret key for P , respectively. We also
use the meta-symbols s, s′, . . . , t, t′, . . . to denote any terms of sort message. 4

4 In order to make our discussion simpler, in this paper we do not consider symmetric
cryptography nor protocols for sharing session keys, however our formalization can be easily

3

Hasebe and Okada

Formulas. We introduce five binary predicate symbols: P generates n,
P receives m, P sends m, m = m′ and m ⊆ m′, which represent “P generates
a fresh value n as a nonce”, “P receives a message m”, “P sends a message
m”, and usual equality and subterm relation (i.e., “m is identical with m′”
and “m is a subterm of m′”), respectively. The first three are called action
predicates, and the meta expression acts is used to denote one of the action
predicates: generates, receives and sends.

Atomic formulas are the following expressions: P1 acts1 m1; P2 acts2 m2; · · · ;
Pk actsk mk (where k ≥ 1 and Pi (mi, resp.) may be the same as Pj (mj,
resp.) for any i ̸= j), m = m′ and m ⊆ m′. The first one is called trace
formula. This type of atomic formulas is used to represent a sequence of
principal’s actions: for example, the intuitive meaning of the atomic for-
mula P sends m; Q receives m′ is “P sends a message m before Q receives
a message m′”. We also use the following symbols as meta expressions.
αP , βP , . . . , αP

1 , αP
2 , . . . (or simply, α, β, . . . , α1, α2, . . .) is used to denote a trace

formula of the form P acts m, and αP1
1 ; · · · ; αPk

k (or α⃗, for short) is used to
denote P1 acts1 m1; · · · ; Pk actsk mk (where k indicates the length of α⃗). Es-
pecially, when every Pi is identical with P for 1 ≤ i ≤ k (i.e., a sequence of
actions performed by a single principal P), we also use α⃗P to denote such a

trace formula. For α⃗ (≡ α1; · · · ; αm) and β⃗ (≡ β1; · · · ; βn), we say β⃗ includes

α⃗ (denoted by α⃗ ⊆ β⃗), if α⃗ and β⃗ satisfies the following condition: αi appears

in β⃗ for all i (1 ≤ i ≤ m), and for any αi ≡ βj and αk ≡ βl if i < k then j < l

for any 1 ≤ i, k ≤ m. (Roughly speaking, α⃗ ⊆ β⃗ means that all the action

predicates in α⃗ appear in β⃗ with preserving the order of α⃗.)

The formulas (denoted by ϕ, ψ, . . .) are made by the following grammar.

ϕ ::= α⃗ | m = m′ | m ⊆ m′ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | ∀xϕ | ∃xϕ

We use the meta expression ϕ[m⃗] to indicate the list of terms m⃗ occurring
in ϕ. Substitutions are represented in terms of this notation.

Finally, we introduce the notion of (strict) order-preserving merge of trace

formulas α⃗ and β⃗, which is defined as follows.

Definition 2.1 (Order-preserving merge) An order-preserving merge of

α⃗ (≡ α1; · · · ; αl) and β⃗ (≡ β1; · · · ; βm) is a trace formula δ⃗ (≡ δ1; · · · ; δn) which

is made by the following rules. (As a special case, if α⃗ and β⃗ is empty then
we respectively consider l = 0 and n = 0.)

(i) δ1 ≡ α1 or β1.

(ii) For each i (1 ≤ i ≤ n), if α1; · · · ; αj ⊆ δ1; · · · ; δi and β1; · · · ; βk ⊆
δ1; · · · ; δi (for some 0 ≤ j ≤ l and 0 ≤ k ≤ m), then δi+1 ≡ αj+1 or
βk+1.

(iii) If δ⃗ ≡ δ1; · · · ; δi; δi+1; · · · ; δn is an order-preserving merge of α⃗ and β⃗ with

δi ≡ δi+1, then δ⃗′ ≡ δ1; · · · ; δi−1; δi+1; · · · ; δn is also an order-preserving

extended so as to include such notions.

4

Hasebe and Okada

merge of α⃗ and β⃗.

We also introduce another type of order-preserving merge which is made only
by the rules (i) and (ii), and call it strict order-preserving merge of α⃗ and

β⃗. For example, both α1; α2; α2; α3 and α2; α1; α3; α2 and α1; α2; α3 are order-
preserving merges of α1; α2 and α2; α3, while the last one is not a strict order-
preserving merge.

Description of roles

A protocol is a set of roles, and each role for a principal (say, P) is described
as a trace formula of the form α⃗P ≡ P acts1 m1; · · · ; P actsk mk.

As an example, here we consider the Needham-Schroeder public key pro-
tocol [15], whose informal description is as follows.

1. P → Q: {n1, P}Q

2. Q → P : {n1, n2}P

3. P → Q: {n2}Q

Initiator’s and responder’s roles of the Needham-Schroeder public key protocol
(denoted by InitNS and RespNS, respectively) are described as the following
formulas.

Example 2.2 (Roles of the Needham-Schroeder protocol)

InitNS[P, Q, n1, n2] ≡
P generates n1; P sends {n1, P}Q; P receives {n1, n2}P ; P sends {n2}Q

RespNS[P, Q, n1, n2] ≡
Q receives {n1, P}Q; Q generates n2; Q sends {n1, n2}P ; Q receives {n2}Q

A run of a role α⃗P is a formula obtained by substituting P , Q⃗ and n⃗ with
some terms of the same sorts. For example, InitNS[A/P,B/Q,N1/n1, N2/n2]
and RespNS[A/P, B/Q, N1/n1, N2/n2] are runs of InitNS and RespNS, respec-
tively, and we call such a set of instances A,B, N1, N2 data items. A strict
order-preserving merge of runs of a role α⃗P is called multiple runs of α⃗P .

2.2 Basic Protocol Logic

We extend the usual first-order predicate logic with equality by adding the
following axioms (I), (II) and (III). This axiomatic system is called Basic
Protocol Logic.

