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Abstract—We present a power-saving method for storage
systems in Internet hosting services, particularly those providing
video/photo sharing services. The key idea behind our method is
to skew the workload towards a subset of disks in the storage
array, thereby extending the periods in standby mode of the
other disks. Our method is based on the idea behind PDC, but
the main objective of this study is to investigate a method that
is adaptable to both constant massive influx of data and changes
in data popularity over time. Moreover, to reduce accesses to
disks in standby mode, our method periodically rearranges
data in the order of potential future accesses presumed to
be associated with elapsed time after upload and the accesses
in the past, instead of just sorting according to the latest
number of accesses. This correlation is obtained by analyzing
access patterns for 45,000 randomly selected public photos on
Flickr. Performance is evaluated through both simulation and a
prototype implementation. In the experiments, we observed that
our method saved 24.0% of running time of the disks in active
mode, with an overall average response time of 47.6 ms, in which
0.43% of the total accesses involved disks in standby mode.

I. INTRODUCTION

Power consumption has become a major concern in the
development of computing systems. In particular, as a high
percentage of the total computing energy is consumed by
the storage systems, various attempts at reducing power in
storage systems have been proposed, such as MAID [2], PDC
(Popular Data Concentration) [9], and DIV [10] (cf. also [1]
for a comprehensive survey of this research area). Recently,
with the advent and rapid growth of cloud computing, research
into power-saving for data storage has shifted its target from
a system consisting of a relatively small number of disks to
datacenter-scale systems [5], [7], [14], [15]. These studies are
essentially based on a commonly observed technique, that is,
they skew the workload towards a small number of disks,
thereby enabling the other disks to remain in standby (i.e., low-
power) mode. Thus, the major interest in recent studies is how
to enhance scalability of this basic idea while ensuring good
performance. However, given the current reality of today’s
data-intensive Internet-based services, as typified by Internet
hosting services like YouTube1 and Flickr2, the following
important issues have not been thoroughly investigated.

First, most previous studies either explicitly or implicitly
assumed that the size of the stored data is fixed. However, in

1http://www.youtube.com
2http://www.flickr.com

real cloud hosting service environments, vast amounts of data
are uploaded continuously. For example, according to Flickr’s
reports [3], [4], the total number of stored photos reached 5
billion in September 2010 and 6 billion in August 2011, which
means growth of 3,000 photos per minute. Another example
is that of YouTube, which received 65,000 videos per day
in 2006 [13]. Moreover, popularity (i.e., access frequency) of
stored data generally decreases after the upload. This situation
repeats itself not only in hosting services, but also other
massive computing environments, such as the analysis of big
data, online storage services, and vast customer databases in
e-commerce.

Second, previous studies often assumed that there is a
specific type of central controller to effectively skew the
workload. However, this technique cannot be directly applied
to large-scale storage systems owing to scalability.

To address these issues, in our previous work [8] we
proposed a method based on PDC. The idea behind PDC
is to periodically reallocate storing data in the disk array by
order of population. Similarly, the method in [8] periodically
exchanges data such that frequently accessed disks tend to
gather frequently accessed data from neighboring disks up to
their capacity, while the opposite occurs for rarely accessed
disks, thereby extending their time in standby mode. But,
unlike PDC, our reallocation is realized in an autonomous
way so as to enhance the scalability. In our previous study,
we also measured the performance using the actual access
patterns of public photos on Flickr, which are observable
outside the website. The results showed that our method
skewed the workload up to a point, thereby reducing the total
time during which the disks were active. However, to further
reduce the running time in active mode, if we increase the
threshold time for transition from active to standby mode, a
significant number of accesses are of disks in standby mode.
Thus, because such accesses take extra time (usually 5–10
seconds) to spin up disks, we faced a serious trade-off between
the performance in power consumption and response time. A
major reason for this problem is that in a real environment
most of the uploaded data are rarely accessed as time goes by,
but occasional accesses persist and seem to occur randomly.
Thus, merely by sorting data by the latest number of accesses
as is the case in PDC, it is difficult to identify data that will
not be accessed for a while and confine these to a subset of



