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Abstract. We present an explicit treatment of assumptions on a prin-
cipal’s honesty in compositional logic. Our central idea is to divide an
honest principal’s role into its components, and these components are
composed during the proving steps of a property useful to prove a pro-
tocol correctness. We distinguish the monotonic properties and the non-
monotonic ones, and give a core inference system for the monotonic prop-
erties, which can be extended for non-monotonic ones.

1 Introduction

The main purpose of this paper is to make explicit compositionality of assump-
tions on honesty in the style of compositional logic, which was originally intro-
duced by Durgin-Mitchell-Pavlovic [11] and Datta-Derek-Mitchell-Pavlovic [6,
7]. Especially this paper is aimed at introducing a core inference system of our
framework as a first step. An extension is made by the subsequent paper [15] of
ours.

Compositional logic is a proof system based on Floyd-Hoare style logical
framework for proving protocol correctness. In this framework, a protocol is
considered as a program, and a statement “from a principal P’s viewpoint, a
general property ¢ holds at the end of his/her protocol action @” can be repre-
sented as a formula of the form [@]p ¢ (or of the form 0[@]p ¢ in [7]). One of the
most advantageous points of this framework is its compositional approach for
reasoning about a compound protocol: for proving a property about a compound
protocol we can reuse already established properties about its components.

In the framework of compositional logic, statements are derived not only by
means of some axioms about protocol actions but also by means of assumptions
about the other principals’ honesty. For formalizing such assumptions about
honesty (called honesty assumptions), in [11, 6, 7] they use conditional statements
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of the form Honest(Q)) D ¢, which means “if a principal () is honest, then ¢
holds in any run of the protocol in question”. On the other hand, we propose
a way to make more explicit the composing steps of the honesty assumptions
during a proving process of a property. For that purpose we use the form of
expression Honest(@%) D ¢, instead of Honest(Q) D ¢, where & represents a
sequence of primitive actions (i.e., sending, receiving or generating actions) in a
role performed by Q. Using this framework, an (often minimal) requirement of
@’s honesty to derive a property ¢ from P’s viewpoint is expressed by explicitly
mentioning the part @ of Q’s role in a protocol.
The basic form of assertion in our inference system is as follows.

Honest(@®"),..., Honest(@9), '+ [B]p ¢,

where each d’?" represents a component part of role performed by a principal @;
(for each i = 1,...,n). The intended meaning of the above sequent is “if each
Q; honestly performs a part of his/her role d’?", and if some properties I" hold,
then after P performs a sequence of actions 3, ¢ holds from P’s viewpoint”.
(Here (); may be the same as @); for some i,j =1,...,n.)

In our framework during a proving process, such honesty assumptions are
derived not only by some special inferences, called honesty inferences, but also
by the following weakening rule which is an analogy to the weakening rule of the
traditional logic.

Hon(@%;@9),I'F [5;F'p ¢
Hon(a%;a"9;@9), '+ [;8";8'p ¢

Weakening

This means “from P’s view, if a property ¢ is derived from I" with (’s honesty
on @;d after P’s performance of §; /', then ¢ is also derived from I' with Q’s
honesty on &;a/; @ after P’s performance of 3;8"; 3', for any addition o and
B" in the roles”. Here a;a' (f; 3, resp.) is the sequential concatenation of two
sequences of actions & and & (5 and /', resp.).

Moreover, by means of the weakening rule, honesty assumptions are com-

posed by the following reasoning from P’s view.
Hon(@@)F[Blpz=t Hon(@?)F[Blp ¢ B
Hon(a®), Hon(@?) + [Blp o[t/z]

Hon(@% 0 @) F [Bp olt/a]

Comp(Hon)

The intended meaning of this reasoning is as follows. First assume the two asser-
tions from P’s view: “if ) follows a part of his/her role @9 honestly, then z = ¢
holds after P performs his/her role B"’, and “if @ follows another part of his/her
role &’ honestly, then a property ¢ holds”. Then by an equality inference, “if Q
follows @9 as well as @', then ¢[t/z]” holds from P’s view. Then by combining
the two separated assumptions on )’s honesty into one assumption on (’s hon-
esty (following his/her combined role &% o @'?), “if ) follows his/her combined
role @9 o @9, then ¢[t/x]” holds from P’s view. Here &% o @'% is a sequence of



actions which includes all actions in the components @9 and @'? and preserving
order. This composition is formalized as a derived rule Comp(Hon), which is
actually obtained by combining basic and natural logical (structural) inferences
(i-e., weakening rule as shown above and usual contraction rule of left hand side
of a sequent). Another example of a composition of honesty assumptions using
cut rule is as follows.

Hon(@) - [flp ¢ o, Hon(@) + [Alp ¢
Hon(a®), Hon(a%) + [E]P Y
Hon(a®? o @) + [Blp v

Cut
Comp(Hon)

By using such composing steps, for proving a property about a compound pro-
tocol we can directly reuse assertions about its components to construct a proof
of the property.

Here we remark a difference on the standpoints between our approach and
that of [11,6, 7]. In order to realize the compositionality on the honesty assump-
tions, our approach needs to restrict the forms of honesty inferences to a Horn-
clause. Therefore, the following kind of inferences, which is considered in [11,86,
7], is not considered in our system: “if a principal (say P) honestly follows a role
ad = a1;ag;as of a protocol, then one concludes Honest(P) A (P performs 8) D
B=a1) V(B =ay)V(B=az) (ie, if Pis honest and he/she performs an
primitive action 3 then it is a; or as or az). This kind of inferences is not in
harmony with the compositionality because our weakening rules may add other
possibilities of disjunctions. As a result, our framework is simplified to be the
Horn-clause basis while [11,6,7] uses more general language including disjunc-
tions and negations.