(I) Axioms of universal sentences over terms. We presume the following
axioms for = and ⊆. When a finite set of literals {t1 = t′1, . . . , tn = t′n, s1 ⊆
s′1, . . . sj ⊆ s′j, u1 ̸= u′

1, . . . , uk ̸= u′
k, v1 ̸⊆ v′

1, . . . , vl ̸⊆ v′
l} is unsatisfiable in

the free term algebra of our language (where = and ⊆ are the identity terms
and subterm relation in the free term algebra), then ∀m⃗¬(t1 = t′1 ∧ · · · ∧ tn =
t′n ∧ s1 ⊆ s′1 ∧ · · · ∧ sj ⊆ s′j ∧ u1 ̸= u′

1 ∧ · · · ∧ uk ̸= u′
k ∧ v1 ̸⊆ v′

1 ∧ · · · ∧ vl ̸⊆ v′
l)

5

Hasebe and Okada

is an axiom. Note that the satisfaction problem is decidable in the free term
algebra (cf. [19]), hence the set of axioms of type 1 is recursive.

(II) Rules for trace formulas. We introduce the following axioms (1) and
(2) for trace formulas, where γ⃗i’s in (2) are the list of order-preserving merges

of α⃗ and β⃗.

(1) β⃗ → α⃗ (for α⃗ ⊆ β⃗)

(2) γ⃗1 ∨ · · · ∨ γ⃗n ↔ α⃗ ∧ β⃗

(III) Axioms for relationship between properties. We introduce the
following set of formulas as non-logical axioms. These axioms represent some
properties about nonces and cryptographic assumptions.

(1) Ordering 1:
∀PQnm(P generates n ∧ Q sends/receives m ∧ n ⊆ m
→ ¬(Q sends/receives m; P generates n))

(2) Ordering 2:
∀PQmm′(P sends/receives m ∧ {m′}Q−1 ⊆ m
→ ∃m′′(Q sends m′′; P sends/receives m ∧ {m′}Q−1 ⊆ m′′))

(3) Nonce Verification 1:
∀PQn1m2m5m6(P generates n1 ∧ P sends m2 ∧ n1 ⊆ m2 ∧ P receives m5

∧ n1 ⊆ m6 ∧ {m6}Q−1 ⊆ m5

∧ ∀m7(P sends m7 ∧ n1 ⊆ m7 → m7 = m2)
→ ∃m3m4(P sends m2; Q receives m3; Q sends m4; P receives m5

∧ n1 ⊆ m3 ∧ {m6}Q−1 ⊆ m4))

(4) Nonce verification 2:
∀PQn1m2m5m6(P generates n1 ∧ P sends m2 ∧ n1 ⊆ m2 ∧ P receives m5

∧ {m6}Q ̸⊆ m5 ∧ n1 ⊆ m5 ∧ {m6}Q ⊆ m2

∧ ∀m7(P sends m7 ∧ n1 ⊆ m7 → m7 = m2)
∧ ∀m8(n1 ⊆ m8 ∧ m8 ⊆ m2 → m8 ⊆ {m6}Q)

→ ∃m3m4(P sends m2; Q receives m3; Q sends m4; P receives m5

∧ {m6}Q ⊆ m3 ∧ n1 ⊆ m4))

(5) Nonce verification 3:
∀PQn1m4m5m6m9(P generates n1 ∧P sends m2 ∧n1 ⊆ m2 ∧P receives m5

∧ {m6}Q ̸⊆ m5 ∧ n1 ⊆ m5 ∧ {m6}Q ⊆ m2

∧ ∀m7(P sends m7 ∧ n1 ⊆ m7 → m7 = m2)
∧ ∀m8(n1 ⊆ m8 ∧ m8 ⊆ m2 → m8 ⊆ {m6}Q)
∧ Q sends {m4}P ∧ n1 ⊆ m4

∧ ∀m10(Q sends m10 ∧ n1 ⊆ m10 → m10 = {m9}P)
→ {m9}P = m5)

Here, the expression “sends/receives” denotes sends or receives, and these
are corresponding in each axiom. Ordering 1 and 2 represent ordering of

6

Hasebe and Okada

actions related to nonces and encrypted messages, respectively. Nonce Ver-
ification 1−3 largely depend on the idea of authentication tests-based strand
space method introduced by [10]: Nonce Verification 1 is a formalization of
Incoming tests and Nonce Verification 2 and 3 are formalizations of Outgoing
tests.

2.3 Query form and correctness properties

Our aimed correctness properties are described in a special form of formulas,
called query form. The query form includes a formalization of principal’s
honesty (denoted by Honest(α⃗P)), which is defined as follows.

Definition 2.3 (Principal’s honesty)

Honest(α⃗P [P, Q⃗, n⃗])
def≡ ∃Q⃗n⃗

∨
i∈{j | mj∈Sends(α⃗P [P,Q⃗,n⃗])}∪{k} α⃗P (i)[P, Q⃗, n⃗] ∧ Only(α⃗P (i)[P, Q⃗, n⃗])

Here, α⃗P [P, Q⃗, n⃗] is a role of the form P acts1 m1; P acts2 m2; · · · ; P actsk mk

where each actsi (1 ≤ i ≤ k) is one of sends, receives and generates, and

α⃗P (i)[P, Q⃗, n⃗] denotes an initial segment of α⃗P [P, Q⃗, n⃗] ending with P acts i mi

(for 0 ≤ i ≤ k), i.e., α⃗P (i)[P, Q⃗, n⃗] ≡ P acts1 m1; · · ·P actsi mi. (As a special
case, α⃗P (0) denotes ⊤.) Only(α⃗P (i)) denotes the following formula, whose

intuitive meaning is “P performs only α⃗P (i)[P, Q⃗, n⃗]”.