disks.
The objective of this paper is to improve our previous

work, specifically by reducing accesses to disks in standby
mode without degrading the performance. To achieve this
objective, we first traced access patterns of approximately
45,000 randomly selected public photos on Flickr for around
6 months. In this preliminary study, we observed that potential
future accesses correlate strongly with the combination of
elapsed time after upload and the total number of accesses in
the past. Using this correlation in our proposed storage system,
data are periodically rearranged in the order of potential future
accesses, instead of merely sorting these data according to the
latest number of accesses. In addition, we add some refine-
ments to our previous system architecture without introducing
a central controller to manage the data migration.

To evaluate the effectiveness of our method, we measured
the performance in both simulations and a prototype imple-
mentation using the access traces of public photos on Flickr. In
the experiments, we observed that our method saved 24.0% of
running time in active mode, with an overall average response
time of 47.6 ms. Moreover, accesses of data stored on disks
in standby mode were only 0.43% of all accesses, which is
an improvement of less than 3% on the result of the previous
work.

The contributions of this paper are threefold. First, our study
investigates a technique for power-saving that is adaptable to
both a constant massive influx of data and changes in data
popularity over time. Second, unlike PDC, in our method data
are reallocated in a distributed way instead of using a central
controller to manage access frequency, thereby ensuring scal-
ability. Third, we also investigate a technique to reduce the
number of accesses to disks in standby mode when adopting
the approach of PDC. We note that this issue has not been
discussed in the literature on PDC, because they used ideal
traces in which accesses were assumed to follow Zipf’s law.
However, to deal with data access in real environments, it is
necessary to improve the idea behind PDC. As demonstrated
in this paper, sorting data according to the predicted future
access patterns is an effective measure for solving this issue.

This paper is organized as follows. Section 2 presents
related work. Section 3 gives the results of preliminary in-
vestigations of access patterns of public uploaded photos on
Flickr. Section 4 describes the design of the proposed storage
system. Sections 5 and 6 present the simulation results and
an evaluation of the prototype implementation, respectively.
Finally, Section 7 concludes the paper and presents future
work.

II. RELATED WORK

There have been a number of studies on power-saving in
storage systems. A common feature of many of these is to
skew the workload towards a small number of disks while not
overloading them, with the studies classified into the following
categories according to variations in their approach.

The first category, which includes MAID [2] and PDC [9],
focuses on popularity and concentrates popular data on specific

disks. MAID provides some specific disks as cache to store
frequently accessed data, thereby reducing accesses to the
other disks. PDC periodically reallocates data in the storage
array according to the latest access frequencies.

The second category uses non-volatile random-access mem-
ory (NVRAM) to extend the standby mode period by caching
data to a write store. A typical example is Pergamum [12],
which uses NVRAM to buffer write accesses and store data
signatures to reduce direct accesses to the disks.

The final category considers redundancy (i.e., data replica-
tion). In DIV [10], original and redundant data are separated
onto different disks, thereby allowing read/write requests to
be concentrated on those disks containing the original data.
Hibernator [18] applies the idea of PDC to RAID and DRPM
(Dynamic Rotations Per Minute) systems. RIMAC [17] pro-
vides two-layered caches, one for storing storage data and the
other for parity conservation. PARAID [16], which is also
a power-saving technique for RAID, allocates the replica in
a specific way so that data are collected/spread to adapt to
changes in operational workloads.

Although the above studies restricted their scope to storage
systems consisting of a relatively small number of disks
(typically, up to several dozen), in recent years the target
of this research area has shifted to datacenter-scale systems.
Harnik et al. [5] attempted to apply the idea of DIV to a large-
scale distributed storage system. Kaushik et al. [7] proposed
the idea of dividing disks in HDFS (Hadoop Distributed
File Systems) into hot and cold zones. Verma et al. [14]
proposed SRCMap (Sample-Replicate-Consolidate Mapping),
which gathers accesses to the replicas on active disks, while
Vrbsky et al. [15] proposed a replication approach, called
SWIN (Sliding Window Replica Strategy). Hasebe et al. [6]
proposed a power-saving method based on the distributed hash
table (DHT) technique to skew the workload by migrating
virtual nodes in the storage array.

