
Noname manuscript No.
(will be inserted by the editor)

Dynamic Grid Quorum: A Reconfigurable Grid Quorum
and Its Power Optimization Algorithm

Munetoshi Ishikawa · Koji Hasebe · Akiyoshi Sugiki · Kazuhiko Kato

Received: date / Accepted: date

Abstract In this paper, we present the dynamic grid
quorum, a method for reducing the power consump-
tion of large-scale distributed storage systems. The ba-
sic principle of our approach is to skew the workload
towards a small number of quorums. This can be real-
ized by the following three techniques. First, our system
allows reconfiguration by exchanging nodes without any
data migration, so that high-capacity nodes can be re-
allocated to busier quorums. Second, for more effective
skewing of the workload, we introduce the notion of
dual allocation, which makes it possible to consider two
distinguished allocations in the same grid for write and
read quorums. Finally, we present an optimization al-
gorithm to find a pair of strategy and an allocation of
nodes, which minimizes power for a given system set-
ting and its workload. We also demonstrate that the dy-
namic grid quorum saves, on average, 14%–25% energy
compared with static configurations, when the intensity
of the total workload was changed.

Keywords distributed storage, quorum system,
grid quorum, power saving, optimization algorithm,
reconfiguration

Correspondence to:M. Ishikawa · K. Hasebe · A. Sugiki · K. Kato

Graduate School of Systems and Information Engineering, Uni-
versity of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8573,
Japan
E-mail: munetoshi@osss.cs.tsukuba.ac.jp

K. Hasebe
E-mail: hasebe@iit.tsukuba.ac.jp

A. Sugiki
E-mail: sugiki@cs.tsukuba.ac.jp

K. Kato

E-mail: kato@cs.tsukuba.ac.jp

1 Introduction

Service-oriented computing is a key paradigm in achiev-
ing the long-awaited, richer environments in computer
science. To achieve such platforms for large-scale busi-
ness computing systems, reliable, available, and cost-
effective data management is required.

The use of quorum systems is a promising approach
for achieving reliable data management in such plat-
forms. Compared with the traditional read-one write-
all technique, the quorum approach allows flexibility
in storage configuration and decentralized management
for consistency control. Since the first quorum paper [7]
was presented, much research has focused on investigat-
ing the possibilities of quorum systems. These studies
are wide-ranging, from desired configurations in quo-
rum systems [13,1,3,14] to performance optimization
methods that minimize the communication delays [6,
17,12]. On the other hand, little attention has been
paid to reducing power consumption in quorum sys-
tems, which is necessary in terms of green computing,
which has recently become of prime interest to practi-
tioners.

In this paper, we present the dynamic grid quorum,
a technique for reducing storage power consumption.
As its name implies, our approach is based on a grid
quorum [3], but the basic principle of our approach is
to skew the workload towards a small number of quo-
rums. This can be realized using the following three con-
cepts, which are extensions of our previous work [10].
First, the dynamic grid quorum provides reconfigura-
tion by exchanging nodes without any data migration.
Although the node exchange idea comes from a study
on tree-based quorums [5], much of the work has had to
be adapted for grid quorums. Since we also consider het-
erogeneity in nodes, this reconfiguration method allows

2

high-capacity nodes to be allocated to busier quorums
to reduce the number of active nodes. Even when ex-
changing nodes in a grid quorum, our reconfiguration
method preserves the consistency of replicated data,
namely the one-copy serializability (cf. [2]). Second, for
more effective skewing of the workload, we introduce
the notion of dual allocation. In the original grid quo-
rum system [3], the nodes are allocated in a rectangu-
lar grid then grouped into write and read quorums in a
specific way according to this allocation. The dual al-
location is an extension of this grouping method. That
is, to group the nodes into quorums, we consider two
distinguished allocations in the same grid for write and
read quorums. In addition, the one-copy serializability
still holds for this extension. Finally, we present an op-
timization algorithm to find a pair of a strategy (i.e.,
probability distribution over the quorums, determining
which quorum is selected for each write/read request)
and an allocation, which minimizes power for a given
system setting and its workload. Despite the exponen-
tial growth of the possible combinations of quorums and
allocations with respect to the number of nodes, our al-
gorithm reduces the computational complexity to find
a solution using several techniques.

To evaluate the effectiveness of the proposed dy-
namic grid quorum with dual allocation, we compared
our approach under three alternative configurations:
static write-optimized, static read-optimized, and dy-
namic reconfiguration with no dual allocation (i.e., sin-
gle allocation). From the simulations, we observed that
our dynamic grid quorum with dual allocation saved, on
average, 14.1–25.2% energy compared with the static
configurations, when the intensity of the total work-
load was changed. In addition, compared with the case
of single allocation, our proposed system saved, on av-
erage, 10.4% energy, which indicated that our dual al-
location skews workload more effectively.

This paper is organized as follows. Section 2 presents
related work. Sections 3 and 4 introduce the dynamic
grid quorum and its power consumption model. Sec-
tion 5 gives the definition of our reconfiguration. Sec-
tion 6 introduces the notion of dual allocation and its
reconfiguration. Section 7 introduces the algorithm and
proves that it minimizes the power consumption of the
dynamic grid quorum. Section 8 presents the simula-
tion results. Finally, Section 9 concludes the paper and
discusses future research.

2 Related Work

There have been a number of attempts to reduce stor-
age power consumption. A commonly-observed feature

in many of these techniques is that they adopt the ap-
proach of skewing the workload, which is also used in
this paper. In MAID [4] and PDC [15], popular data
are concentrated on specific disks. In DIV [16], orig-
inal and redundant data are separated onto different
disks, thereby allowing write/read requests to be con-
centrated on the disks with original data. In RIMAC
[20], eRAID [18], and EERAID [11], a data access on
a disk in standby mode is transformed into accesses on
active disks or caches, and then the required data are
reconstructed from the parities obtained during these
accesses. In Hibernator [21] and PARAID [19], data are
collected or spread to adapt to changes in operational
loads.

Although these studies in the literature restrict their
scope to storage with a specific kind of central con-
troller to manage the data access, recent work such as
Harnik et al., [8] addresses power-saving in large-scale
distributed storage system, whose prime application is
cloud computing. Our target application is similar to
this study, but our main motivation is to achieve reli-
able, available, and cost-effective distributed data man-
agement by taking the quorum approach, which has not
been thoroughly investigated.

3 Dynamic Grid Quorum

Our proposed system is based on the grid quorum [3],
which is a special kind of write-read coterie [9], in which
the nodes are allocated in a rectangular grid. A write-
read coterie C is a pair 〈CW , CR〉 of collections of node
groups, called quorums, where CW and CR represent
write quorums and read quorums. For readability, we
use the notation CA to denote CW or CR. (Similar nota-
tions are also used for other notions.) Throughout this
paper, we fix the numbers of columns and rows of the
grid as n and m. Each intersection point (often just
called point) of the i-th column (from the left) and the
j-th row (from the bottom) is denoted by (i, j). The
set of all points in the grid is denoted by D. We also
fix the underlying set of nodes as U = {u1, . . . , un·m}
whose elements are allocated to the points in the grid
by bijective mapping. We refer to this allocation by the
mapping v : D → U . We thus define the node at point
(i, j) by v(i, j). In addition, the set {(i, i) | 1 ≤ i ≤
min{n,m}} is called the diagonal line. The point (j, i)
is called the diagonal point of (i, j).

To formally define the dynamic grid quorum, we
introduce the notion of degree as follows. Degree, de-
noted by f , is a pair 〈c, r〉 of natural numbers with
0 ≤ c < min{n,m} and 2 ≤ r ≤ min{n,m}, respec-
tively. For given degree f , the set of exchangeable pairs
(denoted by Ef) is defined by {〈(i, j), (j, i)〉 | i ≤ c∧r ≤

3

j∧ i < j}. In addition, for given Ef , the sets of the first
and the second projections of all the elements of Ef

(i.e., {p | 〈p, p′〉 ∈ Ef} and {p′ | 〈p, p′〉 ∈ Ef}, resp.) are
called left-side exchangeable points (denoted by Ef

left)
and lower exchangeable points (denoted by Ef

low). The
symbol f may be omitted if it is clear from the context.

We present an example of the exchangeable points
below.