Only(α⃗P (i)) ≡ ∀n1(P generates n1 → n1 ∈ Generates(α⃗P (i)))

∧∀m2(P sends m2 → m2 ∈ Sends(α⃗P (i)))

∧∀m3(P receives m3 → m3 ∈ Receives(α⃗P (i))))

Here, Sends(α⃗P (i)) denotes the set {mj | P sends mj ⊆ α⃗P (i)}. (Receives(α⃗P (i))
and Generates(α⃗P (i)) are similar.) Set theoretical notation, such as m ∈
Sends(α⃗P (i)) (as well as m ∈ Receivess(α⃗P (i)) and m ∈ Generates(α⃗P (i)))
is an abbreviation of the disjunctive form: for example, if Sends(α⃗P (i)) =
{m′

1, . . . , m
′
j}, then m ∈ Sends(α⃗P (i)) denotes the formula (m = m′

1) ∨ (m =
m′

2) ∨ · · · ∨ (m = m′
j). (As a special case, if Sends(α⃗P (i)) is empty then

m ∈ Sends(α⃗P (i)) denotes ⊥.)

Intuitively, each disjunct α⃗P (i)∧Only(α⃗P (i)) in Honest(α⃗P) represents a
historical record of P ’s actions at each step of his/her run: the sequence of
actions α⃗P (i) ≡ P acts1 m1; · · · ; P acts i mi represents the P ’s performance at
this step, and Only(α⃗P (i)) represents that P performs only α⃗P (i). Especially,
as a special case, α⃗P (0) ∧ Only(α⃗P (0)) represents that P performs no action.

Thus, Honest(α⃗P [P, Q⃗, n⃗]) represents “P performs only a (possibly multiple)
run of an initial segment of α⃗P which ends with a sending action or the last
action of α⃗P , and uses the same data items Q⃗ and n⃗, for each run”.

As an example, we present the honesty of initiator (say, A) of the Needham-
Schroeder protocol below.

7

Hasebe and Okada

Example 2.4 (Initiator’s honesty of the NS protocol)
Honest(InitNS[A/P, Q, n1, n2]) ≡

∃Qn1n2

∀n3(A generates n3 → ⊥)
∧∀m4(A sends m4 → ⊥)
∧∀m5(A receives m5 → ⊥)

∨

A generates n1; A sends {n1, A}Q

∧∀n3(A generates n3 → n3 = n1)
∧∀m4(A sends m4 → m4 = {n1, A}Q)
∧∀m5(A receives m5 → ⊥)

∨

A generates n1;A sends {n1, A}Q; A receives {n1, n2}A; A sends {n2}Q

∧∀n3(A generates n3 → n3 = n1)
∧∀m4(A sends m4 → m4 = {n1, A}Q ∨ m4 = {n2}Q)
∧∀m5(A receives m5 → m5 = {n1, n2}A)

Note that our formalization of honesty is stronger than the usual sense.
That is, our definition of honesty is restricted to a single set of data items used
for the honest principal’s runs, whereas the usual sense of honesty means that
P may perform multiple runs whose data items may differ from each other.
However, by regarding a strict order-preserving merge of a certain number
of the same role as a single role, we can represent the honesty with respect
to any finite number of the sets of data items which are used for all possible
runs by the honest principal. As an example, we present the case of initiator’s
(say, A’s) honesty of the Needham-Schroeder protocol, such that A may use
a couple of sets of data items [Q, n1, n2] and [Q′, n′

1, n
′
2].

∃QQ′n1n2n
′
1n

′
2

∀n3(A generates n3 → ⊥)
∧∀m4(A sends m4 → ⊥)
∧∀m5(A receives m5 → ⊥)

∨

A generates n1;A sends {n1, A}Q

∧∀n3(A generates n3 → n3 = n1)
∧∀m4(A sends m4 → m4 = {n1, A}Q)
∧∀m5(A receives m5 → ⊥)

∨

A generates n1;A sends {n1, A}Q;A receives {n1, n2}A;A sends {n2}Q

∧∀n3(A generates n3 → n3 = n1)
∧∀m4(A sends m4 → m4 = {n1, A}Q ∨ m4 = {n2}Q)
∧∀m5(A receives m5 → m5 = {n1, n2}A)

∨

A generates n1;A sends {n1, A}Q ∧ A generates n′
1;A sends {n′

1, A}′Q
∧∀n3(A generates n3 → n3 = n1 ∨ n3 = n′

1)
∧∀m4(A sends m4 → m4 = {n1, A}Q ∨ m4 = {n′

1, A}Q′)
∧∀m5(A receives m5 → ⊥)

8

Hasebe and Okada

∨

A generates n1;A sends {n1, A}Q;A receives {n1, n2}A;A sends {n2}Q

∧A generates n′
1;A sends {n1, A}Q′

∧∀n3(A generates n3 → n3 = n1 ∨ n3 = n′
1)

∧∀m4(A sends m4 → m4 = {n1, A}Q ∨ m4 = {n2}Q ∨ m4 = {n′
1, A}Q′)

∧∀m5(A receives m5 → m5 = {n1, n2}A)

∨

A generates n1;A sends {n1, A}Q;A receives {n1, n2}A;A sends {n2}Q

∧A generates n′
1;A sends {n′

1, A}Q′ ;A receives {n′
1, n

′
2}A;A sends {n2}Q′

∧∀n3(A generates n3 → n3 = n1 ∨ n3 = n′
1)

∧∀m4(A sends m4

→ m4 = {n1, A}Q ∨ m4 = {n2}Q ∨ m4 = {n′
1, A}Q′ ∨ m4 = {n′

2}Q′)
∧∀m5(A receives m5 → m5 = {n1, n2}A ∨ m5 = {n′

1, n
′
2}A)

First-order formalization of correctness properties

We introduce a general form of formulas, called query form, to represents
our aimed correctness properties. In order to make the discussion simpler,
we consider only the case of two party authentication protocols, however our
query form can be easily extended so as to represent the correctness prop-
erties with respect to other types of protocols which include more than two
principals.