In our framework if one can freely apply the weakening rule to ¢, we call ¢ a
monotonic property. Freshness, receiving-fact, which are used in BAN logic [1],
are examples of monotonic properties. On the other hand, for example, property
HasAlone(P,m) (introduced in [6,7]), which means that “a message m is pos-
sessed only by P”, is non-monotonic, because if a receiving action of m is added
into the component of @’s role, then HasAlone(P,m) does not hold anymore.
(Another example of non-monotonic property is Source introduced in [11].) The
notion of monotonicity is essentially the same as the notion of persistency in the
sense of [11, 6, 7]. However, while persistency is related only to the weakening rule
for protocol actions (which are described in the square bracket “[ ]”), the notion
of monotonicity is related to both weakening rules, for honesty assumptions and
for protocol actions.

If we use such non-monotonic properties in our framework, we have to re-
strict the use of weakening rule by imposing appropriate conditions to preserve
the properties, or to introduce a kind of temporal notion. However, so long as the
monotonic properties are concerned, we do not need any restriction on the weak-
ening rule nor any introduction of temporal notions. One of our aim in this paper
is to explain our framework by restricting our attention within the core part of



our inference system which is made up of only some monotonic properties. As an
example, we take a set of properties which are useful for proving agreement prop-
erty (in the sense of Woo-Lam [19]) of a protocol.! These properties are mainly
chosen from the BAN logic predicates such as “sends”, “receives”, “fresh” 2,
and so on. All of our chosen properties are monotonic except “sends”.> However,
if we want to prove a property stronger than the agreement property, we need
to introduce some non-monotonic properties, and then to restrict the free use of
the weakening rules. In the subsequent work [15] of ours, we show how to extend
our framework by introducing some non-monotonic properties. As an example,
in [15] we introduce a non-monotonic property, simply called firstly sends, means
“a principal sends a message m containing n as a subterm, and he/she does not
send any other message m' containing n before the sending of m”. Moreover, we
demonstrate that this property is useful to derive the matching conversations
of Challenge Response protocol [9] (cf. also [6,7]), which is stronger than the
agreement property.

In this paper, we use the following notations. (The complete definition of
the language of our system is presented in Appendix A.1.) The letters A, B,
C,...(P,Q, R,..., resp.) are constants (variables , resp.) of principals’ names.
The capital letters K, K', ..., K1,Ks,...and N,N' ... N1, No, ... are constants
of keys and of nonces, respectively, while the small letters k, k', ... ki, ka,...
and n,n',..., ny,na,... are variables of the same sorts as above. The letters
m,m',..., my,ma,...are used to denote messages, and {m} k is the encryption
of m with key K, and (m1,...,m,) is the concatenation of messages my, ..., my,.
We also use the notation m C m' to represent the subterm relation as a meta
symbol.

The rest of this paper is organized as follows. In Chapter 2 we give the
definition of our inference system. In Chapter 3 we explain our proving method
for a composed protocol by using the same example as [6, 7]. In Chapter 4 we give
a semantics of the system by means of the notion of trace. Finally, in Chapter 5
we present our conclusions and some further issues.

2 Inference System

In this section, we give the definition of our inference system. The complete list
of the formal definitions is presented in Appendix A.

! We do not go into the secrecy issue in this paper.

% In [6, 7], they use “t is fresh” differently from ours, namely as “no one else has seen
any term containing ¢ as a subterm”. On the other hand, our use of freshness is the
same as BAN logic [1].

3 the property “sends” is non-monotonic with respect to the weakening rule for hon-
esty assumptions. The details shall be explained in Section 2.



2.1 The Language

Predicates of our inference system are as follows: P generates n, P receives m 4,

P sendsm, PK(P, k), P & Q, fresh(n) and t = t'. The first three predicates are
called action predicates (performed by P). On the other hand, the last four pred-
icates are called non-action predicates. All those predicates except equality are
chosen from the BAN logic predicates [1]. Equality is used for explicit treatment
of substitutions. As we have mentioned in Section 1, all those predicates except
sends have monotonic properties (i.e., properties independent of the weakening
rules for principal’s actions and for honesty assumptions).5 Here we introduce the
following meta-symbols. The letters ,1,...,¢,... are used to denote atomic
formula (or simply called atoms). The letters «, 8,7,6,...,a',a",...,a1,q9,...
are used to denote atoms made of an action predicate (called atomic action for-
mulas), and also o', B, ¥, 6. .. to denote atomic action formulas performed
by P. The letters 6,6’,...,6,,0,,... are atoms made of an non-action predicate
(called atomic non-action formulas).

As logical connectives, we introduce only usual conjunction (denoted by “,”)
and non-commutative conjunction (denoted by “”). Our intention is to use non-
commutative conjunction to represent a sequence of principals’ actions. While in
[6,7], they use some temporal operators to reason about the ordering of actions,
we do not use any temporal operators: in our system orderings are directly
expressed by non-commutative conjunction. We introduce the vector notation
such as @ to denote a sequence (i.e., non-commutative conjunct) of atomic action
formulas.

Our inference system uses a sequent calculus style assertion. The basic form of
assertion is as follows (where @); may be the same as @); for some i,j =1,...,n).

Honest(@?"), ..., Honest(G9"), A+ [Bla ¢

Here 62?" is a sequence of atomic action formulas performed by @; (for each

i =1,...,n), which represents a part of his/her role. 3 is a sequence of actions
performed by A.6 ¢ is an atomic formula (made of an action or non-action
predicate). A is of the form 6,...,60,,,%1,...,7k. Each predicate of the form

* We distinguish two kinds of “receives”: the simple receiving and the receiving with
decryptions. P receives m({m'}}) means that “P receives a message m and decrypts
the indicated subterm {m’}) of m. For a more formal description, instead of using
*, we could introduce a new predicate decrypts and describe it by (P receives m) A
(P decrypts {m'}x)-

 As we shall see in the explanation of Matching rule of the honesty inferences in
Section 2.2 (III), predicate “sends” is monotonic w.r.t. the weakening for concrete
actions, however it is non-monotonic w.r.t. the weakening for honesty assumptions.
In other words, this predicate is non-monotonic in the sense of our terminology,
whereas it is “persistent” in the sense of [11, 6, 7].

6 For describing a sequence of action, while compositional logic of [11, 6, 7] uses the
cord calculus, we describe it by a sequence (i.e., non-commutative conjunct) of action
predicates.