The motivation for this research follows that of the recent
studies mentioned above. That is, we investigate an effective
skewing technique of the workload in large-scale distributed
storage systems based on the approach taken in the first
category. In particular, this study can be considered as a
direct successor to PDC. However, our main motivation was
to explore power-saving in an environment where a vast
amount of data is continuously uploaded and the data access
frequencies vary at any moment, a prime example of which
is an Internet hosting service. As mentioned before, although
the issue is not ignorable when applying the techniques to a
real environment, it has not been thoroughly investigated in
the literature.

III. DATA ACCESS TRACING ON FLICKR

To evaluate the effectiveness of our method in a realistic
situation, as a preliminary study, we traced access patterns of
photos uploaded to Flickr, which is one of the largest photo-
sharing services in the world.

In this preliminary study, we randomly selected 45,894
photos and traced the cumulative number of accesses for
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Fig. 1. Hourly total number of accesses of all 45,894 photos on Flickr.

each file every hour for 4,200 hours (around 6 months) using
application programming interfaces (APIs) provided by the
website. Owing to limitations on observable data, all the
selected photos were public, although the website supposedly
has around four times as many private photos as public photos
according to a Flickr report and our observations.

In the rest of this section, we first present our observations
and the characteristics of the photo data on Flickr and then
discuss why the idea behind PDC cannot be directly applied to
our target environment. Finally, we show that potential future
accesses correlate strongly with the combination of elapsed
time after upload and the total number of past accesses, which
our proposed system uses as the measure for sorting data by
potential future access.

Figure 1 shows the change in the hourly total number of
accesses of all files over the 4,200 hours, where the horizontal
and vertical axes indicate the elapsed time after upload and
the total number of accesses of all photos. This figure shows
a strong negative correlation between the access frequency
and elapsed time. More precisely, the result shows that the
access frequency is the highest (30,862 accesses per hour) after
one hour has elapsed and then rapidly decreases, eventually
reaching 559 accesses per hour after 200 hours. Although there
is a marked decrease in the change in the number of accesses
after 200 hours (in which the average number of accesses is
3,340 for 0 to 200 hours, 323 for 201 to 1,000 hours, and 90
for 1,001 to 4,200 hours), it tends to decrease over time.

Figure 2 shows the distributions of popularity of all photos
after 100, 500, 1,000, and 4,000 hours (where the photos are
arranged by the order of access frequency on the horizontal
axis, while the vertical axis indicates the hourly total number
of accesses for each photo). The figure also shows that the file
access frequencies are highly skewed, while the percentages
of files that had never been accessed after being uploaded are
29.7%, 24.4%, 21.7%, and 18.2% after 100, 500, 1,000, and
4,000 hours, respectively. The result indicates that there is a
strong decrease in access frequency, which is independent of
the change in time (68.4% of all photos were accessed less
than ten times 4,000 hours after they had been uploaded).

Figures 1 and 2 indicate that the number of accesses has a
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Fig. 3. Access patterns of 40 randomly selected photos.

tendency to decrease over time (more specifically, it decreases
rapidly in the first several hundred hours), and these accesses
are concentrated on a small subset of files. Based on the
results, it seems that merely by sorting data in the order of
the latest access frequency, the storage array can be split
into a group of frequently accessed disks and a group of
rarely accessed ones without degrading performance, such as
response time, in the system. However, as demonstrated in our
previous study [8], this is not the case.

Figure 3 shows the access patterns of 40 randomly selected
photos. Here, the selected photos are represented on the
vertical axis and the accesses are plotted in a horizontal
line with the number of accesses after each elapsed hour
indicated by the shape of the dot. As observed from this figure,
although a photo becomes rarely accessed after a certain time,
it continues to be accessed. Moreover, the access patterns are
quite different from each other. Thus, even if we can confine
rarely accessed data to specific disks, such seemingly-random
accesses frequently invoke state transition from standby to
active mode, which degrades the response time of the system.

