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Abstract—We present a self-stabilizing passive replication
mechanism for Internet service platforms. The proposed system
based on this mechanism aims to provide services despite
simultaneous failure of the majority of nodes. To achieve
this objective, we use the self-stabilizing consensus algorithm
introduced by Dolev et al. [7], instead of a majority-based
consensus algorithm such as Paxos. Although our system
allows temporary illegal behavior, it eventually converges on
the desired state without interruption of services. Thus, the
proposed system is useful for providing services that require
high availability, but not strict consistency, a prime example of
which is an Internet bulletin board for communication during
large-scale natural disasters. We implemented a prototype
and evaluated it with experiments to demonstrate availability
through various patterns of failures.
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I. INTRODUCTION

With the continuous growth of the Internet, the service
availability thereof has become a central issue in today’s
computing infrastructure. Replication is a widely used tech-
nique to provide high availability and fault-tolerance for In-
ternet services. Despite the idea behind this technique being
simple, its implementation is complex, because replicating
service state on multiple physical nodes requires that each
replica remains synchronized and consistent with all others.

To realize consistency of replication, a well-known pas-
sive replication technique (called primary-backup replica-
tion) is used [1]. In passive replication, one of the nodes,
called the primary, processes requests from clients and
provides responses. The other nodes, called backups, pe-
riodically receive state update messages from the primary,
allowing them to update their state to match that of the
primary. When the primary fails, one of the backups is
selected to take over as the new primary. In implementing
this technique, a consensus algorithm (cf. [2]) is often used
to achieve agreement between all nodes on which node is the
current primary, as well as on which update message is the
latest. A well-known and widely used consensus algorithm
is Paxos [8]. Generally speaking, this algorithm guarantees
that 2F + 1 nodes achieve consensus in an environment
where up to F nodes may fail simultaneously. However, if
the majority of nodes fail, this algorithm terminates without
achieving consensus. Thus, an implementation of passive

replication with such a majority-based consensus algorithm
cannot continue to provide the services if more than half the
system fails as a result of a large-scale disaster.

The objective of this research is to develop an Internet
service platform with high availability based on the passive
replication technique. In particular, our proposed system
aims to provide services despite simultaneous failure of the
majority of nodes. To implement such a platform, we use
the self-stabilizing consensus algorithm introduced by Dolev
et al. [7], instead of a majority-based one such as Paxos.
Self-stabilization [5], [6] is a fundamental property of a
distributed system that guarantees arriving at a legitimate
state in a finite number of steps regardless of the initial state.
The main feature of the self-stabilizing consensus algorithm
is that it repeatedly invokes one-shot consensus and ensures
that every non-failed node eventually agrees on a common
value in each one-shot consensus. (In [7], each one-shot
consensus is called an epoch.) Thus, although the algorithm
temporarily allows an inconsistent situation (i.e., nodes may
agree on different values at a particular epoch), it eventually
reaches a series of agreements even if the majority of nodes
fail.

By using this self-stabilizing consensus algorithm, the
behavior of passive replication can also be self-stabilized.
More precisely, our system continues to provide services as
long as at least one node survives. Nevertheless, owing to the
use of the self-stabilizing consensus algorithm, our system
may display illegal behavior at certain times. Typically, when
network delay partitions nodes into separate groups, one
node becomes the primary in each group and there may
be multiple primaries in the whole system. Thus, although
our system cannot be used as the requisite platform to
maintain strict consistency as typified by Internet banking
services, it is quite useful for Internet services that require
high availability, but not strict consistency, such as Internet
bulletin boards, especially for communication during large-
scale natural disasters.

The rest of this paper is organized as follows. Section
2 discusses related work, while Section 3 describes the
proposed self-stabilizing passive replication used for Internet
service platforms. Section 4 presents experimental results
using our prototype implementation to verify the correctness
of our system design and to demonstrate availability with



various patterns of failures. Finally, Section 5 concludes the
paper and suggests future work.