Honest(a@%) represents “principal Q; honestly follows a part of his/her role
o'z'?" 7. We call it Q;’s honesty assumption. Here, if 0'2?" is ag"; ;aﬁf, we

can consider the predicate H onest(o’z’?") as an abbreviation of H onest(ag"); R
H onest(a%), which is a conjunct of non-commutative conjunction.

Therefore, the intuitive meaning of the sequent style assertion previously
introduced is “if each principal @; honestly follows the parts of his/her role 0'2?",
and if some properties A hold, then after A performs a sequence of actions B’,
 holds from A’s viewpoint”. (Here E may be empty. In such case we often use
the expression I' - ¢, instead of I' - [ ]¢.)

Finally, we introduce the postfix notation [13, , 1_5] in order to denote the
lists of principal names P (list of variables Py,..., Py), and the lists of variables
of nonces and session keys ﬁ,E (as variables). Substitutions are represented in
terms of this notation.

2.2 Axioms and Inference Rules

Our inference system consists of the following four classes of axioms and infer-
ence rules. The complete list of the axioms and inference rules is presented in
Appendix A.2.

(I) Logical inferences with equality

(IT) Action properties axioms

(ITI) Inferences related to the honesty assumption (which are called honesty
inferences)

(IV) Weakening rules for actions and honesty assumptions

(I) Logical inferences with equality

As logical inferences, we use some structural rules (weakening, contraction, ex-
change rules of the left hand side, and cut rule) and the equality inference rules.
For example, the following inference rules are cut rule (in right below) and a
typical equality inference rule which we often use (in left below). (Here ¢ is any
term and z is a variable.)

Tty ¢ AF [y Cut Fhl@z=t AF[dle
I, AF @)y I, Ak [alelt/x]

Eq

We also introduce the following inference (substitution rule) as a logical inference
rule.

I'+[ale
I[t/x] - [alt/z]]e[t/ ]

Subst

(IT) Action properties axioms

Action properties axioms are the azioms about actions and the azioms for rela-
tionship between properties in the sense of [11]. Our proposed axioms are listed in



Appendix A.2. However, our framework does not depend on a specific set of ax-
ioms in this category. The followings are some examples of our action properties
axioms.

Axioms about primitive actions:

Flafs---;allal (for any principal P and for any i = 1,...,n.)

Nonce Verification (public key):
(PK(k,Q)), (fresh(m)), (P receives m'({m};_,)) - (Q sends m")
(Here {m}g-1 Cm',m".)

Note that Nonce Verification is a formalization of the Incoming tests of Au-
thentication tests based Strand space method introduced by [13] (cf. also [12]).
On the other hand, we need a non-monotonic property equivalent to the notion
of “uniquely originate” (in the sense of [13]) to formalize Outgoing tests. This
formalization is given by using the property “firstly sends” in [15].

(IIT) Honesty inferences

In terms of the classes (I) and (II) of axioms introduced above, we can derive
some actions performed by @) from another principal P’s viewpoint. For example,
we can derive “P knows that () actually performed a sending action in a current
run” from information about encrypted keys or fresh nonces, etc. included in
the received message. However, to derive @)’s other actions, P may assume Q’s
honesty and may use P’s knowledge about @’s role in the protocol. For example,
if P assumes that @) is honest and that P knows that () sends the message m
in the current run, then P can derive that ) also performed a previous action
defined by @’s role. That is because ) should not send message m if Q) does not
perform all previous actions of his/her role.

For formalizing such an inference, compositional logic in [11, 6, 7] uses a spe-
cial inference aimed at a conclusion of the form Honest(Q) D ¢. On the other
hand, in our system, inferences on honesty are formalized by the following infer-
ence rules, called honesty inferences. The central idea of ours is to separate @Q’s
role into his/her primitive actions, and use a predicate of the form Honest(@%)
as an assumption where @€ is a part of his/her role. In this framework, @’s ac-
tions are derived directly from a corresponding (often minimal) part of his/her
role.

Our honesty inferences are as follows.
Substitution (receives):
I'+ [@]lp Q receives m[t/x)
I', Honest(Q) receives m) - [@]lp x =t

Hon(Subst)

(Here ¢ is a constant, and z is a variable which has the same sort as ¢.)

We also admit an inference rule obtained from the above rule replacing “re-
ceives” with “sends”.



The intended meaning of the inference rules is that if “Q) knows that a prin-
cipal P receives (or sends, resp.) a message m with some concrete values ¢ (i.e.,
m[t/z])”, and if “P assumes that @ is honest and follows a receiving (or sending,
resp.) action of message m”, then we can conclude “P knows that = should be
t’.

Matching:

'k [d]p (Q sends m)
I, Honest(Q sends m',m) - [d]p (Q sendsm')

(Here m Cm/'.)

Hon(Match)

The intended meaning of this inference rule is that if “P knows that @
sends a message m” and if “P assumes that @) is honest and follows the sending
action ) sends m' containing m”, then we can conclude “P knows that @ has
sent m'”. This inference holds whenever the following additional condition is
satisfied: “the set of honesty assumptions does not include any other @)’s sending
action of a message containing m as a subterm”. This means that the formula
“Q sends m'” appearing in the lower sequent is non-monotonic. Thus, to keep
this formula monotonic, we restrict all applications of honesty inferences and of
weakening rule for honesty assumptions (explained in the next item (IV)) so as
to preserve this condition. More formally, we extend the language by introducing
a new predicate Honest(a,m) (here the usual honesty assumption of the form
Honest(a) previously introduced can be regarded as a special case that m is
empty), and all applications of honesty inferences and the weakening rule for
honesty assumptions are restricted by the following condition (denoted by (})).

(#) Both honesty assumptions Honest(Q sends m',m) and Honest(Q sendsm'")
(with m € m") do not appear in the left hand side of the lower sequent.

Note that we do not admit a rule obtained from the Matching rule above
by replacing “sends” with “receives”, because even if we assume principal @) is
honest and follows a part of role &9, we cannot derive that @ receives only the
messages following @<.