Definition 2.5 (Query form) Query form is a formula of the following form.

Honest(α⃗P) ∧ β⃗Q ∧ Only(β⃗Q) → γ⃗

Our aimed correctness properties are described as a special case of the
query form. For example, the non-injective agreement of protocol Π = {α⃗P [P,Q, n⃗],

β⃗Q[P,Q, n⃗]} from responder’s (say, B’s) view can be described as the following
formula.

Honest(α⃗P [A/P,Q, n⃗]) ∧ β⃗Q[A/P, B/Q, N⃗/n⃗]

∧Only(β⃗Q[A/P,B/Q, N⃗/n⃗]) → α⃗P [A/P, B/Q, N⃗/n⃗]

The matching conversations and the injective agreement can be obtained by
replacing the right hand side of implication with the strict order-preserving
merge of α⃗P [A/P, B/Q, N⃗/n⃗] and β⃗Q[A/P, B/Q, N⃗/n⃗] defined by the protocol

Π, and with α⃗P [A/P,B/Q, N⃗/n⃗] ∧ Only(α⃗P [A/P,B/Q, N⃗/n⃗]), respectively.

Actually, our formalization of the agreement properties is weaker than the
usual sense, because our honesty assumption is stronger than the usual sense.
However, as we have explained in the definition of honesty (Definition 2.3),
our query form can be extended so that the honest principal may use a finite
number of sets of data items used for his/her runs.

A comparison between BPL and other protocol logics

In closing this chapter, we would like to point out some differences between
BPL and other protocol logics.

9

Hasebe and Okada

One of the main differences is the formalization of inferences on honesty.
In the protocol logics of [9,7,16], the notion of honesty is formalized as an
atomic formula and inferences on honesty are drawn by a special inference
rule. On the other hand, in BPL, the notion of honesty is formalized as a non-
atomic formula and all inferences on honesty are drawn by logical inference
rules, and the inferences on honesty essentially used in [9,7,16] are derived
rules in BPL. More precisely, to prove protocols correct, the protocol logics of
[9,7,16] implicitly or explicitly use the three types of inferences: we pick up
these inferences as Honesty rules presented in Appendix A.

As for the non-logical axioms, our proposed non-logical axioms (1)-(5) of
(III) introduced in Section 2.2 do not essentially depend on our framework.
Especially, as we shall show in Section 4, our completeness and decidability
arguments are not affected by the choice of non-logical axioms. Our choice of
non-logical axioms in this paper is one of the simplest formalism sufficient to
prove our aimed correctness properties. Then the basic inference rules used
in the protocol logics are essentially derived rules of BPL. Here we emphasize
that BPL is formalized in first-order predicate logic without any temporal
modal operators nor Floyd-Hoare style dynamic operator which are used in
the protocol logics of [9,7]: this is the reason why we call our system “basic”.

3 Formal Semantics and Soundness

In this section, we give a semantics of our system.

A trace model (or model) is M = (DP , DN , α⃗, Φ) where DP is a set, called
a name domain, DN is a set called a nonce domain, DM is the free algebra do-
main (i.e., the set of first-order terms) determined by DP and DN along with
the term construction rules using 〈 , 〉, K(,) and K−1(,), (where 〈 , 〉 is the
ordered pair function symbol, and K(,) and K−1(,) are the key-encryption
and decryption function symbols), and α⃗ is a trace. (Note that we often use
abbreviation, say {n1, {n2}A, n3}B−1 for K−1(B, 〈〈n1, K(A, n2)〉, n3〉).) In this
paper we consider only three kinds of forms of actions: A sends m, A receives m
and A generates n, where A ∈ DP , m ∈ DM . A trace α⃗ is of the form
of a finite sequence α1; · · · ; αn of (primitive) actions αi. Φ(A) ∈ DP for
a constant symbol A of the name sort, and Φ(N) ∈ DN for a constant
symbol N of the nonce sort. We extend Φ to evaluation of variables such
that Φ(P) ∈ DP and Φ(n) ∈ DN , as usual. Φ(〈t1, t2〉) = 〈Φ(t1), Φ(t2)〉,
Φ(K(A, t)) = K(Φ(A), Φ(t)), Φ(K−1(A, t)) = K−1(Φ(A), Φ(t)). For any
action predicate α(A,m), Φ(α(A,m)) = α(Φ(A), Φ(m)). For a trace for-
mula of the form α1; · · · ; αn, Φ(α1; · · · ; αn) = Φ(α1); · · · ; Φ(αn). For a model
M = (DP , DN , α⃗, Φ), m1 ⊆ m2 is true in M iff Φ(m1) is a subterm of Φ(m2),
and m1 = m2 is true in M iff Φ(m1) and Φ(m2) are identical terms (of the

same sort). β⃗ is true in M iff Φ(β⃗) ⊆ α⃗. All first-order logical connectives are
interpreted in the standard way.

10

Hasebe and Okada

Theorem 3.1 (Soundness) For any closed formula of the query form

Honest(α⃗P) ∧ β⃗Q ∧ Only(β⃗Q) → γ⃗,

if this formula is provable in BPL, then it is true for any model M = (DP , DN , α⃗, Φ).

This theorem is proved by a standard induction on the length of the proof.

4 Completeness, Decidability and Their Application to
Counter-Example Generations

In this section, we first show the completeness theorem for the query form by
means of the proof-search method. Moreover, as a corollary of our complete-
ness proof, we also show the decidability of provability for any given query.
(Actually, in this preliminary report we only sketch out these proofs. The
detailed proofs will appear in the full version of this paper.) Next, as an
application of these results, we show how to find an attack on the protocol
in question. As the main result, with the aid of Comon-Treinen’s algorithm
for the intruder deduction problem [6], for any given query we can determine
whether there exists an attack on the protocol in question, whenever we set
any upper-bound on the number of data items. At the end of this section,
we also present a concrete example of our proof construction/counter-example
generation.