Example 1 Fig. 1 depicts the exchangeable points of
6 × 6 grid with f = 〈c, r〉 = 〈4, 3〉. In this figure, the
left side and the lower exchangeable areas of this case
are indicated as the area within the heavy-lines and the
area within the dashed-lines.

Fig. 1 Exchangeable points with f = 〈c, r〉 = 〈4, 3〉

Finally, for readability we use the following nota-
tions. Col(i) and Row(j) are respectively used to de-
note the sets of points on the i-th column (i.e., Col(i)=
{(i, j) | 1 ≤ j ≤ m}) and on the j-th row (i.e., Row(j)=
{(i, j) | 1 ≤ i ≤ n}). Notations v(Col(i)) and v(Row(j))
are used to denote the sets of nodes on Col(i) and
Row(j) determined by allocation v. Also, [i, j] is used
to denote the set

∪j
k=i Col(k).

In terms of the notions previously introduced, the
dynamic grid quorum is defined as follows.

Definition 1 (Dynamic grid quorum) Let Cv,f =
〈Cv,f

W , Cv,f
R 〉 be a pair of collections of node groups. Cv,f

is a dynamic grid quorum if

– Cv,f
W is the set of all possible node groups, each of

which (say, Qv,f
W) satisfies the following condition:

Qv,f
W = {v(i, j) | (i, j) ∈ Col(k) ∨ ∀i∃!j(1 ≤ i <

k ∧ 1 ≤ j ≤ m)} for some k (1 ≤ k ≤ n) such that

– if (i, j) ∈ Col(k) ∩ Ef
low then v(j, i) ∈ Qv,f

W ;
– if v(i, j) ∈ Qv,f

W and (i, j) ∩ Ef
left then v(j, i) ∈

Qv,f
W .

– Cv,f
R is the set of all possible node groups, each of

which (say, Qv,f
R) satisfies the following condition:

Qv,f
R = {v(i, j) | ∀i∃!j(1 ≤ i ≤ n ∧ 1 ≤ j ≤ m)}

such that if v(i, j) ∈ Qv,f
R and (i, j) ∈ Ef

left then
v(j, i) ∈ Qv,f

R . ut

Throughout this paper, we may omit v as well as f

if these are clear from the context.
To help the reader understand this definition, we

present an example of write and read quorums below.

Example 2 Fig. 2 depicts a write quorum and a read
quorum in the 6 × 6 dynamic grid quorum with f =
〈2, 4〉. In this figure, the points of nodes in the write
quorum are denoted by vertical striped patterns. This
write quorum consists of the following two sets: the set
of all nodes on the fifth column (i.e., v(Col(5))), nodes
chosen singly from the i-th column for each i = 1, . . . , 4
(i.e., {v(1, 5), v(2, 5), v(3, 1), v(4, 4)}) where v(1, 5) and
v(2, 5) must be chosen because (5, 1), (5, 2) ∈ Elow. On
the other hand, nodes in the read quorum are denoted
by gray shading. The read quorum consists of nodes
chosen singly from each column (i.e., {v(1, 4), v(2, 1),
v(3, 6), v(4, 1), v(5, 5), v(6, 2)}) where v(4, 1) must be in-
cluded because (1, 4) ∈ Eleft.

Fig. 2 Write and read quorums with f = 〈c, r〉 = 〈2, 4〉

4 Power Consumption Model

We introduce a power consumption model that includes
the following: strategy, load, capacity of nodes, state-
function, and power consumption.

Strategy. Each write/read request is assigned to a
write/read quorum by the probability distribution P =
〈PW , PR〉 over 〈CW , CR〉 satisfying the following prop-
erties:

– 0 ≤ PA(QA) ≤ 1 for any QA ∈ CA.

–
∑

QA∈CA

PA(QA) = 1.

We call this probability distribution the strategy.

Load. We define the load of a system, ld = 〈ldW , ldR〉,
as the number of write/read requests per unit time. We

4

also define functions loadW and loadR which represent
the loads of the write/read quorums (say, QW and QR)
as follows.

loadA(QA) = ldA · PA(QA). (1)

In addition, we extend these functions to represent
the load of a node (say, u) as follows.

– loadA(u) =
∑

QA∈CA,QA3u

loadA(QA). (2)

– load(u) = loadW(u) + loadR(u). (3)

Capacity. We assume that each node u ∈ U has a
capacity cap(u), which represents the upper bound of
load(u) defined by the following condition.

load(u) ≤ cap(u). (4)

We also introduce the notion of overload as follows.
Node u is overloaded if load(u) > cap(u). A system
is overloaded if there is at least one overloaded node.
A system is overloaded with the nodes up to the k-th
column if the system is overloaded for any strategy such
that the load of every node from the right of the k+1-th
column is 0 (i.e., loadW(v(i, j)) = 0 for any i > k and
for any j).

State-function. We introduce the state-function On, a
Boolean function over the set of nodes, which satisfies
the following condition.

If load(u) 6= 0 then On(u) = 1. (5)

We model the state of the nodes by this function. That
is, if On(u)=1 then node u is active, whereas if On(u)=
0 then u is on standby and consumes no power. Note
that On(u) may be 1 even if load(u) = 0. This means
that node u is active even though it is not executing
any operations.

Power consumption. We assume that every node in
an active state consumes the same power. Thus we de-
fine the power consumption of a system by the number
of active nodes (i.e.,

∑
u∈U On(u)) denoted by |On|.

5 Reconfiguration

To reduce the power consumption in an environment
where the load varies, our system enables reconfigu-
ration by exchanging a node with the corresponding
diagonal point. This can be defined as the change of
allocation mapping.

Definition 2 (Reconfiguration) For any (i, j) ∈
Eleft, let

(i,j)−−−→ be a binary relation over the allocations

such that if v
(i1,j1)−−−−→ v′ then for any i2 and j2

v(i2, j2) ={
v′(j2, i2) if (i1 = i2 ∧ j1 =j2) ∨ (i1 =j2 ∧ j1 = i2)
v′(i2, j2) otherwise. ut

In addition, for any E′ ⊆ Eleft, the notation v
E′

−→ v′

is used to represent that v′ is obtained from v by succes-
sive exchanges of all the points in E′ with their diago-
nals. In this case, v′ is called the reconfigured allocation
from v. Here we note that, obviously, for any v and v′,

if v
E′

−→ v′ then v′ E′

−→ v. In addition, v′ can be ob-
tained from v regardless of the order of exchanges. For
the sake of convenience, as a special case, we introduce
the expression v

φ−→ v′ to represent that v′ can be ob-
tained from v without any operation, i.e. v = v′. Note
that any system obtained through reconfigurations is
also a dynamic grid quorum.

We present an example of this reconfiguration be-
low.

Example 3 Fig. 3 shows the capacity of all nodes in
the 4 × 4 dynamic grid quorums Cv and Cv′

, where
v′ is obtained from v by reconfiguration with E′ =
{(1, 2), (1, 3), (1, 4)}. (Thus, v is also obtained from v′

by reconfiguration with the same set, E′.) Here we con-
sider the case that ldW = 1 and ldR = 3. In this in-
stance, as the upper two systems in this figure indi-
cate, the minimum number of active nodes in system
Cv and its reconfigured system Cv′

are 9 and 7. On
the other hand, where ldW = 3 and ldR = 1, as the
lower two systems indicate, the minimum numbers of
active nodes in system Cv′

and its reconfigured system
Cv are 10 and 7. This shows that our reconfiguration
may remap nodes with heterogeneous capacity, thereby
reducing the power consumption of the system when
the ratio of write/read requests varies.

Although such reconfigurations are indeed useful for
reducing the power, it may violate the consistency of
the replicated data. Our reconfiguration, however, pre-
serves the property of consistency called one-copy se-
rializability (cf. [2]), which guarantees that any read
operation returns the data installed by the last com-
mitted write operation. This can be guaranteed by the
following proposition.

Proposition 1 Let v and v′ be allocations which sat-

isfy v
E′

−→ v′ for some E′ ⊆ Eleft. Cv and Cv′
are dy-

namic grid quorums consisting of the same nodes. For

5

Fig. 3 Reconfigurations
E′
−−→ with E′ = {(1, 2), (1, 3), (1, 4)}

any QW ∈ Cv
W , Q′

W ∈ Cv′

W , and Q′
R ∈ Cv′

R , the following
two properties hold: QW ∩Q′

R 6= φ and QW ∩Q′
W 6= φ.