Deriving another action (sends):

I't[alp Q sendsm

I', Honest(Q receives m'; Q sends m) - [@]p Q receives m'

Hon(Role)

We also admit an inference rule obtained from the above rule by replacing “re-
ceiwes” with “sends” or “generates”.

The intended meaning of this inference rule is that if “P knows that @ actu-
ally sends (or receives) a message m and @ follows a sequence of primitive actions

Q receives m'; ) sends m”, then “Q actually performs action Q receives m'”.

(IV) Weakening rules for honesty assumptions and for actions

The following inferences are weakening rules for honesty assumptions (in left
below) and for performed actions (in right below).



I, Honest(@9;@'9) + [B]P_’(p W (Hon) I'v(&dlp ¢
T, Honest(a%; a9 @) F [l ¢ Ik (a&a"d]p ¢

W (Act)

As we have mentioned in the explanation of Matching rule of honesty inferences,
weakening rule for honesty assumptions should satisfy the (§) condition so as to
keep the correctness of Matching rule already applied in a proof.

In our system, free applications of the weakening rules are restricted by only
(#) to keep the monotonicity of predicate sends. Of course, if we eliminate the
predicate sends, all of our predicates are completely monotonic and then we
should restrict no application of the weakening rules. However, this property
is indispensable to prove protocol correctness. In other words, our choice of
predicates is one of the simplest formalism to prove the aimed property in this
paper. However, as we have mentioned in Section 1, if some non-monotonic
predicates such as “Source” in [11] or “Fresh” or “HasAlone” in [6,7] are
used in our framework, some additional conditions for weakening and honesty
inferences should be required. In the subsequent paper [15] of ours, we discuss
what kind of additional conditions are required to introduce such non-monotonic
properties.

In this paper, we restrict our attention to the protocol which does not include
any duplication of atomic actions. We assume that each principal in a protocol
does not send nor receive the same message twice. This assumption seems to
be reasonable because in a protocol including such a duplication, a receiver of
the same messages cannot distinguish one from another. Qur inference system
is sound under this assumption. See Section 4 for a more formal discussion of
soundness.

Composing steps in our system:

By using the contraction rule for commutative conjunction (“,”) in (I) and
weakening rules in (IV), operations for composition of honesty assumptions are
interpreted by the following derived rule (called Comp(Hon)).

-

I, Hon(a®), Hon(9) F [7e
I, Hon(a® o EQ),Hon(&Q o EQ) F [
T, Hon(a? o f9) + [¥]p

Weak( ;)
L4 Cont( , )

Here the notation @@ o 2 is a result of order preserving merge of sequence @@
and F9. That is, @9 o < is a sequence of actions which includes all actions both
in @@ and A9, and preserving the order. (For example, as;ay;as;aq;as and
a; a; as; aq are order preserving merges of two lists ay;aq; a3 and asg;ay.)

This derived rule is useful to prove properties of a composed protocol by
reusing proofs of its components as follows. Assume that there are two proofs m;
and 75, whose end sequents are I, Hon(a®) + [¥]p1 and Iy, Hon(69) F [7]p2,
respectively. From these proofs, in our inference system we can get a composed
proof by adding some inferences as follows.



T Up)

-

I, Hon(a%) + [F)¢ Iy, Hon(B9) F [7']e2

W(A = W(A
L Hon@) Bl T Hon @)+ B o W
py = q
I, T}, Hon(@9), Hon(5'9) +- [¢'
152 On(a )7 On(ﬂ ) [ ]90 Comp(Hon)

Iy, I3, Hon(@? o f19) I [§')

Step 1 (Substitutions): For the end sequents of m; and s, we apply some
substitution rules and weakening rules so that each ¥ and ¥' becomes the
same action &, where § = 7 o 4. Here rj,a (8", resp.) and ¢} (for each
i = 1,2) are results of the substitutions, respectively.

Then, we apply an equality inference or cut rule (the above derivation is
a case of equality inference). Here [§']¢ is a result of [§']y! and [§']¢} by
equality inference.

Step 2 (Order preserving merge): We apply the composition rule for hon-
esty assumptions (Comp(Hon)) to get the proof of a property ¢ about a
composed protocol @ o ' which is an order preserving merge of @ and 8.

In the next section, we show a concrete example of this process.

3 An Example of Correctness Proof

In this section, we provide a case study of our compositional treatment of honesty
assumptions. As an example we show a proof of the agreement property (in
the sense of Woo-Lam [19]) of the ISO-9798-3 protocol [16]. This property is
proved by the composition of freshness proof for Diffie-Hellman protocol [8] and
authentication proof for Challenge Response protocol, which is already proved in
[6,7].

First, we show our interpretation of composing steps of the ISO 9798-3 proto-
col by using an informal description. (The notations are also used in the formal
proof shown below.)

An informal description of composition of the protocols:

The following two protocols are informal descriptions of the Diffie-Hellman
Protocol (denoted by IT) and the Challenge Response Protocol (denoted by II').
Here we omit principals’ names appearing in each message for readability. In
this example, we suppose that in the Challenge Response protocol principals P
and @ do not generate m and n as fresh values, respectively (cf. [6, 7]).

The Diffie-Hellman protocol: IT The challenge response protocol IT’

1 (af;af,89). P = Q: g° 1 (P, 89). P - Q:m
!
2 (B33 85, 0%). Q = P: g 2 (5,,047). Q = Prn, {n,m}

3' (@i, B57). P = Q: {m,n} g



In our interpretation, these protocols are composed by the following two steps.

(These steps correspond to Composing steps in Section 2.2.)

Step 1. Substitutions: by replacing g9 with (g%, {g%, g¥'} -1) in the Diffie-
Q

Hellman protocol, and by replacing g with m and ¢g? with n in the Challenge
Response protocol, we get new protocols IT" and II" as follows.