II. RELATED WORK

To realize consistent replication, various techniques have
been proposed and these can be classified into two cate-
gories, active and passive replication, the merits and de-
merits of which are complementary. In active (or state-
machine) replication [11], each node processes requests from
the clients and transitions independently. Generally, each
transition is coordinated across the nodes by means of a
consensus algorithm. Although this technique is useful due
to its low response time, it has two important drawbacks:
high computational resource usage, and the fact that client
requests have to be processed in a deterministic manner. On
the other hand, passive replication is also useful due to its
low computational cost and applicability to nondeterministic
services. However, as mentioned in the previous section, a
mechanism to agree on the current primary is required in
an implementation thereof, which is not necessary in active
replication systems.

In recent years, in order to counter these drawbacks, some
variants of these schemes have been proposed, such as semi-
active replication [12] and semi-passive replication [4]. In
[7], the authors proposed self-stabilizing active replication
as an application of their consensus algorithm. Compared
with active replication based on a majority-based consen-
sus algorithm, their replication technique provides higher
availability against simultaneous failure of the majority of
nodes. The main motivation of our research is to investigate
the applicability of the self-stabilizing consensus algorithm
to passive replication. Since the advantages of passive and
active replication are complementary, our system is also
beneficial when considering its low computation costs and
applicability to nondeterministic services.

III. SELF-STABILIZING PASSIVE REPLICATION

In this section, we first review the self-stabilizing con-
sensus algorithm introduced in [7], and then describe our
proposed self-stabilizing passive replication. Throughout this
section, we use the set N = {1, 2, . . . , n} to indicate the set
of nodes in a system.

A. Self-Stabilizing Consensus Algorithm

Consensus is a fundamental problem in distributed com-
puting. The problem is usually defined as the task of achiev-
ing a goal against failures, where every non-failed node
decides on a common output value, starting with different
inputs for the nodes in the distributed system. In [7], self-
stabilizing consensus is defined as repeated invocations of
consensus in the usual sense. More precisely, each one-shot
consensus is called an epoch, and every node decides on a
value for each epoch. Thus, the output of Node i (for i ∈ N )
is of the form 〈vi
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Figure 1. Process of self-stabilizing consensus

value for the j-th epoch. The goal is for every node to agree
on a common sequence of output values.

To solve this problem, the self-stabilizing consensus al-
gorithm is based on a method using a rotating coordinator.
In this algorithm, Node i has a pair of variables 〈ei, ri〉
for each i ∈ N . Intuitively, ei indicates the current epoch,
the output of which is in the process of being determined
by the node, while ri, referred to as round, indicates the
number of trials in the particular epoch. In terms of these
variables, the algorithm achieves self-stabilizing consensus
by the following steps. (The process is illustrated in Fig. 1,
where Node 1 is the coordinator.)

1) Every node decides a proposal vi and sends tuple
〈vi, ei, ri〉 to the other nodes. Next, if its own node
ID (i.e., the value i) is equal to r mod n, the node
becomes the coordinator.

2) The coordinator compares its own epoch number ei

with the latest epoch numbers sent by the other nodes.
If its own epoch number is the highest (more precisely,
ei > ej or ei = ej with ri > rj for any j 6= i), the
coordinator sends tuple 〈vi, si, ei, ri〉 to all the other
nodes as the proposal. Here, si (referred to as the state)
is the sequence of values decided thus far. Otherwise,
the coordinator increases ri by 1, and then returns to
Step 1.

3) If Node i is still the coordinator, it again compares its
own epoch number ei with the latest epoch numbers
sent by the other nodes. If ei is still the largest,
Node i sends tuple 〈vi, si, ei, ri〉 to all the other nodes
as the decided value, and sets the epoch and round
numbers to ei+1 and 0, respectively. Otherwise, Node
i increases ri by 1 and returns to Step 1. Each of the
other nodes updates its state with si when receiving
the decided value.

This algorithm ensures the following properties (cf. [7]
for the detailed definitions and proofs):

• eventual termination: each non-crashed node eventually
decides on a value for every epoch,

• eventual validity: each non-crashed node eventually



decides on the initial value of some non-crashed node
in every epoch, and

• eventual agreement: no two non-crashed nodes decide
on different values for any epoch,

provided that

• fail-stop failure of any node can occur and a maximum
of n − 1 of the n nodes fail at the same time,

• the network is reliable, i.e., any sent message eventually
arrives at its destination and message order is ensured,
and

• there exists a self-stabilizing ♦S failure detector that
satisfies strong completeness and eventual weak accu-
racy.