Proof Due to space limitations, we show only the first
property. From the definition of a dynamic grid quorum,
for any QW ∈ CW and Q′

R ∈ C′
R, there exist i and j

such that v(Col(i)) ⊆ QW and v′(i, j) ∈ Q′
R. Here we

consider the following three cases: (a) (i, j) ∈ Elow; (b)
(j, i) ∈ Eleft; (c) otherwise.

Case (a): By the definition of reconfiguration, if
(i, j) ∈ E′ then v′(i, j) = v(j, i), otherwise v′(i, j) =
v(i, j). By the definition of a dynamic grid quorum,
v(i, j), v(j, i) ∈ QW , because QW has the corresponding
diagonal node if QW has a node in the lower exchange-
able area. Thus QW ∩ Q′

R 3 v′(i, j).
Case (b): By the definition of reconfiguration, if

(i, j) ∈ E′ is exchanged then v(i, j) = v′(j, i), other-
wise v(i, j) = v′(i, j). By the definition of a dynamic
grid quorum, v′(i, j), v′(j, i) ∈ Q′

R, because Q′
R has

the corresponding diagonal node if Q′
R has a node in

the left-side exchangeable area. On the other hand,
v(i, j) ∈ QW . Thus QW ∩ Q′

R 3 v(i, j).
Case (c): Because v′(i,j) is never exchanged, v(i,j)=

v′(i,j). Thus QW ∩ Q′
R 3 v(i, j). ut

We note that this proposition also guarantees that
our reconfiguration can be done without any data mi-
gration to preserve the consistency of replicated data.

6 Dual Allocation

As defined in Section 3, in the dynamic grid quorum,
the nodes are allocated to the points in an underlying
grid, and the nodes are grouped into write and read
quorums in a specific way according to this allocation.
Then, as explained in Section 5, by changing the allo-
cation we can gather high-capacity nodes to a busier
area while preserving the one-copy serializability, that
may reduce the number of nodes in the active mode.
Here we note that this allocation is just a logical map-
ping, so our reconfiguration does not change the phys-
ical position of any node. From this consideration, we
can separate allocations for write and read quorums,
and then the reconfigurations for write and read quo-
rums independently. This is called the dual allocation,
which reduces power in a more effective way than with
the single allocation.

We explain the idea behind this dual allocation by
using a simple example below. (See also Fig. 4 for the
graphical presentation.)

Example 4 Let us consider a system consisting of
4 × 4 grid, whose initial allocation is v0. Now we as-
sume that the system load for both write and read re-
quests is 2, and the capacity of every node is 4. In this
case, to minimize power consumption, the best strat-
egy is to gather all the write requests to the write quo-
rum QW = {u1, u2, u3, u4} (i.e., the quorum consist-
ing of the leftmost column) and all the read requests
to the read quorum QR = {u4, u8, u12, u16} (i.e., the
quorum consisting of the lowest row). As the upper
system in the figure indicates, with this strategy the
three nodes {u1, u2, u3} are used for write operations,
the three nodes {u8, u12, u16} are used for read opera-
tions, and the node u4 is used for both. Thus, the total
number of active nodes is 7. Here we consider the two
distinct allocations, vW and vR, to reconfigure the write

and read quorums, where v0
φ−→ vW and v0

E′

−→ vR with
E′ = {u1, u2, u3}. The result is presented in the lower
two systems in the figure. As this indicates, because
only QR is changed to {u1, u2, u3, u4} from {u4, u8, u12,

u16}, after the reconfiguration, both QW and QR con-
sist of the same nodes {u1, u2, u3, u4}. Thus, the num-
ber of active nodes becomes 4.

The formal definition of the dual allocation is as
follows.

Definition 3 (Dynamic grid quorum with dual
allocation) For any initial allocation v0 and degree
f , let 〈vW , vR〉 be a pair of (possibly different) alloca-
tions ranging over the same nodes and satisfying the
following condition:

6

Fig. 4 Example of dual allocation (with E′ = {(1, 2), (1, 3),
(1, 4)})

There exist E′, E′′ ⊆ Ef
left such that v0

E′

−→ vW and

v0
E′′

−−→ vR.

We call this pair a dual allocation. A dynamic grid
quorum with dual allocation 〈vW , vR〉 is a pair 〈CvW ,f

W ,

CvR,f
R 〉 of collections of node groups obtained from 〈Cv,f

W ,

Cv,f
R 〉 by replacing v with vW (to determine CvW ,f

W) and
vR (to determine CvR,f

R), in Definition 1. ut

Clearly, for any dual allocation, vW can be obtained
from vR by reconfigurations and vice versa. In addition,
any dynamic grid quorum defined as Definition 1 is a
special case of a dynamic grid quorum with dual allo-
cation such that vW = vR.

We can naturally extend the definition of reconfig-
uration for a dynamic grid quorum (presented in Defi-
nition 1) to the one with dual allocation by separately
considering the allocations for write and read opera-
tions. The related notions can be defined in a similar
way. We say that v′ = 〈v′

W , v′R〉 is a reconfigured dual
allocation obtained from v = 〈vW , vR〉, if there exist

E′, E′′ ⊆ Eleft such that vW
E′

−→ v′
W and vR

E′′

−−→ v′
R.

The notation v
〈E′,E′′〉−−−−−→ v′ is used to represent that v′

is obtained from v by reconfiguration.
We note that, in our definition of dynamic grid quo-

rum with dual allocation, the one-copy serializability
still holds. To guarantee this consistency, it is sufficient
to show that for any dual allocation v = 〈vW , vR〉 and

for any write/read quorums QW , Q′
W ∈ CvW

W and for
any QR ∈ CvR

R , QW ∩ QR 6= φ and QW ∩ Q′
W 6= φ

hold. The former one follows from Proposition 1 and
the definition of dual allocation, while the latter one
from the definition of dynamic grid quorum. Moreover,
the reconfigurations for the dynamic grid quorum with
dual allocation also preserve the one-copy serializabil-
ity. This can be shown by Proposition 1.

In the next section, throughout we consider the dual
allocation.

7 Optimization Algorithm

Our idea for power optimization is to skew the load
towards a small number of quorums. This is realized
by our optimization algorithm which is introduced be-
low. To make our discussion simpler, we consider the
following restrictions throughout this section.

(R1) For any (i, j), (i, j′) ∈ Ef
left,

cap(v0(i, j)) = cap(v0(i, j′)).

(R2) For any (i, j), (i′, j) ∈ Ef
low,

cap(v0(i, j)) = cap(v0(i′, j)).

(R3) If there exists (i, j) with On(v0(i, j)) = 1 then
On(v0(i, j′)) = 1 for any j′ ≤ j.

(R4) If there exists (i, j) with loadW(vW(i, j)) 6= 0
then On(vW(i′, j)) = 1 for any i′ ≤ i.

(R5) For any (i, j), (i, j′) ∈ Ef
left , vW , and E′ such

that v0
E′

−→ vW , if (i, j) ∈ E′ then (i, j′) ∈ E′.
(R6) For any (i, j), (i′, j) ∈ Ef

left , vR, and E′ such that

v0
E′

−→ vR, if (i, j) ∈ E′ then (i′, j) ∈ E′.

Intuitively, (R1) and (R2) respectively represent
that in the left-side and in the lower exchangeable ar-
eas, the capacity of any node in the same column and
in the same row is the same for the initial allocation.
(R3) and (R4) respectively represent that if there is an
active node, then all nodes below this node in the same
column and all nodes in the same row on the left of this
node are also active for the initial allocation and for any
write allocation. (R5) and (R6) respectively represent
that reconfigurations for any write and read allocations
simultaneously exchange all the exchangeable nodes on
the left in the i-th column, with the corresponding di-
agonal nodes.

Under these restrictions, we consider the following
problem.

Problem 1 For a given initial allocation v0, a degree
f , a capacity cap, and a system load ld, find a pair of
a strategy P and a reconfigured dual allocation v that
minimizes the power consumption of the system.