" = 1[(g9,{9%, 9"} 1) /9°] " = IT'[g" /m, g%/n]

1" (alllp.aIQIP ﬂilQ)‘ P Q: gP 1" (Oé'l"P,,BiuQ). P—Q: gP

2" ( é’Q. é’Q agp). 2" (BQHQaaIz”P)- Q- P: gQa{gQJQP}KEI
QP g9 {990 bt 3" (P, 9. P Q: {0, 0% o

nP _ P 1P _ 1P alQ _ piNnQ nQ _ Mm@
Herea2 =ay ;a3 =0y 7/81 _131 andﬁ3 —52 -

Step 2. Order preserving merge: by the composition of protocols IT" and
II" we get the ISO-9798-3 protocol as follows.
protocol (IT" o IT'"")
1M (alllP;allllP, {IQ)_ P> Q: gP
11 11
2” ( 2Q; BQ)aIZHP)' Q — P: gQa {gQagP}Kc;l
Y (Ozg"P, éIIQ)_ P = Q: {gP,gQ}K;1

The notation IT o IT' denotes a result of an order-preserving merge of lists IT and
.

From now, we give a formal proof of the agreement property for the ISO
9798-3 protocol. This property is stated informally as follows.

Agreement property from A’s view: Assume that a principal A follows the
initiator’s role of the protocol communicating with B, and that the responder,
say @, honestly follows his/her role. If A completes a run of the protocol using
values N1 and N, then A knows that B actually performs as the responder Q’s
role communicating with A using the same values N1 and N,.

In the following example, we omit the subscriptions of names P and @ from
each meta-symbols o’ a/f, ... and ﬂ]@, ﬂ;Q, ..., respectively.

Proving process of the agreement property from initiator’s view for
the ISO 9798-3 protocol:

First for the Diffie-Hellman protocol, the following sequent is provable by
using Axiom about primitive actions.

b [an; as]a fresh(gh) (1)

On the other hand, for the Challenge Response protocol, the following se-
quents are also provable. (The proving process of these sequent are shown in

[15].)



fresh(Ny), Honest((B1; B3; B3)) I [ay; ab; a3] a B receives (a, b, Ni) (2)

fresh(Ny), Honest((B1; B5; 05))
F [af; ab; ab]aB sends (b,a, No, {Na, N1, a} x-1) (3)

From (2) and (3) we prove the agreement property of the Challenge Response
protocol. However, in our logic, a non-commutative conjunct appears only in the
left hand side of a sequent, then we cannot express directly the agreement prop-
erty. That is, we cannot state that “B performs the following actions in order:
receiving (a, b, N1) and then sending (b, a, No, {NZ,NI,G/}KEI)” from A’s view.
Nevertheless, if we assume @) honestly follows his/her role (i.e., @ follows the se-
quence of parameterized actions in order: he/she first receives (p, ¢, m) and then
sends {g,p,n, {n,m,p}Kal)), and if A knows B actually performs the actions

corresponding his/her role, then A can know the order of B’s actual actions by
matching. In other words, information about ordering of actions performed by an
honest principal is implicitly contained in the honesty assumptions. Therefore,
if we must formalize a derivation of the agreement property, we can formalize it
by introducing the following inference rule.

I, Hon(a®) E]A B act; omy
I,Hon(a®) - E]A B acty oms  T,Hon(a®) [E]A F=t

I'Hon(a®) - [ﬁ]A (B act; omy; B acty oms)

where each act1 and acts is a primitive action of receiving, sending, or generating,
and o is [t/Z], and these satisfy the following conditions:

— @@ includes primitive actions o and o, where o precedes o .

— If act; om; (for each i = 1,2) is a sending action, then o

i
(The case of receiving is the same as sending.)
Q

i

is also “Q sends m;”.

— If act; om; is a generating action, then «
gr = m;.

is also “P generates x” with

Therefore, from the above results of (2) and (3), it is clear that the agreement
property from A’s view is provable in the extended system. Then, the following
sequent is provable.

fresh(Ny), Honest((ay; ab; a3)) b [B1; Ba; B3]a Agrees (4)

(Here the statement Agreep is the abbreviation of “B receives {a, b, N1); B sends
(b,a, N2, {N2, N1, a} KEl)”, which represents B’s actions guaranteeing the agree-
ment for B.)

From now, by composing proofs of (1) and (4), we prove our aimed property.

First, following the procedure of Step 1, we substitute g* for m and g% for

n, respectively, in the proofs of (1), and also substitute (g9, {99, g7} -1) for
Q

g% in the proofs of (4) to get the following sequents.



F 815 85]a fresh(g?) -
fresh(g?), Honest((a!'; ald'; al2"))
- (813 85" B3l Agreeslg® /N, g® [Na] (6)

Then, by applying weakening rules for actions to (5) and (6), respectively, we
get the following sequents.

(815 85 853 85" fresh(g?) (7)
fresh(g"), Honest(('; o4'; ")) B B

E 1815 81" 825 B3'a Agreeslg” /N1, g7 /No] (8)

Since ,Bél — :I[” and Bél — éll7 il; él; él; éll in (7) and ﬁil; ill; éll; éll in (8)

are the same action. Then by applying the cut rule to (7) and (8), we get a new
proof of the following sequent.

Honest((af';a8'; a3"))

813 81" BY's Byl a Agrees[g® /N1, P N2 9)

This is a proof of agreement property for the ISO-9798-3 protocol from P’s view.

4 Trace Semantics and Soundness of the System

In this section we give a semantics for our inference system. We give the definition
of our semantics (in Section 4.1) and a sketch of soundness proof for our system
(in Section 4.2).

4.1 Trace Semantics

The basic notion of our semantics is primitive state of the form “principal P has
information m”, and denoted by P(m),Q(m),.... We also introduce a special
kind of primitive state “message m sent by P is currently transmitted through
the network”, and denoted by Net(m,P). A state is a multiset of primitive
states and a trace is a finite sequence of states. We use the following notations.
The letters s,s’,... are used to denote traces, and s;, s}, ... to denote the i-th
elements of s,s’,..., respectively. The number i is called the position of s; in
s. We also introduce some notions related to traces. We say s; € s’ (where
s' = s1,...,8y) if 5; = s for some j = 1,...,n. For a sequence s = s1,...,5n
and for s;,s; € s, we denote s; <g s; if ¢ < j. For traces s and s', if s; € s’ for
all s; € s and if Vs;,s; € s.(s; <5 5; = 5; <¢ s;), we say s’ is an extension of s
and denote it by s C s'.