(Throughout this paper, we assume the same failure model.)

Here, we would like to clarify the differences between
Paxos and this algorithm. Unlike Paxos, the self-stabilizing
consensus algorithm does not terminate even if the majority
of nodes fails. On the other hand, this algorithm does not
guarantee that every node always agrees on a common
sequence of values. In other words, a situation may occur in
which some nodes decide on different values in a particular
epoch. However, such different values eventually converge
on a common one. As we shall see in the next subsection,
this feature of self-stabilization is inherited by our proposed
system.

B. System Design

Overview. Fig. 2 gives an overview of our platform.
The proposed platform consists of a number of nodes (i.e.,
physical machines). In the same manner as the usual passive
replication, one specific node, called the primary, provides
services, while the other nodes, called backups, periodically
receive state update messages from the primary. To encap-
sulate the service state, we use a virtual machine (VM)
technique, which enables the service state to be checkpointed
and migrated to another node. The service state can be
complete, including everything from the operating system
to the service software, without modifying the service code.
This technique is widely used to implement active and
passive replication, with VM-FIT [10] and Remus [3] being
prime examples.

To realize self-stabilizing passive replication, our system
provides the mechanisms for state update and replacement
of a new primary based on the self-stabilizing consensus
algorithm.

State update. Fig. 3 illustrates the process of state update.
The detailed steps are as follows.

1) The primary periodically generates an update message
of its current state and sends the message accompanied
by its unique version number (denoted by v) to all the
backups.
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Figure 2. Overview of the system architecture
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Figure 3. Process of state update

2) Each backup responds with an acknowledgement to
the primary when receiving the update message and
proceeds to Step 4 below.

3) If the primary receives an acknowledgement from at
least one backup, it proceeds to Step 1 and generates
the next update message. Otherwise (i.e., it has not re-
ceived any acknowledgements after a certain period of
time), the primary resends the same update message.

4) After receiving an update message, the backup exe-
cutes the self-stabilizing consensus algorithm. That is,
(4-1) the backup sets both its own proposing value vi

and epoch number ei to v, as well as its own round
number ri to 0, and then sends tuple 〈vi, ei, ri〉 to
all the other backups; (4-2) if the backup becomes
a coordinator, it proposes tuple 〈vi, ei, ri〉; (4-3) if
its epoch number is still the largest, the coordinator
decides the update message of version v for epoch ei

and sends tuple 〈vi, si, ei, ri〉 to all the other backups,
and then increments its own epoch number by 1 and
returns to Step 2. On the other hand, when a backup
that is not the coordinator receives the coordinator’s
decision 〈vi, si, ei, ri〉, it sets its own epoch and round
numbers to ei + 1 and 0, respectively, as well as its
state to si, and then returns to Step 2.



Replacement of the primary. In addition to the above
process, all nodes continually execute the self-stabilizing
consensus algorithm in parallel to agree on the current
primary. This can be realized by regarding the agreement
value (i.e., vi) as the ID number of the current primary. That
is, each node initially sets this value to 1 and only changes
it when it realizes that the primary has failed. Otherwise, it
sets the agreement value to its own ID number. According
to this algorithm, at least one node can become the new
primary.

Remarks. By these mechanisms, our system behaves in
a self-stabilizing manner in the following sense. In the
proposed system, there is at least one primary and services
can be provided continuously as long as one node survives.
Moreover, the system can tolerate various patterns of si-
multaneous failures. We demonstrate this through various
experiments in the next section. On the other hand, when
network delay partitions nodes into different groups, mul-
tiple nodes may become the primary. However, this illegal
behavior does converge on the desired state, i.e., one of the
nodes remains the primary and the others become backups.
Thus, although our system cannot be applied to services that
require strict consistency, it is quite useful for services that
require high availability. For example, in the case of Internet
bulletin boards, our system can recover from any illegal
situation by merely merging the individual texts stored in
the multiple primaries.