To solve the problem, as a measure of predicting future
accesses based on past access patterns, we focus on the corre-
lation between potential future accesses and the combination
of elapsed time after upload and the total number of accesses



Fig. 4. Raw data access patterns of 45,894 photos.
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Fig. 5. Smoothed raw data using the average of 100 neighborhood cells.

in the past.
Figures 4 and 5 show this correlation observed in our photo

data. (Figure 4 represents the raw data, while Figure 5 is
obtained by smoothing them using the average of 100 neigh-
boring cells.) Here, the horizontal axes indicate the elapsed
time after upload and the cumulative number of accesses up
to that point, while the vertical axis indicates the number of
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Fig. 6. Two-dimensional array indicating the number of accesses in the
future.

accesses after that point in time. As the figures show, the
shorter the elapsed time after upload is, and the more often a
photo is accessed, the more often it is likely to be accessed in
the future. To use this correlation as a measure for sorting data
in the order of predicted potential future accesses, the raw data
are smoothed by the following two steps instead of the latest
total number of accesses. First we smooth each cell of the raw
data (the result of which is presented in Figure 5), and then
approximate the number of future accesses after each elapsed
time with a power function using the least squares method (the
result of which is presented in Figure 6 as a two-dimensional
array). Here, although the elapsed time and the number of
past accesses are limited to 3,000, it is possible to expand
these parameters or recalculate the array according to the file
uploads.

IV. SYSTEM DESIGN

Our proposed storage system is composed of several thou-
sand (possibly heterogeneous) disks with unique IDs, edge
servers, an index manager, and some I/O servers. (See also Fig-
ure 7 for the graphical presentation of the overall architecture.
For readability, we omit the I/O servers.) Each of the disks is
physically connected to an I/O server and is logically classified
into one of three groups: Group A, Group B, and the Empty
disk pool. As we shall see below, each disk travels among these
groups (depicted by the thick arrows in the figure) depending
on its state. Initially, some are placed in Group A and the rest
in the Empty disk pool. The edge server handles the read/write
operations from the clients, while the index manager provides
a lookup service for data accesses.

Files uploaded by the clients are always written to the disks
in Group A via the edge server and the corresponding I/O
server. At that time, the index manager assigns a unique ID to
the file and records it and the stored disk ID. After the upload,
the total number of read/write accesses to each file is counted
by the storing I/O server. If a disk in Group A becomes full, it
moves to Group B and a new empty disk is supplied to Group
A from the disk pool. Thus, the number of disks in Group
B continuously increases according to the data uploads, while
the number of disks in Group A is maintained constant.

The disks in Group B are logically allocated in a rectan-
gular grid consisting of m columns and n rows. Here, the
intersection point of the i-th row (from the top) and the j-th
column (from the left) is denoted by (i, j). In addition, the
disk at (i, j) is denoted by Di,j . The numbers of rows and
columns may vary over time, but are uniquely determined by
a predefined rule relating to the total number of disks in Group
B. The disks in Group B behave in the following way. When
a disk moves from Group A to B, it is placed at position (1,1)
and then moves to the right (i.e., from (1,j) to (1,j +1)) every
time a new disk is added to Group B. If the number of disks in
the row exceeds the prefixed number m, the files stored in this
row are rearranged in the following three steps so that the files
whose potential future accesses are presumed to be the fewest
among the files in this row are gathered in the rightmost disk
(i.e., D1,m+1). (For readability, the potential future access of
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Fig. 7. Architecture of the system.

file f is denoted by pfa(f), and file f stored in disk D is
denoted by the expression f ∈ D.)

Step 1: When the disks overflow the row, each I/O server
evaluates the potential future accesses from the com-
bination of elapsed time after the upload and the
total number of accesses in the past for all its stored
files according to the result of statistical analysis in
Section III (shown in Figure 6).

Step 2: The information about the potential future accesses
for all files in the row is gathered on the I/O server
for D1,m+1.