Here we only consider the traces satisfying the following condition: for any
51,85 € s, if 5; < s; and P(m) € s; then P(m) € s;. In other words, we
consider only traces where, once information is possessed by a principal, it does
not disappear in his/her memory.

We denote the number of occurrence of primitive state P(m) in a state s; by
Il i [|pem) (e-g. if 53 = {P(m), P(m),Q(m)}, then || s; [|p(m)= 2). Key(P,s;) is



used to denote the set of key possessed by principal P at position s;. For messages
m, m' and a set of keys {ki1,...,k}, “mis accessible in m' with keys {ki1,...,k}”
(denoted by m €y, .. k3 m') is the reflexive-transitive closure satisfying the
following conditions: (i) m; €k,,... k3 (M1,...,my) for some i = 1,... n, (ii)
M €k, k) {M}r; for some j=1,... 1

By means of the notion of trace, truth conditions for predicates of our syntax
are defined as follows. We denote the basic semantic relation “yp is true at state
s; in 8”7 by “I ¢7-

Truth condition for predicates:

- E(s.iy PK(P,k) ifft P(k"), KeyPair(k,k') € s;
and VX # P.(X (k') & s;).
- Ety P & iff P(k),Q(k) € s;

and VX # P,Q.(X (k) & s;)-
- F(s,iy t = t' (for any terms t and t') iff  s[t/x] = s4[t' /x].
- F(s,iy P sendsm iff P(m)e€ s;_1, Net(m,P) ¢ s;_1
and Net(m, P) € s;.
- F(s,iy P receives m({mi};,, ..., {mn}; ) iff 3X. (Net(m, X) € 5;_1 and
Net(m, X) ¢ s;) and
I si-1 lpam) +1 =l 8 [|p(m), and
{m;}r; €Ekey(p,s;) m and
I si—1 [lpmy) +1 =l 8i llp(m;)

foreach j =1,...,n.
- E(s,iy P generates m iff P(m) ¢ s; 1 and P(m) € s;.
- F(s,iy fresh(m) iff 3X3In.(X(n) & s;1
and X(n) € s;) and n C m.
- Esiy a5 s an iff s,y o1 and - and g,y an,

and i1 <--- <1, < 850
Next, the definition “y is true for trace s” (denoted by s @) is as follows.
- E B it Vsi€ s (s B)
(where 8 = PK(P,k) or P LQ ort= t'.)
- s fresh(m) iff  3s; € s.(=s,iy fresh(m)).

- 'zs ap;--san iff s es-(lz(s,i) al;"';an)
(where each «; is an action predicate.)

We define that |=¢ I' iff “=; @ and ... and = 3, and s 0; foreachi=1,...,n"
(where I' = a,...,[,01,...,6,). By the above definition, it is clear that for any
@ if =5 ¢ then |=g ¢ for any s C s'.

In terms of the above definitions, we define the basic form of assertion as
true under s, that is to say:

Honest(af);-- - ; Honest(al), . ..Honest(a?); - -;Honest(ag), I Es [ale

if and only if the following is satisfied (where ¢ is a single action or non-action
predicate).



If Cl1Vi<nVi'<i(=saf =kE,al), and
Vi < kN < j(Fs of 2. af),
C2 HSI.(S Cs'AVi< TL.(IZSI Oéi) AV < k.(lzsl Oéj)),
C3 k. T,
4 &, @,
then s .

Here for each predicate Honest(a;"), if it is of the form Honest(a;*,my) for
X =PQand fori = 1,...,n or 1,...,k (ie.,, m¥ is not empty), then the
following condition is also satisfied:

C5 Vm'.((m' A m) A (m' #m") A (af = X sends m")
= Vs’ O s.(fs X sendsm’)).

We need this additional condition for the following reason: first recall that
Honest(aX,m¥X) (where m;X is not empty term) means “X honestly follows
the sending action ;X (say, X sends m") and he/she does not follow any other
sending actions of the message m' including m;X”. Therefore, to satisfy this
restriction, we assume X sends m" is false for any extension s’ of s.

If the above form of assertion is true for any trace s, then this assertion is

called valid and we omit the subscription s.

Finally, to prove the soundness of our system, we introduce the notion of
duplication of atomic actions in trace s as follows. We say “two atomic action
formulas « and § are duplicated in trace s”, when the following condition is
satisfied: “for some s;,s; € s with ¢ # j, there exists a substitution o such that
oo = off and that = ; a and = ;) 7. As we mentioned in Section 2, our
inference system is sound under the assumption that no trace includes atomic
actions which are duplicated.

Therefore, our soundness theorem proved in the next subsection is stated as
follows.

Theorem (Soundness). If a sequent (i.e., a basic form of assertion) S is prov-
able in our inference system, then S is true for any trace s which includes no
duplicated atomic actions.

4.2 Soundness of the System

In this subsection we sketch out a proof of the soundness.

(I) Logical inference rules
Here we give a soundness proof only for Cut rule as follows. Proofs for the
other rules in this class are similar.
I'tldle ¢, AF[dy
IAF [dy

ut

Assume that the upper sequents are both valid. That is, for any s and s', (i) if
Es I' and =5 @, then =5 ¢, and (ii) if o ¢ and o A and |y @, then =g ¢



hold. Assume that for any S"7 |:su I and |=s” A and 'ZSH a. Then by (1)7 |=5H [%2)
holds. Then by (ii), |Es» 4 holds. Therefore the lower sequent is also valid.

(II-1) Axioms about primitive actions:

Flafs -5 af]al (fori=1,...,n.)

This sequent is valid if, for any s, if =g of, ..., Es af then &, af for any
i =1,...,n. This condition immediately holds by the definition.