7

Our optimization algorithm (called OA), includes
the sub-algorithm (called SA), where algorithm SA is
used to find an optimal strategy for a given allocation
and system load. By means of SA, algorithm OA finds
an optimal solution to Problem 1 among all the possi-
ble pairs each of which consists of a reconfigured alloca-
tion from the initial allocation and its optimal strategy.
More precisely, our algorithm solves the problem by the
following procedure.

First, for a given initial allocation v0 and a given sys-
tem load ld, algorithm OA considers all the possible re-
configured allocations obtained from v0. Then, for each
of these allocations, algorithm SA checks all the possi-
ble state-functions one-by-one to find one which min-
imizes power consumption and does not overload the
system. From this optimal state-function, SA finds an
optimal strategy which minimizes power consumption
for this allocation by using linear programming. Here
we would like to note the following point about the com-
putational complexity. In general, the number of state-
functions increases exponentially with the number of
nodes in the system. Thus, to improve the problem of
this search space explosion, algorithm SA checks the
state-functions in ascending order of power consump-
tion with a pruning technique. In addition, when using
linear programming to find an optimal strategy, another
problem of search space explosion emerges. That is, the
number of quorums generally increases exponentially
with the number of nodes, so this results in an explo-
sion of the search space for this optimization. On the
other hand, the power consumption of the system is de-
termined only by the total load of each node. From this
observation, the key idea in optimizing the strategy is
to divide each quorum into its components and consider
only the loads of each component. Then we can limit
the search space to a subset created from a special type
of load, called component load, from which we obtain
our desired strategy.

Next, for a given set of pairs of reconfigured allo-
cations from v0 and their optimal strategy (which is
obtained by the previous step), algorithm OA finds an
optimal pair, namely a solution to Problem 1. In this
step, since the number of allocations increases exponen-
tially with the value of degree for columns c, the com-
putational complexity of this step also increases expo-
nentially with c. To address this problem, our algorithm
also uses a pruning technique.

Here P opt and vopt are used respectively to denote
the strategy and the allocation obtained by our algo-
rithm OA. Then the following theorem holds.

Theorem 1 The pair of P opt and vopt is an optimal
solution to Problem 1.

The outline of the proof of Theorem 1 is as fol-
lows. For the preparation, we first define the component
load. Next, we prove Lemmas 1 and 2 which guarantee
that an optimal strategy can be obtained from an op-
timal component load. Then we prove Lemma 3, which
confirms that we can find an optimal component load,
if any, for a given allocation. Furthermore, we prove
Lemma 4, which confirms that we can find an optimal
pair of a component load and a reconfigured allocation
from the initial allocation. Finally, we prove Theorem
1 by using Lemmas 1–4.

Definition 4 (Component load) For a given dual
allocation v, a degree f and system load ld, we define
component load consisting of the following five func-
tions:

– c-loadWN :VW×{(i, j) | (i, j) 6∈Eleft∧1≤ i<n}→R+,
– c-loadWT : VW × T → R+,
– c-loadWC : VW × {i | 1 ≤ i ≤ n} → R+,
– c-loadRN : VR × {(i, j) | (i, j) 6∈ Eleft} → R+,
– c-loadRT : VR × T → R+.

Here VA is the set of write/read allocations; R+ is the
set of non-negative real numbers; T is the set of tuples
of natural numbers (each of which is denoted by t =
〈t1, t2, . . . , tc〉) defined as follows:

– ti ∈ {0} ∪ {j | (i, j) ∈ Eleft};
– If 0 < ti = j ≤ c for some j, then tj = 0 for any i;
– If 0 < ti = j for some j, then ti′ 6= j for any i 6= i′.

In addition, c-load previously defined satisfies con-
ditions (6) to (13) given below.

–
n∑

i=1

c-loadWC(vW , i) = ldW . (6)

–
m∑

j=1

c-loadWN(vW , (i, j)) =
n∑

i′=i+1

c-loadWC(vW , i′)

for any i (c < i < n). (7)

–
∑
t∈T

c-loadWT(vW , t) =
n∑

i=m+1

c-loadWC(vW , i). (8)

–
∑

t∈T,ti=0

c-loadWT(vW , t) =

∑
(i,j) 6∈Eleft

c-loadWN(vW , (i, j)) −
r−1∑

i′=i+1

c-loadWC(vW , i′)

for any i (1 ≤ i ≤ c). (9)

–
∑

t∈T,ti=j

c-loadWT(vW , t) ≤ c-loadWN(vW , (i, j))

for any i (1 ≤ i < n). (10)

8

–
∑
t∈T

c-loadRT(vR, t) = ldR. (11)

–
∑

t∈T, ti=0

c-loadRT(vR, t) =
∑

(i,j) 6∈Eleft

c-loadRN(vR, (i, j))

for any i (1 ≤ i ≤ n). (12)

–
∑

t∈T, ti=j

c-loadRT(vR, t) ≤ c-loadRN(vR, (j, i))

for any (i, j) ∈ Eleft . (13)
ut

The intuitive meaning of this definition is as follows.
First, to consider the write load of components, we di-
vide each write quorum into the following three com-
ponents: (a) the set of nodes on Col(i), (b) the set of
nodes on the left-side exchangeable points, and (c) the
other nodes. The loads of components (a) and (c) are
represented by c-loadWC and c-loadWN , while the load
of component (b) is represented by c-loadWC(vW , i) (in
the case of i ≤ m) or c-loadWT(vW , t) (in the case of
i > m). That is, in the case of i > m, ti is included in
t iff node vW(i, j) is included in the components with
ti = j.

On the other hand, to consider the read load of com-
ponents, we divide each read quorum into the following
two components: (d) the set of nodes on the left-side
exchangeable points and (e) the other nodes. Functions
c-loadRT and c-loadRN represent the total loads of (d)
and (e). Vector t in c-loadRT indicates a component of
(e), namely ti is included in t iff node vR(i, j) is included
in the components with ti = j.

Instead of loadW and loadR (introduced by Eq. (2)),
in terms of the five functions introduced by Definition
4, we define c-loadA : V × U → R+ (where V is the set
of dual allocations) that represents the total write/read
load of each node, as follows.

– c-loadW(v, vW(i, j)) =

c-loadWC(vW , i) + c-loadWC(vW , j)
+

∑
t∈T, ti=jc-loadWT(vW , t)

if (i, j)∈Eleft

c-loadWC(vW , i) + c-loadWN(vW , (i, j))
otherwise.

(14)

– c-loadR(v, vR(i, j)) =
∑

t∈T, ti=j

c-loadRT(vR, t) if (i, j) ∈ Eleft

c-loadRN(vR, (i, j)) otherwise.
(15)

As in the case of function load, we also define c-load as
follows.

c-load(v, u) = c-loadW(v, u) + c-loadR(v, u).

For readability, throughout this paper we may omit the
first parameter of c-loadA and c-load, if it is clear from
the context.

In terms of the definition of c-load, instead of load

we can also define the same condition of the capacity
as Eq. (4) as well as the state-function as follows.

– c-load(u) ≤ cap(u) for any u ∈ U . (16)

– If c-load(u) 6= 0 then On(u) = 1

for any u ∈ U . (17)

We now introduce Lemmas 1 and 2. For readability,
we consider the collection CW,Col(k) (k ≤ n) of write
quorums and functions πA and π′

A as follows.

– CW,Col(k) = {QW | QW ∈ CW∧
∀j ≤ m (vW(k, j) ∈ QW)}

for any k ≤ n.

– πA(t) = {QA | QA ∈ CA ∧ (ti =j 6=0

iff vA(i, j)∈QA ∧ (i, j)∈Eleft)∧
∀k ≤ m(QA 6∈ CW,Col(k))}

for any t ∈ T.

– π′
A(QA) = t s.t. QA ∈ πA(t) for any QA ∈ CA

except for QA ∈ CW,Col(k) for some k ≤ m.

Intuitively, CW,Col(k) means the collection of write quo-
rums each of which includes all the nodes in the k-th
column for the write allocation. Function πA(t) returns
the set of quorums whose components are indicated by
input t, while π′

A is similar to the inverse of πA.

Lemma 1 For any allocation v, any degree f , any
system load ld, any capacity cap, and any component
load c-load satisfying (16), we can obtain a strategy P

such that it satisfies (4) and its power consumption is
the same as c-load.