Step 3: If max{pfa(f) | f ∈ D1,m+1} is greater than
min{pfa(f) | f ∈ D1,1, . . . , D1,m}, the files with
the fewest potential future accesses are exchanged
and the record of the index manager is then revised.
This process is repeated until there is no such pair
of files.

After completing this process, D1,m+1 moves to (2, 1), and
similarly, if the disks overflow the second row, the same
process is executed and D2,m+1 moves to (3, 1), and so
on. Thus, our system periodically replaces the data so as to
maintain the state that the potential future access of disks
gradually reduces downward in the grid in response to changes
in both the total amount of data and the data access pattern.

Apart from the measure to sort data, the main difference
between PDC and our method is that PDC completely rear-
ranges and sorts data in the whole storage array, while our
method merely sorts data in each row independently, which
reduces the number of migrations.

Finally, we point out some possible refinements of this
architecture for implementation. First, deleting files reduces
the effective use of disks. Although in this paper we do not

consider the delete operation, it is necessary to provide a
certain packing algorithm so that each disk stores data up
to its capacity. We consider that after applying the packing
algorithm, if a disk becomes empty, it is removed from Group
B and queued in the Empty disk pool for the supply of
disks to Group A. Second, our rearrangement is realized in
a distributed way, but our system is assumed to have an index
manager to provide a lookup service, whose performance is
not thoroughly investigated in this paper. To enhance the
scalability, it is also worthwhile developing an alternative
mechanism in a distributed way.

V. SIMULATION RESULTS

To understand the effectiveness of our method for storage
systems consisting of several thousands of disks, we first
evaluated the running time of disks in active mode and the
frequency of accesses of disks in standby mode. Note that,
in our study, we assume that the power consumption of a
disk is proportionally determined by the total running time in
active mode. In addition, the reduction of power consumption
is realized by the spinning-down of disks, while accesses of
spun-down disks need extra time (5–10 seconds) to wait for
the spinning-up of the disks. Since the spin-up time of disks
is 100 times longer than the access time (e.g., when the file
size is 3 MB, the access time is approximately several dozen
milliseconds) and the number of accesses for disks in standby
mode is increased by reducing the power consumption of
disks, we shall see later that there is a trade-off between the
power efficiency and responsiveness.



TABLE I
PARAMETERS USED IN SIMULATIONS.

Description Value
Storage capacity 500 GB

Transfer rate (Disk) 100 MB/sec
Transfer rate (Network) 100 MB/sec

Spin up time 5 seconds
Idleness threshold 30 seconds

Ratio of always-active disks 0%
Number of disks in each row Not fixed (maintain square grid)

A. Parameters and settings

In the evaluation presented in this section, we considered
the following system. Group A consisted of some disks whose
number was assumed to be enough to deal with the upload,
while Group B consisted of up to 2,000 disks, whose number
increased depending on the upload. Each disk in Group B
required 5 seconds for spin-up in the case that it had been in
standby mode. In addition, disks in Group B were allocated
in a square grid, where the number of disks in each row and
column were adjusted by the steps described in Section IV. We
set the parameters as shown in Table I. Here, the “Idleness
threshold” means the fixed threshold time such that a disk
is transitioned to standby mode after the period since the last
access has elapsed (cf. [9]). The “Ratio of always-active disks”
means the ratio of the number of disks that are always kept
active to the total number of disks in Group B. (Thus, for
example, if the value is set as 50%, the upper half of disks
in the grid are always active regardless of accesses, while the
rest may spin down according to the predetermined idleness-
threshold time.)

The workload in the simulations was based on the access
traces obtained by the observation of Flickr described in Sec-
tion III. To determine the trace of each file in our simulation,
we chose at random from a set of 45,894 real traces when
uploaded. In addition, we set the size of each file as 3 MB
according to measurements in our trace and the number of
photo uploads as 3,000 per minute according to Flickr reports
[3], [4].

In the simulations, we first evaluated the effectiveness of
our method by measuring the running time and the number
of accesses for disks in standby mode. We next evaluated the
impact of three parameters: the idleness threshold (presented in
Subsection C), the ratio of always-active disks (in Subsection
D), and the number of disks in each row (in Subsection E).