(I1-2) Axioms for relationship between properties:
Here we show only the case of Freshness 1 and 2, and Nonce Verification. Proofs
for the other axioms are similar.

Freshness 1:
P generates m - fresh(m)

Assume that =, P generates m for any s. That is, 3s; € s.((P(m) €& si—1) A
(P(m) € s;)) holds. Then, 3X3In.((X(n) & si—1) A(X(n) € s;)) withn E m
holds. This is the truth condition for fresh(m).

Freshness 2:
fresh(m) b fresh(m') (where m C m')

Assume that |5 fresh(m) for any s. That is, 3s; € sIXIm".(X (m") & si—1)A
(X(m") € s;)) with m" E m. By assumption of m C m/, m" E m' also holds.
Therefore is the truth condition for fresh(m') is satisfied.

Nonce Verification:

(PK(k,Q)), (fresh(m)), (P receives m'({m};_.)) - Q sends m"

(where {m},-1 T m/,m".)

Assume that all atoms in the left hand side of this axiom are valid. That is,
for any s, (i) Vs; € s.((Q(k7!) € s;) AVX # Q.(X(k7Y) ¢ s;)), (ii) 3s; €
s3XIn.(X(n) € si—1) A (X(n) € si)), and (iii) Is; € sIX.((Net(m', X) €
si—1) Al[si—1llpmy +1 = [|3ill pemry) Allsi—1l|pm) +1 = [|ill p(m)))- Informally,
by (i) and (iil), 3s; € s.(Net(m"”,Q) € s;_1) with {m};-1 C m' holds. That
is, 3s; <s s;.(Net(m', Q) & s;) A (Q(m') € s;)). Then, by (ii) Isx € s.((sk <s
s;) A (Net(m',Q)) A (Q(m') € sg)). This is the truth condition for @Q sends m'.
(IIT) Honesty Inferences:

(1) Substitution:

I' - [@]Q sends m[t/x]
I', Honest(Q sendsm) - [d]z = ¢

(where t is a constant and z is a variable which has the same sort as ¢.)



Assume that the upper sequent is valid. That is, for any s, “if s I' and if
Es @, then =5 @ sends m[t/z]” holds. Here we also assume that, for any s’, (i)
Es I' and = @, and (ii) conditions C1 and C2 for Honest(Q) sends m) hold. By
assumption (i), s @ sends m[t/z] holds. By assumption (ii), because the condi-
tion C2 for the honesty assumption holds, there exists a trace s” D s’ such that
Es» @ sends m holds, and under such s”, =4+ @ sends m[t/z] also holds. There-
fore for some s;,s; € s, F(sm ;) Q sendsm and =g ;) Q sends m[t/z]. Here by
the assumption such that s” does not include any duplicated atomic actions,
for some s; € s, 5; = si[t/x] and = (o ;) Q sends m and =g ;) Q sends mt/x]
hold. Here, it is easy to show that Vs; € s”.(s; = s;[t/z]) by the definition of
traces. (Remind that each trace satisfies the condition that for any primitive
state of the form P(m), Vs;,s; € s.(s; < s; and P(m) € s; then P(m) € s;).)
That is, Fs» = t holds, and then by s’ C s”, =y & = t holds. This is the
truth condition for the lower sequent.

(2) Matching:

I' + [@]Q sends m
I', Honest(Q sends m',m) F [@]Q sends m/

Assume that the upper sequent is valid. That is, for any s, “if s I' and if
Es @, then =, @ sends m”. Here we also assume that, for any s', (i) Es I
and E« @ hold, and (ii) conditions C1, C2 and C5 for Honest(Q sends m’,m)
hold. By assumption (i) and the validity of the upper sequent, =5 @ sends m
holds. By condition C2 of (ii), 3s"” D s'.(Es» @ sends m') holds. Moreover, by
C5 of (ii), Vm".(m" I m) A (m" #m') = Vs" D s.(fts» Q sendsm’)). That
is, Ym".((m" 3 m) A (m" #m') = —-3s" D s'.(fts» Q sendsm')). Therefore,
Es @ sends m'. This is the truth condition for the lower sequent.

(3) Deriving another actions:

I' - [@]Q sends m
I', Honest(Q sends m'; Q sends m),F [d]Q sends m'

Assume that the upper sequent is valid. That is, for any s, s I and = 4,
then =5 @ sends m holds. Here we also assume that, for any s', (i) =s I" and
Es &, and (ii) conditions C1 and C2 for Honest(Q sends m'; Q sends m) hold.
By assumption (i) and the validity of upper sequent, g @ sends m holds. By
condition C1 of (ii), |=s @ sendsm' also holds. This is the truth condition for
the lower sequent.

(IV) Weakening rules:

_‘P' _‘P 3] - bt
I', Honest(a";a"") F [Pl W (Hon) I'F[aP;aP)yp

T, Honest(a"; a""";a'F) [E]go Tk [af;a"P;ar)

W (Act)
14

(1) Weakening (Honesty): We should only show that, for any s, if s satisfies
the conditions C1 and C2 for Honest(a¥;a"¥;@"), s also satisfies the condi-
tions C1 and C2 for Honest(@";@"). Cl is satisfied, because for any sequence



B, if Vay,aj € ,6?((3 <) = (Es a; == @;)), then this property also holds for
any ﬂ_" such that B" - [3" C2 is also satisfied, because for any s’ D s and for any
B,Va; € B(Es a;) holds, then, for the same s’ at least, this condition also holds
for any ' such that 3’ C §.

(2) Weakening (Actions): We should only show that for any s, if =5 &;a";a’
then |=¢ @; @'. This immediately follows from the definition of =4 &;a";d".

5 Conclusions

We presented an inference system based on a framework of compositional logic
originally introduced by [11, 6, 7]. The main difference between the compositional
logic of [11,6,7] and ours was the way to formalize inferences on a principal’s
honesty: while in [11, 6, 7] assumptions on a principal’s honesty were represented
by the implication of the form Honest(P) D ¢, in our framework we divided
each honest principal’s role into its components (i.e., his/her primitive actions)
and introduced some special kinds of inference rules, called honesty inferences,
to derive a minimal requirement on principal’s honesty to conclude a property.
Such honesty assumptions were composed during a proving process by using
weakening rules analogous to the structural rules of traditional logic. For this
formalization, the language of our system is restricted to Horn-clauses, in other
words we do not use logical negations nor nested implications (nor disjunctions
appearing in the right hand side of a sequent) which were used in [11,6,7].