Proof To show this lemma, it is sufficient to show that
loadW(u) = c-loadW(u) and loadR(u) = c-loadR(u) for
any u ∈ U . To obtain these equations, we define PW

and PR as (18) and (19), respectively.

9

– PW(QW) =

c-loadWC(vW, k)·c-loadWT(vW, π′
W(QW))

ldW ·
∑n

k′=m+1 c-loadWC(vW , k′)
·g1(QW)

for some k > m

c-loadWC(vW , k)
ldW

· g1(QW)

otherwise

where k satisfies QW ∈ CW,Col(k). (18)

– PR(QR) =
c-loadRT(vR, π′

R(QR))
ldR

· g1(QR). (19)

Here g1 is defined as follows.

g1(QA) =
∏

(i,j)∈E′

g2(i, j)∑
(i,j′) 6∈Eleft

g2(i, j′)

for i 6= k if A = W,

where E′ = {(i, j) | vA(i, j) ∈ QA ∧ vA(j, i) 6∈ QA}, and
k satisfies QW ∈ CW,Col(k). In addition, g2 is defined as
follows.

g2(i, j) =

c-loadAN(vA, (i, j)) −
∑

t∈T, tj=i

c-loadAT(vA, t).

Then by the definitions of c-load (i.e., Eqs. (6)–(10), we
can derive the following equation from (18).∑

QW 3vW(i,j)

PW(QW) · ldW =

c-loadWC(vW , i) + c-loadWC(vW , j)
+

∑
t∈T, ti=jc-loadWT(vW , t)

if (i, j)∈Eleft

c-loadWC(vW , i) + c-loadWN(vW , (i, j))
otherwise.

(20)

Hence, from (14), which is the condition of c-loadW , and
(20), we can obtain loadW(vW(i, j)) = c-loadW(vW(i, j))
for any (i, j).

Similarly, we can also derive loadR(vR(i, j)) =
c-loadR(vR(i, j)) from (11)–(13), (15), and (19). ut

In addition, the following lemma, which is the con-
verse of Lemma 1, is provable.

Lemma 2 For any allocation v, any degree f , any
system load ld, any capacity cap, and any strategy P ,
we can obtain a component load whose power consump-
tion is the same as P .

Proof To show this lemma, it is sufficient to show that
c-loadW(u) = loadW(u) and c-loadR(u) = loadR(u) for
any u ∈ U , where loadW and loadR are determined
by P . To obtain these equations, we define c-loadWN ,
c-loadWT , c-loadWC , c-loadRN , and c-loadRT as (21),
(22), (23), (24), and (25), respectively.

– c-loadWN(vW , (i, j)) =
∑

QW 3vW(i,j),QW 6∈CW,Col(i)

loadW(QW).(21)

– c-loadWT(vW , t) =
∑

QW ∈πW(t)

loadW(QW). (22)

– c-loadWC(vW , i) =
∑

QW ∈CW,Col(i)

loadW(QW). (23)

– c-loadRN(vR, (i, j)) =
∑

QR3vR(i,j)

loadR(QR). (24)

– c-loadRT(vR, t) =
∑

QR∈πR(t)

loadR(QR). (25)

The equation c-loadW(vW(i, j)) = loadW(vW(i, j))
can be obtained by (22) and (23) for any (i, j) ∈ Eleft.
In addition, the same equation can be obtained by (21)
and (23) for any (i, j) 6∈ Eleft.

Similarly, we can also derive c-loadR(vR(i, j)) =
loadR(vR(i, j)) for any (i, j) from (24) and (25). ut

Next, we introduce algorithm SA presented in Fig.
5. For any allocation, any degree, any system load, and
any capacity, this algorithm finds a component load, if
any, which minimizes power consumption among all the
component loads satisfying (16) and (17).

The algorithm SA consists of three sub-algorithms
named LP1, LP2, and LP3, which are based on linear
programming. For given k, i ≤ n, LP1 and LP2 re-
spectively estimate the lower- and upper-bound of the
number of active nodes in the i-th column for read allo-
cations such that the system is not overloaded with the
nodes up to the k-th column (i.e., loadW(vW(k′, j)) = 0
for all k′ > k and for all j). That is, the outputs of LP1
and LP2 are defined as follows.

– LP1(i, k) = min{j |∑
j′≤j cap(vR(i, j′)) ≥ ldR + minL(i, j)},

– LP2(i, k) = min{j |∑
j′≤j cap(vR(i, j′)) ≥ ldR + max L(i, j)},

where L(i, j) is the set of all possible values of∑
j′≤j c-loadW(vW(i, j′)) such that c-loadW satisfies

c-loadW(vW(i′, j′))=0 for any i′ > k and for any j′.

10

Here each element of L(i, j) means the total write load
of nodes below the j-th row and in the i-th column. The
values of minL(i, j) and max L(i, j) can be solved using
linear programming whose constraints are represented
by the following conditions.

– Eqs. (6)–(13).
– For any i > k and for any j, c-loadW(vW(i, j)) = 0.

On the other hand, for given k and state-function, LP3
returns a component load, if any, satisfying the follow-
ing conditions.

– Eqs. (6)–(13) and (17).
– For any i > k and for any j, c-loadW(vW(i, j)) = 0.

By using these sub-algorithms, SA finds an opti-
mal state-function among the set S = ∪n

k=0Sk of state-
functions such that each On ∈ Sk satisfies the following
conditions.

(P1) On(vW(k′, j)) = 1 for any j and any k′ ≤ k, and
On(vW(k + 1, j)) = 0 for some j.

(P2) For any (i, j), On(vR(i, j)) = 1 if j ≤ LP1(k, i).
(P3) On(vR(i, j)) = 0 for any (i, j) satisfying the fol-

lowing conditions:
(P3.1) j > LP2(k, i),
(P3.2) (i, j) 6∈ Elow or On(vR(j, i)) = 0,
(P3.3) On(v0(i′, h)) = 0 for any h > j′ with v0(i′, j′)

= vR(i, j),
(P3.4) i′ > k with vW(i′, j′) = vR(i, j).

(P4) On(vR(i, j)) = 1 for any (i, j) and (i′, j′) satisfy-
ing the following six conditions:
(P4.1) i, i′ > k,
(P4.2) (i, j), (i′, j′) ∈ [r,m] or (i, j), (i′, j′) 6∈ [r,m],
(P4.3) On(vR(i′, j′)) = 1,
(P4.4) (i′, j′) 6∈ Elow or On(vR(j′, i′)) = 0,
(P4.5) On(v0(h, l′)) = 0 for any l′ > l with v0(h, l) =

vR(i′, j′),
(P4.6) j ≤ min{h |

∑
h′≤h cap(vR(i, h′)) ≥

∑
l<j′

cap(vR(i′, l))}.

To find an optimal state-function, the execution process
of SA is as follows.

Step 1: Find α such that for any k < α, LP3 has no
solution for Onall and k, where Onall is the state
function with Onall(u) = 1 for any u ∈ U .

Step 2: For each Sk with k ≥ α, find On ∈ Sk such
that |On| is the minimum among all state-functions
which do not cause system overload.

Step 3: If the power consumption of every state-func-
tion in Sk+1 is more than the one of state-function
On such that |On| is the minimum for all the func-
tions found in Step 2, then return On. (We call this
output Onopt.)

1:input: U, v, Ef , cap, ld

2:Onopt ← U ;

3:k ← 0 ;

4:while LP3(α, Onopt) returns no strategy

5: if k = n then

6: exit “NO SOLUTION” ;

7: k ← k + 1 ;

8:loop

9: On← {vW (i, j) | i ≤ k} ;

10: On← On ∪ {vR(i, j) | j ≤ LP1(i, k)} ;

11: loop

12: On′ ← On ∪ {v0(i, j) | ∃i′(v0(i′, j) ∈ On ∧ i < i′)} ;

13: On′ ← On′ ∪ {vR(i, j) | vR(j, i) ∈ On ∧ (j, i) ∈ Eleft} ;

14: if On = On′ then

15: break ;

16: On← On′ ;

17: if |On| ≥ |Onopt| then

18: return LP3(n, Onopt) ;

19: S ← {On} ;

20: while S 6= φ

21: On← arg
On′

min{|On′| | On′ ∈ S} ;

22: if |On| ≥ |Onopt| then

23: break ;

24: if LP3(n, On) then

25: Onopt ← On ;

26: break ;

27: for i = 1 to n

28: On′←On∪{vR(i, j) | j =max{j′ | vR(i, j′)∈On}+1} ;
29: loop

30: On′ ← On ∪ {v0(i, j) | ∃i′(v0(i′, j) ∈ On ∧ i < i′)} ;

31: On′ ← On′ ∪{vR(i, j) | vR(j, i)∈On∧ (j, i)∈Eleft} ;
32: add nodes to On′ for satisfying (P4) ;

33: if On = On′ then

34: break ;

35: On← On′ ;

36: if |On| < |Onopt| and On satisfies (P4) then

37: S ← S ∪On ;

38: if k = n then

39: return LP3(n, Onopt) ;

40: k ← k + 1 ;

Fig. 5 Algorithm SA

Clearly, when algorithm SA terminates, |Onopt| ≤
|On| for any On satisfying that On ∈ Sα ∪ · · · ∪ Sn.