4.1 Completeness and decidability for the query form

Our completeness is stated as follows.

Theorem 4.1 (Completeness) If a closed formula of the query form

Honest(α⃗P) ∧ β⃗Q ∧ Only(β⃗Q) → γ⃗

is true for any model M = (DP , DN , δ⃗, Φ), then this formula is provable in
BPL.

To prove the completeness theorem, we use the proof-search method (which
is essentially the same as Beth’s tableau method). Especially, we follow the
method and several terminologies (such as stage, branch, and available terms)
described in Section 1.8 of Takeuti [17]. In order to fix our query form to the
sequent calculus-style proof-search method, we first slightly modify our query
form as the following sequent, called a query sequent.

Honest(α⃗P), β⃗Q, Only(β⃗Q), Axioms(1)-(5) ⊢ γ⃗

Here, Axioms(1)-(5) denotes the set of non-logical axioms (1)-(5) of (III)
introduced in Section 2.2. We put these formulas as assumptions of the query.

Now we review the proof-construction process and remark the point to be
slightly modified in our setting.

11

Hasebe and Okada

Proof-construction process. For any query sequent S, we shall define the
proof-construction tree for S (denoted by T (S)). T (S) is a (possibly infinite)
tree which is constructed in rounds: the proof-construction process begins
with Round 0, where we write the query sequent S at the bottom of the tree,
and go to Round 1. Then each Round i (for i = 1, 2, . . .) consists of stages
(k = 0, 1, 2, . . . , 14) defined by cases:

Case I: Every topmost sequent, which is of the form Γ ⊢ ∆, satisfies one
of the following conditions (C1)−(C3), then the proof-construction process
terminates. We call such a sequent closed sequent.

(C1) Γ and ∆ include a formula in common.

(C2) t1 = t′1, . . . , tn = t′n, s1 ⊆ s′1, . . . sm ⊆ s′m ∈ Γ and u1 = u′
1, . . . , uk =

u′
k, v1 ⊆ v′

1, . . . , vl ⊆ v′
l ∈ ∆, and the literal {t1 = t′1, . . . , tn = t′n, s1 ⊆

s′1, . . . sm ⊆ s′m, u1 ̸= u′
1, . . . , uk ̸= u′

k, v1 ̸⊆ v′
1, . . . , vl ̸⊆ v′

l} is not satisfiable in
the free term algebra of our language. This condition is essentially the same
as axiom (I) in Section 2.2.

(C3) Γ includes a trace formula α⃗ and ∆ includes a trace formula β⃗ with

β⃗ ⊆ α⃗. This condition is essentially the same as axiom (1) of (II) in Section
2.2.

Case II: Not Case I. Then this stage is defined according as k = 0, 1, 2, . . . , 13,
14, where the cases k = 0, 1, 2, . . . , 11 and 14 are the same as [17], i.e., k = 0
and 1 concern the symbol ¬, k = 2 and 3 concern ∧, k = 4 and 5 concern ∨,
k = 6 and 7 concern →, k = 8 and 9 concern ∀, k = 10 and 11 concern ∃. In
addition to the above stages, we insert the following rules as k = 12 and 13.

• k = 12 (equality rule): Let Γ[t] ⊢ ∆[t] be any topmost sequent of the tree
which has been defined by stage k − 1. Then write down

Γ[t] ⊢ ∆[t], s = t and s = t, Γ[t], Γ[s/t] ⊢ ∆[t], ∆[s/t]
above Γ[t] ⊢ ∆[t] for all terms s and t, which are made by all available terms
of sorts name and nonce with function symbols.

We introduce this stage instead of the infinite scheme ∀x∀y(x = y ∧
F (x) → F (y)) as a hypothesis in the query.

• k = 13 (rule for trace formulas): Let Γ ⊢ ∆ be any topmost sequent of
the tree which has been defined by stage k − 1, and α⃗1, . . . , α⃗j be the trace
formulas appearing in Γ. Then write down all sequents of the form

γ⃗i, Γ
′ ⊢ ∆

above Γ ⊢ ∆, where γ⃗i is an order-preserving merge of α⃗1, . . . , α⃗j, and Γ′ is
Γ − {α⃗1, . . . , α⃗j}.

This stage is the combination of the if-part of axiom (II) (2) in Section

2.2 (i.e., γ⃗1∨· · ·∨ γ⃗n → α⃗∧ β⃗) and the ∨-left reduction. Note that we do not

need to consider the only-if part of axiom (II) (2) (i.e., α⃗∧β⃗ → γ⃗1∨· · ·∨ γ⃗n),
because in our proof-construction process there is no sequent such that a
formula of the form α⃗ ∧ β⃗ appears in the right hand side.

After applying the rule of Stage 14, if the topmost sequent is not closed, then

12

Hasebe and Okada

we go to Round i + 1 and repeat the above procedure.

Proof sketch of the completeness theorem. From now we show our
completeness proof, which is proved by using the following lemma.

Main Lemma. If there exists a branch S0, . . . , S3×14 in T (S0), where S3×14

is a sequent at the end of Round 3 and not closed, then there exists a counter-
model M = (DP , DN , δ⃗, Φ) for S0.

Here we sketch out how to construct such a counter-model M from S3×14.