We also introduced the distinction between the monotonic properties and
non-monotonic ones. In this paper, by restricting our attention to the monotonic
properties, we gave a core inference system and showed a proof of the agreement
property of the ISO 9798-3 protocol. Such restriction leads to a simplification
of the system, because we do not need any restriction on a free application
of weakening rules and honesty inferences. However, the use of non-monotonic
properties provides us more powerful derivations. In the subsequent work [15]
of ours, we show the way to extend our system by introducing non-monotonic
properties. As an example, in [15] we introduce the non-monotonic property
“P firstly_sends (m,n)” (which means “P sends a message m containing n as
a subterm, and P does not send any other message m' containing n before the
sending of m”). This property is useful to derive information about ordering of
actions performed by different principals, which cannot be proved in the system
of this paper, and by this information we prove matching conversation of the
Challenge Response protocol (cf. [9]), which was originally proved in [6, 7].
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Appendix
A Inference system

A.1 The language
(I) Sorts and Terms

The language is many sorted. (However sorts are not explicitly indicated in
the language.) Name, PublicKey, SecretKey, SharedKey and Nonce are primitive
sorts. (Key is used to denote PublicKey or SecretKey or SharedKey.) Message
is also sort defined below.

The letters A, B, C,...are constants of sort Name (i.e., specific principal’s
names), while the letters P, @, R,...are variables of sort Name (i.e., parameter-
ized principal’s names). The capital letters K, K',..., K1, Ks,...and N,N', ...,
Ni, Na,... are constants of sort Key and of sort Nonce, respectively, while the
small letters k, k',..., k1, ko,...and n,n',...,n1,ne, ... are variables of the same
sorts as above. All constants and variables of sort Name or Key or Nonce are terms
of sort Message, and the letters m,m', ..., m1, ma, ... are used to denote terms
of the sort Message. {m} i (the encryption of m with key K) and (mq,...,m,)
(the concatenation of messages my,...,m,) are also terms of sort Message,
where {*} g and (x,...,*) are functions of sort Message x Key — Message and
of sort Message™ — Message, respectively.

We use the following binary relations as meta-symbols. m T m' represents
that m is subterm of m/’.

(IT) Basic form of assertion

Honest(a?ll); S ;Honest(alei), e
Honest(aQr);...; Honest(a%»), I + [E]P )
(where @Q; may be the same as @; for some i,j =1,...,n.)
e Action predicates (performed by P) are as follows.
e P generates m: P generates a nonce or session key m.
e P receives m: P receives a message m.
e P sendsm: P sends a message m.
e Non-action predicates are as follows.
e fresh(n): n is a fresh value.

e PK(P,k): k is a public key of P. (Here k! denotes the secret key of
k.)



P & Q: k is a shared key for P and Q.
e t =t': (usual equality)

Each ag" (fori =1,...,n) is an atomic formula made of an action predicate.

. ﬁ is a sequence of action predicates performed by P.

 is a single atomic formula (made of an action or non-action predicate).

e H onest(ag"): a principal @); honestly follows a primitive action ag".
e H onest(ag"); - H onest(a?m"): a principal @; honestly follows a sequence

Qi.

i1 ?

e ag"" . (We also use the abbreviation Honest(a%; - -;

of primitive actions a PR

ai))

im

A.2 Axioms and inference rules

Here each I', A represents a set of atoms or a sequence of atomic formulas, which
may includes honesty assumptions.

(I) Logical inference rules

(1) Structural rules: weakening, contraction and exchange rules in the left
hand side, and cut rule (Cut) (2) Inference rules for equality (Eq) (a typical
rule which we often use is presented below), (3) Substitution rule (Subst).

'ty ¢, AF Ay I'tjaz=t AF[de
e Cut pr Eq
IAF[d]y I Az [a]elt/z]
't laly
p Subst

Llt/x] b [aft/x]Jelt/x]
(II-1) Axioms about primitive actions

Flaf;---;aF]al (for any i = 1,...,n and for any principal P.)
(I1-2) Axioms for relationships between properties
Freshness 1: Freshness 2: (where m C m’.)

P generatesn + fresh(n) fresh(m) b fresh(m')

Nonce Verification:  (where {m},-1 Cm’,m".)
(PK(k,Q)), (fresh(m)), (P receives m'({m};_,)) F (Q sends m")
We also admit the axiom obtained by replacing PK (k, Q) with P & Q.

Shared secret: (where K' C mi,m2.)

(P sends {m1}k,), (P sends {m2}k,), (P generates K'),
PHQ.PERNFQER



(IIT) Honesty inferences

For (1) Substitution and for (3) Deriving another action, we also admit the
inference rules obtained by replacing “receives” with “generates” or “sends”,
respectively. These rules satisfy the (f) condition. (See Section 2.2.)

(1) Substitution:

I' + [d)(Q receives m[t/x])
I', Honest(Q receives m) & [@]x =

; Hon(Subst)

(where t is a constant and z is a variable which has the same sort of ¢.)

(2) Matching:
I' - [a@)(Q sends m)

Hon(Match
I, Honest(Q sends m',m)  [@)(Q sends m') on(Match)
(3) Deriving another action in a role:
I'kHla d
00(Q sends ) Hon(Role)

I', Honest(Q) receives m'; Q sends m) F [@](Q receives m')

(IV) Weakening rules for actions and honesty assumptions

Weakening rule for honesty assumptions (left below) satisfies () condition.

~P. P\ L [ P
T, Honest(a¥;a'f) [ﬂ]cpq W (Hon) r'+[ar;arfe

I, Honest(@¥; o/'P; @'F) F [Bp T'F[a%;a"P; &Py

W (Act)