Now we show that algorithm SA finds an optimal
component load for a given system setting and its load.

Lemma 3 For any allocation v, any degree f , any
system load ld, and any capacity cap, algorithm SA re-
turns a component load, if any, which minimizes power
consumption.

Proof To show this lemma, it is sufficient to show the
following properties hold.

(C1) For any k < α and for any On ∈ Sk, On causes
the system overload.

(C2) For any On 6∈ S, On causes the system overload
or |On| ≥ |Onopt|.

11

41:input: U, v0, Ef , cap, ld

42:C ← φ ;

43:Onopt ← U ;

44:S ← {〈K0W , KWR〉 | K0W , KWR ⊆ {1, . . . , c}} ;

45:while S 6= φ

46: s← some element chosen from S ;

47: S ← S − {s} ;

48: v ← the allocation made by s from v0 ;

49: C′ ← SA(U, v, Ef , cap, ld) ;

50: On← the set of active nodes determined by C′ ;

51: if |On| < |Onopt| then

52: C ← C′ ;

53: vopt ← v ;

54: Onopt ← On ;

55: if |Onopt| < m2 then

56: S ← S −R ;

57: # R is the set of allocations satisfying condition (P5).

58:Transform C into strategy P opt by using Eqs. (18) and (19) ;

59:return vopt, P opt ;

Fig. 6 Algorithm OA

For (C1): We assume that there exists On ∈ Sk for
some k < α such that LP3(On, k) (i.e., the output of
LP3 for the inputs On and k) is component load c-load.
Then c-load clearly satisfies (17) with Onall. Thus, Step
1 of SA finishes with this k. This contradicts k < α.

For (C2): It is sufficient to show that for any state
function On 6∈ S, if LP3(On, n) has a solution (where n
is the number of columns in the system) then there ex-
ists a state function On′ ∈ S such that LP3(On′, n)
has a solution with |On′| ≤ |On|. For space limita-
tions, we show only the case that On does not sat-
isfy (P4). That is, we assume that there exist (i, j) and
(i′, j′) satisfying (P4.1)–(P4.6) with On(vR(i, j)) = 0.
By (P4.1) and (P4.2), we obtain

∑m
j=1 loadW(vR(i, j))

=
∑m

j=1 loadW(vR(i′, j)). In addition, by (P4.6), we ob-

tain
∑j−1

h=1 cap(vR(i, h)) <
∑j′−1

h=1 cap(vR(i′, h)). Thus,
by the assumption On(vR(i, j)) = 0,

j′−1∑
h=1

cap(vR(i′, h))

≥
m∑

h=1

c-loadW(vR(i′, h)) + ldR. (∗)

Let On′ be a state-function such that On′(vR(i′, j′)) =
0 and for any node u except for vR(i′, j′), On′(u) =
On(u). For this state-function, from (P4.4), (P4.5), and
inequation (∗), we can conclude that LP3(On′, k) has
a solution. Clearly, since On′(vR(i′, j′)) = 0, (P4.3)
is false, thus On′ satisfies (P4). Therefore, On′ ∈ S.
Moreover, |On′| < |On|, because On′(vR(i′, j′)) = 0
while On(vR(i′, j′)) = 1 and On′(u) = On(u) with
u 6= vR(i′, j′). ut

Next, we introduce algorithm OA, which is presented
in Fig. 6. For any given initial allocation, any degree,

any system load, and any capacity, this algorithm first
finds an optimal pair of a component load and a recon-
figured allocation (up to line 58) then returns a solution
to Problem 1 by transforming this component load into
an optimal strategy with Eqs. (18) and (19). Clearly, we
can find an optimal pair of an allocation and a compo-
nent load by considering all the possible reconfigured
allocations and then checking them one-by-one using
algorithm SA. However, as mentioned before, to reduce
the computational complexity of this procedure, we use
the pruning technique as follows.

For any initial allocation v0 and for any allocation
〈vW , vR〉, let K(v0, vW) and K(vW , vR) be sets of in-
dexes of columns, satisfying the following conditions.

– v0
E′

−→ vW s.t. E′ =
∪

k∈K(v0,vW)

(Col(k) ∩ Eleft) .

– vW
E′′

−−→ vR s.t. E′′ =
∪

k∈K(vW ,vR)

(Col(k) ∩ Eleft) .

Note that, by (R5) and (R6), it is guaranteed that there
exist such K(v0, vW) and K(vW , vR) for any v0 and
〈vW , vR〉.

In the procedure to find an optimal pair of a com-
ponent load and a reconfigured allocation from v0, at
lines 55 and 56 in Fig. 6, if it is known that the number
of active nodes of this solution is the same or smaller
than m2 (where m is the number of rows in the sys-
tem), algorithm OA omits the allocations, whose set is
denoted by R, such that each v ∈ R satisfies the follow-
ing condition.

(P5) There exists (i, j) ∈ Eleft such that (i, j) and v =
〈vW , vR〉 satisfy both (P5.1) and (P5.2) below.
(P5.1) cap(vW(i, j)) < cap(vW(j, i)), i 6∈ K(v0, vW),

and i ∈ K(vW , vR).
(P5.2) At least one of the following conditions (P5.2-

1) and (P5.2-2) is satisfied.
(P5.2-1) There exists i′ such that i < i′ and

i′ ∈ K(v0, vW).
(P5.2-2) The following inequation holds:∑c

i′=1 max{cap(vW(i′, j)), cap(vW(j, i′))} <
ldR.

Note that for any system in which the number of
columns is the same or smaller than the one of rows
(i.e., n ≤ m), the number of active nodes of an optimal
solution is always the same or smaller than m2.

Even though there is such a reduction of search
space, algorithm OA finds an optimal solution. That
is, the following lemma holds.

Lemma 4 For any initial allocation v0, any degree f ,
any system load ld, and any capacity cap, we can obtain

12

a pair of a component load and a reconfigured allocation
from v0, if any, which minimizes power consumption.

Proof To show this lemma, it is sufficient to show that
for any allocation v ∈ R, if there is a component load
c-load such that the power consumption determined by
c-load is the same or smaller than m2 and the pair of v
and c-load is optimal for the given f , ld, and cap, then
there exists an allocation v′ 6∈ R such that the pair of
v′ and c-load is also optimal.

For space limitations, we show only the case that
v satisfies (P5.2-1). That is, there exist (i, j) ∈ Eleft

and i′ such that (i, j), i′, and v satisfy both (P5.1) and
(P5.2-1). Here we consider the following two cases: (a)
c-loadWC(vW , i′′) = 0 for any i′′ ≥ i′, and (b) otherwise.

For (a): We define v′ = 〈v′
W , v′R〉 as v

〈E′,φ〉−−−−→ v′

where E′ = Eleft∪Col(i′). Then v′ 6∈ R. By the assump-
tion, as the power consumption of c-load is the same or
smaller than m2, we obtain c-loadWT(vW , t) = 0 for
any t ∈ T . Since c-loadWC(vW , i′′) = 0 for any i′′ ≥ i′,
c-loadWC(vW , i′) = 0. Hence, c-loadW(v, vW(i′, j′)) =
c-loadW(v′, vW(i′, j′)) = 0 for any j′ with (i′, j′) ∈ Eleft.
Thus, for any u ∈ U , the load of u determined by c-load
is the same for both v and v′ for the given f , ld, cap.
Therefore, the pair of v′ and c-load is also optimal.