Assume that θ⃗ is the trace formula appearing in the left hand side of
S3×14. (Note that at the end of each round, the left hand side of the sequent
always includes only a single trace formula.) We fix DP and DN by the
following steps: we first take the set of all literals appearing in S3×14 and
solve the satisfaction problem of these literals, then decompose each literal
which consists of compound terms (e.g., {N1, A}B = {n1, P}Q is decomposed
as N1 = n1, A = P and B = Q), then take DP and DN as representatives of
these decomposed literals. We define the assignment Φ for terms by induction
on the length of terms as follows. As the base case, each constant and variable
of sort name or nonce is interpreted by its representative (i.e., Φ(N) = N∗

(∈ DN), Φ(n) = n∗ (∈ DN) where N∗ and n∗ are the representatives of
equivalence classes of N and n, respectively, and the interpretation for terms
of sort name is similar.) Each variable (say, m) of sort message which is neither
of sort name nor nonce is interpreted by the representative of the equivalence
class of m. The induction step for terms and the definition of evaluation for
each formula are followed by the definition of Φ in Section 3. Finally, as δ⃗, we
take δ⃗ = Φ(θ⃗).

From now we show that M is a counter-model of S0. The essential idea to
prove this fact is to use the following facts: (1) Every non-logical Π0

2 axiom
is satisfiable in M ; (2) Axioms about trace formulas are satisfiable in M ; (3)
Axioms about = and ⊆ are satisfiable in M . As for the fact (1), for any branch
in a proof-construction tree, if an eigenvariable (say, m) appears in the branch,
such an eigenvariable always appears in a formula of the form A acts m. On the
other hand, as the descendants of the honesty assumption, ¬A acts m∨m = t
always appears in the branch, where t is a term appearing at this stage. Thus,
if T is the set of terms in Round 3, for the eigenvariable m which appears above
Round 3, an equation m = t with some t ∈ T always appears in the left side,
then the search domain does not increase above Round 3. As for the facts (2)
and (3), these are immediately derived from the correspondence of the logical
axioms (I) (introduced in Section 2.2) and the termination condition (C2),
and the correspondence of the logical axiom (II) (introduced in Section 2.2)
and the termination condition (C3), respectively.

By this Main Lemma, proof of our completeness theorem goes as follows.
For any given query form, if each branch of the reduction tree up to Round

13

Hasebe and Okada

3 terminates, then we can easily write a proof of this query. Then by the
contraposition, for any unprovable query there exists a branch which includes
a non-closed sequent (say, S3×14) at the end of Round 3. By Main Lemma,
we obtain a counter-model from the information of S3×14. Then by the con-
traposition, the completeness theorem holds. 2

This Main Lemma guarantees not only that our completeness holds, but
also that we only need to make a proof-construction tree up to Round 3 to
find a counter-model. Therefore, if we introduce a suitable enumeration of all
instantiations for ∀-left, ∃-right and equality rules, the following decidability
is immediately derived from Main Lemma.

Corollary 4.2 (Decidability) For any given query form, the provability of
the query in BPL is decidable.

Moreover, the following theorem holds.

Theorem 4.3 (Finite number of minimal counter-models) For any un-
provable query form, the number of counter-models, which are obtained from
the proof-construction tree of the query up to the end of Round 3, is finite.

4.2 Construction of attacked processes

By the proof-search method presented in the previous subsection, for any
given query we obtain a proof if the query holds. Otherwise we obtain counter-
models for the query. However, the traces obtained from these counter-models
cannot be immediately considered as attacked processes because in our seman-
tics we consider as a “trace” any sequence of primitive actions. In order to find
an attacked process, we introduce the notion of realizable trace by means of
the Comon-Treinen’s algorithm for the intruder deduction problem such that
for any given finite (or regular) set of messages T , and for any given message
m, whether it is possible for the intruder to retrieve m from T or not.

The definition of realizable trace is as follows.

Definition 4.4 (Realizable trace) Let δ⃗ be a sequence of actions, P1 receives m1,

. . . , Pk receives mk be the list of all receiving actions in δ⃗, and δ⃗(i) be the ini-

tial segment of δ⃗, which ends with Pi receives mi. δ⃗ is realizable if it satisfies
the following condition: for any Pi receives mi (1 ≤ i ≤ k), mi is provable

(retrievable) from Sends(δ⃗(i − 1)) in Comon-Treinen’s system of [6].

Intuitively, a realizable trace is a sequence of actions, where each receiving
message can be generated by the Dolev-Yao intruder [8]. Clearly, from a
realizable trace, which is obtained from a counter-model of a query, we can
easily construct a concrete attacked process on the protocol in question by
inserting some suitable intruder’s actions.

Since the procedure to check the realizable trace is decidable (cf. [6]), the
following theorem is immediately derived.

14

Hasebe and Okada

Theorem 4.5 (Decidability of the attacked process detection) For any

given query, the problem whether there exists a counter-model M = (DP , DN , δ⃗, Φ)

such that δ⃗ is an realizable trace is decidable.

As we have explained in the definition of our query form, we can represent
the correctness properties for any number of sets of data items (used by the
honest principal). Thus, this decidability guarantees that we can determine
whether there exists an attacked trace whenever we set any upper-bound on
the number of data items used by the principals. This decidability corresponds
to the result of former works (cf. [4]).

A suitable tactics to find an attack on the protocol in question is to increase
the search domain by extending the query form. This procedure is generally
infinite if we set no limit to the search domain. However, this procedure is op-
timal since the same undecidability result also holds in some other framework
(cf. [4]).

4.3 An example of attacked process detection

In this subsection, we show a simple example of how to find an attacked process
from counter-models obtained by a proof-search of unprovable query. Here we
consider the matching conversations for the Needham-Schroeder public key
protocol (from responder’s view), whose query sequent is as follows.

RespNS[A/P, B/Q, N1/n1, N2/n2], Honest(InitNS[A, Q, n1, n2]), Axioms,
∀n3(B generates n3 → n3 = N2), ∀m4(B sends m4 → m4 = {N1, N2}A),
∀m5(B receives m5 → m5 = {N1, A}B ∨ m5 = {N2}B)

⊢ A generates N1; A sends {N1, A}B; B receives {N1, A}B; B generates N2;
B sends {N1, N2}A; A sends {N2}B; B receives {N2}B

In the proof-construction tree of this query, there are 16 non-closed branches
at the end of Round 3, which are of the following form. (Here we use schematic
expressions: t1 is N1 or n1, t2 is N2 or n2.)