Our system does have some limitations, the most critical
of which is that the system may loose the latest state
when network delay occurs among backups. This problem
is observed in the fifth experiment in the next section. We
have not addressed this problem in this paper; instead it is
left as one of our future works.

IV. EXPERIMENTS

To verify the correctness of our algorithm presented in
the previous section and to demonstrate the availability with
various types of node and network failures, we conducted
experiments with our current prototype implementation of
the proposed system. Our prototype consists mainly of four
modules: the failure detectors, the consensus algorithm, the
primary election, and the passive-replication mechanism,
with the first two based on the suite of self-stabilizing
consensus algorithms in [7]. These modules behave indepen-
dently and communicate with one another by means of asyn-
chronous message passing. To implement these concurrent
processes and to optimize their productivity, our prototype
was implemented in Scala [9] and consists of 1250 lines
of code. In addition to the Scala Actors library, to manage
VMs we also used various APIs provided by Kumoi [13], a
scripting environment for managing collective VMs in large-
scale data centers.

A. Experimental Setup
The experiments were conducted on 5 identical PC

servers, each of which was equipped with Dual Xeon 3.60
GHz CPUs, 2 GB memory, and a single 36 GB SCSI
disk. Each server was connected to a single switch via a
1000Base-T network adapter. CentOS 5.5 and 5.4 were used
for host and guest OSs, respectively. We used the Xen 3.03
virtual machine monitor, and the “xm” command to save the
current state of a virtual machine and write it to a disk file
as a VM image. VM images were transferred using Secure
Copy (SCP). Implementation of the self-stabilizing failure
detector includes a heartbeat mechanism. By means of the
failure detector, each backup considers the current primary
to have failed if no heartbeat is received for 10 seconds.

For each experiment, all the machines (called Nodes 1–
5) were initially booted at the same time and Node 1 was
selected as the primary server. Then, we generated a failure
and observed the system behavior for 600 seconds. Failures
of the machines and network were generated artificially
by switching off the machines and thus, cutting off the
communication lines. As examples of possible failures in
real systems, we considered the following six cases.

1) Serial failures: The primary (Node 1) fails after send-
ing the current snapshot, and then the next primary
also fails in the same way.

2) Failure of the majority of nodes: Three machines
(Nodes 1–3), including the primary, fail at the same
time.

3) Network partitioning: Network partitioning occurs,
splitting the nodes into two groups, Nodes 1–2 and
3–5, and then the system recovers.

4) Failure during election: The primary (Node 1) fails,
and then the candidate for the next primary also fails
whilst in the Decide state (i.e., Step 3 of the consensus
algorithm).

5) Loss of the latest snapshot: The primary (Node 1)
and a backup (Node 2), which has the latest snapshot,
fail at the same time. (In this case, Nodes 3–5 have
not yet received the latest snapshot.)

6) Booting a backup with an old version of the
snapshot: First, Version 1 of the snapshot sent by
the primary (Node 1) arrives at all backups (Nodes
2–5). Then, due to network delay, the next snapshot,
i.e. Version 2 arrives only at Nodes 4 and 5, and
not at Nodes 2 and 3. Nevertheless, Nodes 2 and 3
recognize that Node 1 is alive. (Note that this situation
is possible because transfer of a snapshot takes some
time, whereas the heartbeat arrives successfully at
regular intervals.) After this, the primary fails and
Node 2 is elected as the next primary.

B. Experimental Results
The results obtained from these experiments are given

below. For each case, we also present bar charts depicting



Figure 4. Case 1: Serial failures

Figure 5. Case 2: Failure of the majority of nodes

the changes in state in each node during the experiments,
with the heavy vertical lines indicating the points at which
failures occur.

1) Serial failures: Fig. 4 illustrates the behavior of the
system when two failures of the primary occur after a lapse
of 200 and 400 seconds. In this experiment, our system takes
13 and 40 seconds, respectively, to recover the service (i.e.,
to complete the replacement of the primary) by means of
the latest version of the snapshot. (Here, the first recovery
is faster than the second, because Node 1 does not deliver the
snapshot before the first failure.) This result indicates that
our system can recover from a single node failure within at
most one minute.