B. Effectiveness of our proposed method

Figure 8 shows the change in running time for two con-
figurations. Here, the horizontal and vertical axes indicate the
elapsed time and the ratio of summation of hourly running time
of all disks in active mode to the summation of running time
of all disks, respectively. The “Only spin-down” configuration
in which the disks spin down after an idle time (30 seconds)
without data exchange or disk migration, and the “Proposed
method” in which disks spin down after an idle time (30
seconds) with data exchange and disk migration. Note that
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Fig. 8. Running time in application of data exchange and disk migration.

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

Time (hour)

R
at

io
 o

f 
ac

ce
ss

es
 f

o
r 

sp
in

−
d

o
w

n
 d

is
k

s 
(%

)

 

 

Proposed method

Only spin−down

Fig. 9. Ratio of accesses to spin-down disks in application of data exchange
and disk migration.

the figure shows the relative time when the running time in
the case that all disks are always active is equal to 1. From
the figure, we observed that the power consumption after 2,000
hours was reduced by 24.0% when employing the “Proposed
method”. In contrast, when employing the “Only spin-down”
configuration, the power consumption was reduced by only
0.9%. The result shows that data exchange and disk migration
were effective in reducing power consumption.

Figure 9 shows the change in ratio of the accesses of disks in
standby mode. Here, the horizontal and vertical axes indicate
the elapsed time and the ratio of the number of accesses to
spin down disks to all accesses, respectively. We observed
that 0.43% of accesses were of disks in standby mode in
the “Proposed method” after 2,000 hours. On the other hand,
in the case of the “Only spin-down” configuration, the ratio
was 0.08%. This result means that, in the “Proposed method”,
0.43% of accesses need extra time for the spinning-up of disks,
which worsens the average response time. According to this
result and the latency of accesses for active and standby modes
obtained by measuring real disk accesses (presented in the next



0 500 1000 1500 2000
0.75

0.8

0.85

0.9

0.95

1

Time (hour)

R
at

io
 o

f 
ru

n
n

in
g

 t
im

e 
(%

)

 

 

30 s

60 s

90 s

120 s

Fig. 10. Running time in different configurations of idleness threshold.

section), we can estimate the response time as follows: the
average system response time is 69.1 ms, where the average
response time of active disks is 47.6 ms and that of disks in
standby mode is 5056.5 ms.

By these results, our method is effective in reducing power
consumption, as demonstrated by comparing with the “Only
spin-down” case (or the case that all the disks are always
active), while the responsiveness (whose difference is 0.35%)
slightly increased with the reduction of power consumption.

C. Impact of the idleness threshold on power consumption and
access of disks in standby mode

We next show the impact of idleness threshold on power
consumption and access of disks in standby mode. This
analysis provides useful information to find a well-balanced
parameter setting in the trade-off between the performance in
power consumption and responsiveness.

Figure 10 shows the change in running time for different
configurations of the idleness threshold: 30, 60, 90 and 120
seconds, while the other parameters are the same as in Table
I. Here, the horizontal and vertical axes indicate the elapsed
time after upload and the ratio of running time in active mode
to the total running time. The figure shows that the power
consumption after 2,000 hours was reduced by 9.7%–24.0%
in each configuration, among which the configuration of 30
seconds was the most effective.

Figure 11 shows the change in ratio of the accesses of
disks in standby mode for different configurations of the
idleness threshold, which were the same as those in Figure
10. The figure shows that 0.06%–0.43% of accesses were of
disks in standby mode in each configuration, among which
the configuration of 120 seconds was the most effective (in
contrast to the result for the running time).

The results in Figures 10 and 11 indicate that the idleness
threshold balances the running time and accesses of disks
in standby mode. Determining the best configuration of the
idleness threshold depends on the priorities of different factors,
such as power efficiency and responsiveness, which may vary
depending on system requirements.
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Fig. 11. Ratio of accesses of spin-down disks for different configurations of
the idleness threshold.
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Fig. 12. Running time for different configurations of the ratio of always-
active disks.