• in the left hand side, a trace formula appears which is made by order-
preserving merges of the following trace formulas:
· A generates t1; A sends {t1, A}Q; A receives {t1, t2}A; A sends {t2}Q

· B receives {t1, A}B; B generates t2; B sends {t1, t2}A; B receives {t2}B

· B sends {t1, t2}A; A receives m1; A sends m2; B receives {t2}B

• A ̸= B, A ̸= Q, B ̸= Q, N1 ̸= N2, n1 ̸= n2, N1 = n1, N2 = n2, m1 =
{t1, t2}A and m2 = {t2}Q are satisfied by all equations in this sequent.

Among the counter-models obtained by these non-closed sequents, we can
find a model M = (DP , DN , α⃗, Φ) such that DP = {A,B, Q}, DN = {N1, N2},
where A ̸= B, A ̸= Q, B ̸= Q, N1 ̸= N2, α⃗ = A generates N1; A sends {N1, A}Q;
B receives {N1, A}B; B generates N2; B sends {N1, N2}A; A receives {N1, N2}A;
A sends {N2}Q; B receives {N2}B. Moreover, the trace α⃗ is realizable: actu-
ally, we can construct an attacked process as follows.

15

Hasebe and Okada

A generates N1; A sends {N1, A}Q; Q receives {N1, A}Q; Q sends {N1, A}B;
B receives {N1, A}B; B generates N2; B sends {N1, N2}A; A receives {N1, N2}A

A sends {N2}Q; Q receives {N2}Q; Q sends {N2}B; B receives {N2}B.

This is the scenario of the attack on the Needham-Schroeder protocol de-
tected by Lowe [13].

Remark. It is known that the modification of the second message (i.e., re-
placing {N1, N2}A with {N1, N2, B}A) makes impossible the Lowe’s attack.
Actually, in our case, this modification changes the A’s honesty as follows:
∀m(A receives m → m = {n1, n2, Q}A). Then, after the appearance of B sends
{N1, N2, B}A; A receives m1; A sends m2; B receives {N2}B ∧ {N1, N2, B}A ⊆
m1∧N2 ⊆ m2, the equation B = Q should appear in the left hand side. (Oth-
erwise such branches should be closed by the termination condition (C2).)
Therefore, the trace formula A generates N1; A sends {N1, A}B; A receives
{N1, N2, B}A; A sends {N2}B should appear in the left hand side. Then, by
the termination condition (C3), such branches should be closed. Therefore, all
branches should be closed and then the agreement of this modified protocol is
provable.

5 Conclusions and Future Work

We introduced an axiomatic system in first-order predicate logic for proving
protocols correct, called Basic Protocol Logic, as a simple formulation of a basic
part of the protocol logics [9,7,16]. We also gave a simple trace-based semantics
which is complete for our query form in BPL. Moreover, as a corollary of our
completeness proof, we obtained the decidability of provability in BPL with
respect to our query. Then by combining our completeness proof and the
Comon-Treinen’s algorithm, for any given query we can generate concrete
attacks on the protocol in question, if any, whenever we set any upper bound
on the number of data items used in the protocol.

There are several directions in which this work can be developed. First, we
are interested in the extension in order to prove secrecy property about session
keys issued in a protocol. As we have mentioned in Section 1, by this exten-
sion we can treat correctness properties which are related to secrecy property,
such as in the case of Kerveros Version 5 (cf. [3]). We are also interested
in compositional approach to prove correctness of compound protocols (cf.
[9,7,16]). In our previous work [11,12], we proposed some inference systems to
prove correctness properties of a composed protocol by reusing proofs about its
components. The main idea in [11,12] was to weaken the notion of honesty.
However, our decidability result does not hold by introducing such a weak
honesty. In this paper we omitted the compositionality, although we consider
such a problem to be one of our good target to develop our framework.

16

Hasebe and Okada

Acknowledgments

We thank Andre Scedrov and Iliano Cervesato for their helpful comments and
discussions at early stages of this research.

References

[1] www.stanford.edu/~danupam/logic-derivation.html

[2] M. Burrows and M. Abadi and R. Needham. A Logic of Authentication.
Technical Report 39, Digital System Research Center, 1989.

[3] F. Butler, I. Cervesato, A.D. Jaggard and A. Scedrov. A Formal Analysis
of Some Properties of Kerberos 5 Using MSR. University of Pennsylvania
Department of Computer and Information Science Technical Report MS-CIS-
04-04, 59 pages, 2004.

[4] I. Cervesato, N.A. Durgin, P.D. Lincoln, J.C. Mitchell and A. Scedrov. Multiset
Rewriting and the Complexity of Bounded Security protocols. Journal of
Computer Security, vol.12, no.1, pp.677-722, 2004.

[5] J. Clark and J. Jacob. A Survey of Authentication Protocol Literature: Version
1.0 (web draft), 1997.

[6] Hubert Comon-Lundh and Ralf Treinen. Easy Intruder Deductions. In
Verification: Theory and Practice, essays dedicated to Zohar Manna. LNCS
series 2772, Springer-Verlag, 2003.

[7] A. Datta and A. Derek and J. C. Mitchell and D. Pavlovic. A Derivation System
for Security Protocols and its Logical Formalization. Journal of Computer
Security (Special Issue of Selected Papers from CSFW-16), 52 pages, to appear,
2005.

[8] D. Dolev and A. Yao. On the Security of Public Key Protocols. IEEE
Transactions on Information Theory, vol.29, no.2, 1983.

[9] N. Durgin and J. C. Mitchell and D. Pavlovic. A Compositional Logic for
Proving Security Properties of Protocols. Journal of Computer Security, vol.11,
no.4, pp.677-721, 2003.