2) Failure of the majority of nodes: Fig. 5 illustrates
the behavior of the system when a failure occurs after a
lapse of 300 seconds. In this experiment, Node 4 becomes
the primary after 41 seconds. This result indicates that our
system has the ability to recover from failure of the majority
of nodes. This cannot be achieved if a majority consensus
algorithm is used for the primary election.

3) Network partitioning: Fig. 6 illustrates the behavior of
the system when a failure occurs and the system recovers
after a lapse of 200 and 400 seconds, respectively. After
network partitioning, Nodes 3–5 are not able to receive a
heartbeat from the primary, and therefore, in this group,
Node 3 is elected as the primary and starts the service
after 55 seconds. After recovering from the failure, Node

Figure 6. Case 3: Network partitioning

Figure 7. Case 4: Failure during election

3 recognizes that Node 1 is still alive, having received a
heartbeat from Node 1. Node 1 also recognizes that Node 3
is acting as the primary. Then, according to their epoch and
round numbers, Node 1 is elected as the primary and Node
3 becomes a backup and terminates its VM after a lapse
of 410 seconds. This result shows that our system allows
temporary illegal behavior, but eventually converges on a
legal state after network communication recovers.

4) Failure during election: Figure 7 illustrates the behavior
of the system when a failure occurs during an election
process. In this experiment, the primary (Node 1) is stopped,
and then, after 12 seconds, the candidate for the next
primary (Node 2) is also stopped while in the Decide state.
Subsequently, Nodes 3–5 recognize that Node 2 has failed,
and thus, these nodes elect Node 3 as the next primary and
it begins to provide the service 42 seconds after the failure
of Node 2. This result indicates that our system can recover
from failure of a single node regardless of its state.

5) Loss of the latest snapshot: Fig. 8 illustrates the behavior
of our system when the primary and a backup, which has
the latest snapshot, fail simultaneously. In this experiment,
after the simultaneous failure of the primary (Node 1) and
backup (Node 2) with the latest snapshot, Node 3 is elected
as the next primary and starts to provide the service with
an older version of the snapshot. This takes 35 seconds. As
mentioned in the previous section, this result shows that our
system cannot guarantee that the latest state of the primary



Figure 8. Case 5: Loss of the latest snapshot

Figure 9. Case 6: Booting a backup with an old version of the snapshot

is always inherited by the next primary.

6) Booting a backup with an old version of the snapshot:
Fig. 9 illustrates the behavior of our system when a failure
occurs after a lapse of 400 seconds. After the primary (Node
1) is stopped, Node 2 is elected as the primary and starts the
service with Version 1 of the snapshot after a lapse of 448
seconds. During this process, Nodes 4 and 5 successfully
receive Version 2 of the snapshot and continue to behave as
backups. Then, when Node 2 realizes that Nodes 4 and 5
have a later version of the snapshot, Node 2 stops its own
VM after a lapse of 478 seconds, and then receives the later
one from Node 4. After a lapse of 524 seconds, Node 2
completes rebooting its VM with the received snapshot and
begins providing the service.

V. CONCLUSIONS AND FUTURE WORK

We have proposed self-stabilizing passive replication for
Internet service platforms. To achieve our objective, we
use a self-stabilizing consensus algorithm, instead of a
traditional majority-based one. As shown by the results of
our experiments, our system does indeed behave in a self-
stabilizing manner, and can tolerate various patterns of fail-
ures, including simultaneous failure of the majority of nodes.
The system is useful for providing Internet services requiring
high availability as typified by Internet bulletin boards for
communication during large-scale natural disasters.

Regarding future work, one of the most interesting and
worthwhile directions is to improve some of the problems in

our replication mechanism, especially the problem whereby
the latest state may be lost due to a specific pattern of
failures. We intend to address this problem by using a more
sophisticated technique, such as superstabilization [6], which
allows to combine benefits of both self-stabilization and
dynamic algorithms.
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