D. Impact of the ratio of always-active disks on power con-
sumption and access of disks in standby mode

Next, we present the impact of the ratio of always-active
disks on power consumption and access of disks in standby
mode. In Subsection B, we set this parameter as 0%, which
means that all disks may transition to standby mode. However,
in the case that reducing the number of accesses to disks in
standby mode is given priority over power-saving, changing
the value of this parameter is an effective means. The purpose
of this evaluation is to clarify how this parameter setting affects
the performance.

Figure 12 shows the change in running time for different
configurations of the ratio of always-active disks from 0% to
90% on 10% basis. Here, the other parameters were the same
as in Table I. The figure shows that the running time in active
mode was reduced by 6.1%–24.0% in each configuration after
2,000 hours, among which the configuration of 0% was the
most effective. The power consumption in this case was similar
to that for ratios of 10%, 20% and 30% but 17.9 percentage
points less than that in the case of a ratio of 90%, which saw
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Fig. 13. Ratio of accesses of spin-down disks for different configurations of
the ratio of always-active disks.

the least reduction.
Figure 13 shows the change in ratio of the accesses of

disks in active mode for different configurations of the ratio
of always-active disks, which were the same as in Figure
12. The figure shows that 0.03%–0.43% of accesses were of
disks in standby mode in each configuration, among which the
configuration of 90% was the most effective.

These results indicate that the impacts of the ratio of always-
active disks and the idleness threshold are almost the same.
For example, in the case that the idleness threshold was 60
seconds, the power consumption was reduced by 16.0%, while
0.18% of all accesses were of disks in standby mode. On the
other hand, in the case that the ratio of always-active disks was
70%, the power consumption was reduced by 16.8%, while
0.18% of all accesses were of disks in standby mode.

E. Impact of the number of disks in each row on power
consumption and access of disks in standby mode

Finally, we present the impact of the prefixed number of
disks in each row on power consumption and access of disks
in standby mode. In subsection B, Group B is assumed to be
formed in a rectangular grid. However, we are also interested
in the impact of change in this form. Clearly, the change affects
both the frequency of data migration and the number of files
moved in each migration.

Figure 14 shows the change in running time for different
configurations of the number of disks in each row in the cases
of a square grid of 25, 50, 100 and 200 disks. Here, the other
parameters were the same as in Table I. The figure shows that
the running time in active mode was reduced by 23.8%–24.3%
in each configuration, among which the configuration of 100
disks was the most effective, although the figure also shows
that the parameter has no (or slight) impact on the running
time.

Figure 15 shows the change in ratio of accesses of disks
in standby mode for different configurations of the number of
disks in each row, which were the same as in Figure 14. The
figure shows that 0.41%–0.48% of accesses were of disks in
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Fig. 14. Running time for different configurations of number of disks in
each row
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Fig. 15. Ratio of accesses of spin-down disks for different configurations of
the number of disks in each row.

standby mode, and the configuration of 25 disks was the most
effective.

From these results, we observed that the parameter was
not very effective either in reducing power consumption or
avoiding accesses of disks in standby mode. However, in an
environment where the access frequency varies more dynam-
ically, it would be necessary to find a suitable value of this
parameter to avoid overloading caused by data migration.

In closing this section, we compare the simulation results
of this study with the results of our previous study. Our
method saved 24.0% of running time in active mode when
the idleness threshold was set as 30 seconds after a lapse
of 2,000 hours, while our previous study saved 37.4% with
the same parameter setting. Thus, although the performance
in power consumption becomes worse, our method still ef-
fectively skews the workload and saves power. On the other
hand, with the same parameter setting, accesses to disks in
standby mode comprised only 0.43% of all accesses, which is
an improvement of less than 3% on the result of the previous
work.
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Fig. 16. Response time in the first row after 200 hours

VI. EXPERIMENTS ON IMPLEMENTATION

We conducted an experiment on the current prototype imple-
mentation of our proposed system to evaluate the applicability
of our method to a real system. We measured the response time
in an environment where the system workload was the same
as that in the simulation.