For (b): We define v′ = 〈v′
W , v′R〉 as v

〈E′,φ〉−−−−→ v′

where E′ = Eleft ∪ Col(i). Then the following equation
holds.

c-load(v′, v0(h, l)) =

c-load(v, v0(h, l)) − c-loadW(v, v0(h, l))
for h = i ∧ (h, l) ∈ Eleft

c-loadW(v, v0(l, h))
for l = i ∧ (h, l) ∈ Elow

c-load(v, v0(h, l))
otherwise.

Here, by (P5.1), (R1), and (R2) we obtain cap(v0(i, j′))
≤ cap(v0(j′, i)) for any j′ with (i, j′) ∈ Eleft. Thus,
as c-loadW(v, v0(i, j′)) ≤ cap(v0(i, j′)) for any j′ with
(i, j′) ∈ Eleft, c-loadW(v′, v0(j′, i)) ≤ cap(v0(i, j′)).
Therefore, the pair of c-load and v′ does not cause the
system overload for the given f , ld, cap, and the alloca-
tion. Now we let On be the state-function determined
by c-load and v. Here the load of node v0(j′, i) with
(j′, i) ∈ Elow may increase for c-load and v′, compared
with the pair of c-load and v. However, On(v0(j′, i)) = 1
for any j′ with (j′, i) ∈ Elow, because there exists i′′ ≥
i′ ≥ i with c-loadWC(vW , i′′) 6= 0 and i′ ∈ K(v0, vW).
Thus, |On′| = |On|, where On′ is the state-function de-
termined by c-load and v′. Therefore, the pair of v′ and
c-load is also optimal. ut

Finally, we prove the main theorem below.

Proof (Proof of Theorem1) Let 〈c-load opt, vopt〉 be the
pair of the component load and the reconfigured alloca-
tion obtained by algorithm OA. Then, by Lemma 4, this
pair is an optimal one in the set of all the pairs of com-
ponent loads and allocations. Thus, by Lemma 1, we
can obtain a strategy P opt whose power consumption
is the same as c-load opt. Moreover, P opt is an optimal
strategy for vopt, because if there exists another strat-
egy whose power consumption is smaller than that of
P opt, then by Lemma 2, a better solution also exists
in the set of component load for vopt. This contradicts
Lemma 3. ut

In closing this section, we present some remarks on
the restrictions considered in this section, the computa-
tional complexity of our algorithm, and implementation
of our proposed system.

Remark 1 (Restrictions on the capacity and the state of
nodes) For simplicity in our discussion, we introduce
in this section some restrictions on the capacity and the
state of the nodes. However, if we disregard one of the
restrictions (R1)–(R6), there may be a better solution
than that obtained by our algorithm.

Such an example is as follows. Let Onopt and c-load
be the state-function and component load obtained by
algorithm OA for a given system and its workload. Then
let k be max{i | c-loadWC(i) 6= 0}. Now we consider a
state-function On satisfying the following conditions.

– If Onopt(u) = 0 then On(u) = 0 for any u ∈ U ;

– For any i 6∈ K(vW , vR).∑
j∈{j′|On(vR(i,j′))=1} cap(v(i, j)) ≥ ldR + LP2(i, k).

– For any (i, j) ∈ Eleft, if On(vR(j, i)) = 0 then∑
t∈T,ti=j c-loadRT(ti) = 0.

In this case, the nodes, each of which u satisfies Onopt(u)
= 1 and On(u) = 0 can be reduced if we disregard as-
sumption (R3).

More concretely, (see Fig. 7 for the graphical pre-
sentation) let n = 4, m = 4, f = 〈0, 4〉, ld = 〈0, 3〉, and
cap(v0(1, j)) = 2 for any 1 ≤ j ≤ 4, and cap(v0(i, j)) =
4, otherwise. By (R3), the minimum set of active nodes
is {v0(i, j) | 1 ≤ i ≤ 2 ∧ 1 ≤ j ≤ 4}, where the total
number of nodes is 8. Without (R3), however, nodes
{v0(i, j) | i = 2 ∧ 1 ≤ j ≤ 4} are sufficient, giving a
total number of 4 nodes.

13

Fig. 7 Active nodes of dynamic grid quorum with/without (R3)

Remark 2 (Computational complexity) As explained
before, to solve Problem 1 there are three factors caus-
ing an exponential increase in the computational com-
plexity of the calculation, namely, the number of con-
straints used by the linear programming in SA, the
number of state-functions treated by SA, and the num-
ber of reconfigured allocations treated by OA. In terms
of pruning techniques as well as the notional component
load, the computational complexity of our proposed al-
gorithm is decreased. Indeed, as far as our experiments
are concerned, we can find optimal solutions in a fea-
sible time for all cases of the simulations in the next
section. However, these three factors may still cause a
search space explosion. The maximum values of these
factors, say, ν1, ν2, and ν3 can be represented with the
O-notation as follows:

– ν1 = O((m − r)c),

– ν2 = O((c − π)r + c · n · m),

– ν3 = O(2c).

Here, n, m, c, and r are the numbers of columns and
rows, and the degrees for columns and rows, respec-
tively; π = min{j |

∑
0≤j′≤j cap(vR(i, j′)) ≥ ldR ∧ 1 ≤

i ≤ n}. In terms of these values, for the worst case, the
required calculation to solve Problem 1 is the c·ν2 ·ν3 it-
erations of linear programming using ν1 constraints. A
possible way to avoid such exponential growth is to re-
strict c to a small number. On the other hand, (c− π)r

in the second equation is feasible in most cases, be-
cause large ld keeps c−π small, and small ld makes the
probability of breaking into short loops high. Moreover,
c · n ·m in the second equation is also feasible, because
it is shortened by pruning by (P4) of SA in a practical
sense. This is a simple way to avoid the search space
explosion, but an improvement to our algorithm is still
needed. This will be investigated in one of our future
studies.

Remark 3 (Implementation) Finally, we make some
remarks related to the implementation of our proposed

system. For implementation, first, the information of
the current system load is needed to calculate optimal
storage. It can be obtained by observing nodes in at
most one column in read allocation and at most one row
in write allocation. That is, it is sufficient to observe
v0 (Col(i)) and v0 (Row(i)) for any i, where v0 is the
initial allocation.

Next, all the clients must share the allocation and
strategy, however, from Proposition 1, it is derived that
the consistency of the data are guaranteed even if some
clients are out of synchronization. Thus, although it
may cause temporarily high power consumption, it is
not necessary to enforce strict synchronization among
clients. Therefore, the overhead of updating the alloca-
tion and strategy will be small.

Finally, we point out that some methods are usable
for managing the power of each node. For example, by
restriction (R3), when node v0(i, j) must change state
to active, v0(i, j − 1) also changes state to active or is
already active. Thus, it is sufficient for each node to
manage the power of the above node. Therefore, clients
need to manage the power of no more than m nodes.

8 Simulation Results

In the evaluation of this section, we consider the follow-
ing four systems for a 10×10 grid: dynamic grid quorum
with dual allocation (DDG), dynamic grid quorum with
no dual allocation (i.e., single allocation) (DG), and
fixed allocation of nodes optimized for write requests
(WG) and read requests (RG). First we evaluate the
impact of the write/read ratio for each case where the
system load is low, medium or high. In contrast to the
above settings, we also evaluate the impact of the sys-
tem load, where the write/read ratio is fixed but the
total number of requests varies.

Parameters and Settings. Each system in the eval-
uation consists of 70 nodes with capacity a (for some
constant a) and 30 nodes with capacity 2a. In the WG
and RG, the nodes with 2a are allocated in Coli and
Rowi for 1 ≤ i ≤ 3, respectively. The DG is a dynamic
grid quorum with f = 〈3, 1〉, while the DDG is a dy-
namic grid quorum with dual allocation with f = 〈3, 3〉.
The reason we consider DG and DDG with different
degrees is that DG with f = 〈3, 1〉 is better than the
case of f = 〈3, 3〉 with respect to the power consump-
tion. To reduce the computational complexity, we con-
sider the following restrictions (introduced in Section
7). The static systems WG and RG satisfy (R3) and
(R4) while the dynamic systems DG and DDG satisfy
(R1)–(R6). However, for DG, instead of (R3) we con-
sider the restriction such that for any i < i′ and for

14

Fig. 8 Number of active nodes (ldW + ldR =2.5a)

Fig. 9 Number of active nodes (ldW +ldR =5a)

any j if On(vR(i′, j)) = 1 then On(vR(i′, j)) = 1. This
restriction reduces more power than in the case of (R3).
The initial allocation of DG and DDG is the same as
RG. For the impact analysis of the write/read ratio, we
use 2.5a, 5a, and 7.5a as the values for low, medium,
and high loads in the system. This setting arises from
the fact that the write and read capacity for a grid of
the same size, comprising homogeneous nodes with ca-
pacity a, is 10a and 6.5a, respectively. For the impact
analysis of the system load, we consider the write/read
requests to be 1/3, which is also used as the default
parameter in [16].