[10] J. D. Guttman and F. J. Thayer Fábrega. Authentication Tests. IEEE
Symposium on Security and Privacy, pp.96-109, 2002.

[11] K. Hasebe and M. Okada. Inferences on Honesty in Compositional Logic for
Protocol Analysis. Proceedings of the International Symposium on Software
Security 2003, LNCS 3233, pp.65-86, 2004.

[12] K. Hasebe and M. Okada. Non-monotonic Properties for Proving Correctness
in a Framework of Compositional Logic. Proceedings of the workshop on
Foundations of Computer Security ’04, pp.97-113, 2004.

17

Hasebe and Okada

[13] G. Lowe. Breaking and Fixing the Needham-Schroeder Public-key Protocol
Using FDR. Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), vol.1055, pp.147-166, 1996.

[14] G. Lowe. A Hierarchy of Authentication Specifications. Proceedings of the 10th
Computer Security Foundations Workshop, pp. 31-43, 1997.

[15] R. Needham and M. Schroeder. Using Encryption for Authentication in Large
Networks of Computers. Communications of the ACM, vol.21, no.12, pp.993-
999, 1978.

[16] C. Meadows and D. Pavlovic. Deriving, Attacking and Defending the GDOI
Protocol. Proceedings of 9th European Symposium on Research in Computer
Security. pp.53-72, 2004.

[17] G. Takeuti. Proof Theory (2nd edition). North-Holland. 1987.

[18] F. J. Thayer Fábrega, J. C. Herzog and J. D. Guttman. Strand Spaces: Why
is a Security Protocol Correct? Proceedings of the 1998 IEEE Symposium on
Security and Privacy, pp.160-171, 1998.

[19] K. N. Venkataraman. Decidability of the Purely Existential Fragment of the
Theory of Term Algebras. Journal of the ACM, vol.34 no.2, pp.492-510, 1987.

[20] T. Y. C. Woo and S. S. Lam. Verifying authentication protocols: Methodology
and example. Proceedings of the International Conference on Network Protocols,
1993.

A Some Derived Rules on Honesty

In this appendix, we present some rules on honesty (called honesty rules),
which are explicitly or implicitly used to prove security protocols correct in
the protocol logics of [9,7,16]. Although we omit the formal proofs, we can
easily prove that these rules are derived rules in BPL. We also show a simple
example of correctness proof (i.e., the non-injective agreement property of the
Needham-Schroeder-Lowe protocol from the responder’s view) in the system
where the notion of honesty (denoted by Honest(α⃗P)) is introduced as an
atomic formula and the honesty rules as axioms.

Honesty rules

The honesty rules with respect to P ’s role α⃗P (≡ P acts1 m1; · · · ; P actsk mk)
are the following formulas, and we admit the formulas obtained by replacing
each sends with receives or generates.

(Hon 1) ∀m(P sends m ∧ Honest(α⃗P) → m ∈ Sends(α⃗P))

(Hon 2) ∀m(P sends m∧Honest(α⃗P) → P sends mi∨m ∈ Sends(α⃗P)−{mi})
(Hon 3) P sends mi ∧ Honest(α⃗P) → P actsi−1 mi−1; P sends mi

18

Hasebe and Okada

The following rules (1′) and (2′) are variants of (1) and (2), respectively.

(Hon 1′) ∀m′(∃m(P sends m∧m′ ⊆ m)∧Honest(α⃗P) → m′ ⊆ m′′ ∈ Sends(α⃗P))

(Hon 2′) ∀m′(∃m(P sends m ∧ m′ ⊆ m) ∧ Honest(α⃗P) → P sends mi ∨ m′ ⊆
m′′ ∈ Sends(α⃗P) − {mi})

Here, the set theoretical notation such as m ∈ Sends(α⃗P) is the same abbre-
viation used in Definition 2.3 in Section 2.3. The abbreviation m′ ⊆ m′′ ∈
Sends(α⃗P) denotes the formula m′ ⊆ m′′

1 ∨ m′ ⊆ m′′
2 ∨ · · · ∨ m′ ⊆ m′′

j , where
Sends(α⃗P) = {m′′

1, . . . , m
′′
j}.

Note that these rules (1), (2) and (3) correspond to the rules introduced
in our previous works [11,12]: Substitution, Matching and Deriving another
action, respectively. See [11,12] for the intuitive meanings of these rules.

Proof of the non-injective agreement of the NS protocol from re-
sponder’s view

Init Resp[A,B,N1, N2] ⊢ Resp[A,B,N1, N2] (1)

(1), NV2 Resp[A,B,N1, N2]
⊢ ∃m1m2(A rec m1;A sen m2 ∧ {N1, N2, B}A ⊆ m1 ∧ N2 ⊆ m2) (2)

(2), Hon 1′, Eq Resp[A,B,N1, N2] ∧ Honest(Init[P, Q, n1, n2])
⊢ N1 = n1 ∧ N2 = n2 ∧ B = Q (3)

(2), Hon 2′ Resp[A,B,N1, N2] ∧ Honest(Init[P, Q, n1, n2])
⊢ A sen {N2}B ∨ N2 ⊆ {n1, A}Q (4)

(4), Eq Resp[A,B,N1, N2] ∧ Honest(Init[P, Q, n1, n2])
⊢ A sen {N2}B (5)

(5), Hon 3 Resp[A,B,N1, N2] ∧ Honest(Init[P, Q, n1, n2])
⊢ A gen n1;A sen {n1, A}Q;A rec {n1, n2, Q}A;A sen {n2}Q (6)

(2), (6), Eq Resp[A,B,N1, N2] ∧ Honest(Init[P, Q, n1, n2])
⊢ A gen N1;A sen {N1, A}B ;A rec {N1, N2, B}A;A sen {N2}B (6)

19