Impact of write/read ratio in the case of low
load. Fig. 8 shows that the power consumption of the
DDG is more stable over the range of the ratio of write
operations compared with the others. In addition, com-
pared with the WG, RG, and DG, DDG saves on aver-
age 13.6%, 14.8%, and 4.3% respectively, for all ratios.
The results of this simulation show that dynamic grid
quorum with dual allocation reduces power consump-
tion when compared with all the other systems, WG,
RG and DG.
Impact of write/read ratio in the case of medium
load. Fig. 9 shows that the DDG consumes more power
than the RG for the case of 0% of the write ratio and
more power than the WG above 90% of the write ratio.

Fig. 10 Number of active nodes (ldW +ldR =7.5a)

Fig. 11 Number of active nodes (ldW : ldR =1:3)

However, except for these cases, the power consump-
tion of the DDG is the least for all ratios. Consider-
ing more detailed results, the DDG saves on average
10.9%, 20.0%, and 12.5% compared with WG, RG, and
DG. The results of this simulation show that our sys-
tem is also efficient for a wide range of write ratios.
In addition, in this simulation, the DDG shows better
behaviour with a high write ratio than DG.

Impact of write/read ratio in the case of high
load. Fig. 10 shows that the power consumption of the
DDG is the least for the range 10% to 50% of the write
ratio. The DDG consumes more power than the RG
for the case of 0% of the write ratio and more power
than the WG above 60% of the write ratio. However,
a notable fact is that above 60% of the write ratio,
DDG is still effective compared with RG and DG, while
DG cannot handle a write ratio above 70%. Compared
with the WG and RG, DDG saves on average 6.4% and
11.9%. Moreover, even if the write ratio is restricted in
the range 0% to 70%, DDG saves 14.9% compared with
DG.

Impact of load growth. Fig. 11 shows that the power
consumption of the DDG is the least for almost all of
the range for other system loads. Compared with the
WG, RG, and DG our system saves on average 25.2%,

15

14.1%, and 10.6%. The results of this simulation show
that our system is effective for any system load.

9 Conclusions and Future Work

In this paper, we presented a power-aware quorum sys-
tem called the dynamic grid quorum. To reduce power
consumption, the basic principle behind our system was
to skew the workload towards a small number of quo-
rums, which was realized by the following techniques:
reconfiguration by exchanging nodes without data mi-
gration, dual allocation for write and read quorums, and
an algorithm to find an optimal pair for reconfiguration
and its strategy for a given system setting and work-
load. We also evaluated our techniques by comparing
the proposed system using three alternatives, namely,
static write- and read-optimized configurations, and dy-
namic reconfiguration with a single allocation. The re-
sult showed that our proposed system’s power savings
were, on average, between 10.6% and 25.2% with 1/3
write operation ratio.

There are several possible directions in which this
work can be developed. From a theoretical viewpoint,
as mentioned in Section 7, we are interested in improv-
ing our algorithm to avoid the situation that results
in a search space explosion. In addition, we are inter-
ested in some extensions of our techniques, especially in
modeling the heterogeneity of power consumption and
the time required for the state transition of nodes, that
were not considered in this paper. Furthermore, on a
practical level, we plan to evaluate the effectiveness of
our proposed techniques, which could be investigated
through a prototype implementation.

Acknowledgements This study was supported in part by the
Global COE Program on “Cybernics: fusion of human, machine,
and information systems.” This study was also partially sup-

ported through the SCOPE program by the Ministry of Internal
Affairs and Communications of Japan.

References

1. Agrawal D, Abbadi AE (1991) An efficient and fault-tolerant
solution for distributed mutual exclusion. ACM Trans on
Computer Systems, 9(1):1–20

2. Bernstein PA, Hadzilacos V, Goodman N (1987) Concurrency
Control and Recovery in Database Systems. Addison Wesley

3. Cheung S, Ammar M, Ahamad M (1992) The grid protocol:
A high performance scheme for maintaining replicated data.
IEEE Trans on Knowledge and Data Engineering, 4(6):582–

592

4. Colarelli D, Grunwald D (2002) Massive arrays of idle disks
for storage archives. Proc of the ACM/IEEE Conf on Super-

computing, pp 1–11

5. Frain I, Basmadjian R, Bahsoun JP, M’zoughi A (2006) How
to improve the scalability of read/write operations with dy-

namic reconfiguration of a tree-structured coterie. Proc of the
Int Conf on Parallel Processing Workshops, pp 123–134

6. Fu A (1997) Delay-optimal quorum consensus for distributed

systems. IEEE Trans on Parallel and Distributed Systems,
8(1):59–69

7. Gifford D (1979) Weighted voting for replicated data. Proc
of the ACM Symposium on Operating Systems Principles, pp

150–162
8. Harnik D, Naor D, Segall I (2009) Low power mode in cloud

storage systems. Proc of IEEE Int Parallel and Distributed
Processing Symposium, pp 1–8

9. Ibaraki T, Kameda T (1993) A theory of coteries: Mutual
exclusion in distributed systems. IEEE Trans on Parallel and
Distributed Systems, 4(7):779–794

10. Ishikawa M, Hasebe K, Sugiki A, Kato K (2009) Dynamic

Grid Quorum: A Novel Approach for Minimizing Power Con-
sumption without Data Migration in Grid Quorums. IEEE
Int Conf on Service-Oriented Computing and Applications

(SOCA’09), pp 142–149
11. Li D, Wang J (2004) EERAID: energy efficient redundant

and inexpensive disk array. Proc of the ACM SIGOPS Euro-
pean Workshop, 6 pages

12. Lin X (2004) Delay optimization in quorum consensus. Al-
gorithmica, 38(2):397–413

13. Maekawa M (1985) A
√

n algorithm for mutual exclusion
in decentralized systems. ACM Trans on Computer Systems,

3(2):145–159
14. Peleg D, Wool A (1997) Crumbling walls: A class of prac-

tical and efficient quorum systems. Distributed Computing,
10(2):87–97

15. Pinheiro E, Bianchini R (2004) Energy conservation tech-
niques for disk array-based servers. Proc of the Int Conf on
Supercomputing, pp 68–78

16. Pinheiro E, Bianchini R, Dubnicki C (2006) Exploiting re-

dundancy to conserve energy in storage systems. Proc of the
joint Int Conf on Measurement and Modeling of Computer
Systems, pp 15–26

17. Tsuchiya T, Yamaguchi M, Kikuno T (1999) Minimiz-
ing the maximum delay for reaching consensus in quorum-
basedmutual exclusion schemes. IEEE Trans on Parallel and
Distributed Systems, 10(4):337–345

18. Wang J, Zhu H, Li D (2008) eRAID: Conserving energy in
conventional disk-based raid system. IEEE Trans on Comput-
ers, 57(3):359–374

19. Weddle C, Oldham M, Qian J, Wang AI, Reiher P, Kuenning

G (2007) PARAID: A gear-shifting power-aware RAID. Proc
of the USENIX Conf on File and Storage Technologies, pp
245–260

20. Yao X, Wang J (2006) RIMAC: a novel redundancy-based

hierarchical cache architecture for energy efficient, high per-
formance storage systems. Proc of the ACM SIGOPS/EuroSys
European Conf on Computer Systems, pp 249–262

21. Zhu Q, Chen Z, Tan L, Zhou Y, Keeton K, Wilkes J (2005)

Hibernator: helping disk arrays sleep through the winter.
ACM SIGOPS Operating Systems Review, 39(5):177–190