Our prototype consisted of 10 PC servers, each of which was
equipped with a Dual Xeon 3.60 GHz CPU, 2 GB memory,
and a single 36 GB SCSI disk. For our prototype, owing
to the limitation of our experimental environment (i.e., the
bandwidths of different servers), we evaluated the response
time of data access by measuring the time from sending a
request until the data were loaded into the memory of the
server. In addition, no underlying lookup service to access data
was implemented in our prototype. Thus, in the experiments,
the data were accessed by their storing server.

A. Parameters and settings

In our experimental environment, although the real capacity
of a disk was 36 GB, we assumed that the capacity was 500
GB, which was emulated by only accessing one file (i.e., in the
experiments, response time for each access was evaluated by
accessing the same file). In addition, because it was difficult to
spin up or spin down disks in the current system configuration
(each server consisted of a single disk, on which was installed
the operating system), we realized these actions by letting the
server wait before accessing the disk. The two parameters
were spin-up time of 5 seconds and idle time before spin-
down of 30 seconds. (According to the simulation analysis,
this configuration was the best in terms of response time and
power consumption.)

Here, to observe the effect of data exchange on the response
time of data access in greater detail, we measured the response
time for some of the disks in the first and last rows in
Group B (i.e., the 10 disks with the highest and lowest access
frequencies) after 200 hours (presented in Subsection B) and
1,000 hours (presented in Subsection C).
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Fig. 17. Response time in the last row after 200 hours
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Fig. 18. Response time in the first row after 1,000 hours

B. Response time in the first and last rows after 200 hours

Figure 16 shows the changes in average and maximum
response times of 10 disks in the first row (i.e., disks with
the highest access frequencies) after 200 hours, where the
rightmost disk in the row started data exchange with other
disks at 60 minutes (indicated by the vertical dash-dot line).
The figure shows that the average response times were 46.3 ms
for 0–60 minutes, 48.9 ms for 61–120 minutes, and 47.6 ms
for 0–120 minutes. Note that, in this measurement, we could
not observe accesses of disks in standby mode because these
accesses require more than 5 seconds for disk spin-ups.

Figure 17 shows the changes in average and maximum
response times of 10 disks in the last row (i.e., disks with the
lowest access frequencies) after 200 hours, where the setting
was the same as in Figure 16. The figure shows that the
average response times were 46.6 ms for 0–60 minutes, 48.8
ms for 61–120 minutes, and 47.7 ms for 0–120 minutes.

C. Response time in the first and last rows after 1,000 hours

Figure 18 shows the changes in average and maximum
response times of 10 disks in the first row after 1,000 hours.
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Fig. 19. Response time in the last row after 1,000 hours

The result was almost the same as that in the previous
subsection.

Figure 19 shows the changes in average and maximum re-
sponse times of 10 disks in the last row after 1,000 hours. From
this figure, we observe that some accesses took over 5,000 ms
because of the spinning-up of disks. The result indicates that,
in this row or neighborhood, there are frequent accesses of
disks in standby mode although previous simulation results
show that these accesses are few (less than 1%) on the whole.

This section shows that although in our method there remain
some accesses to disks in standby mode, the overall average
response time suggests applicability to the real environment.

VII. CONCLUSIONS AND FUTURE WORK

We presented a power-saving method for large-scale dis-
tributed storage systems whose prime target is Internet hosting
service platforms. Our storage system is based on PDC, but
it is adapted to a constant massive influx of data and changes
in data popularity. To improve our previous work [8], and
especially to reduce the accesses of disks in standby mode, our
method periodically rearranges data in the order of potential
future accesses presumed to be associated with the elapsed
time after upload and accesses in the past, instead of simply
sorting by the latest number of accesses. This data access
prediction technique is based on statistical analysis of real
traces of more than 45,000 public photos on Flickr for around
6 months.

We evaluated the performance of our system both in simula-
tions and prototype implementation using real traces obtained
from Flickr. We observed that our method saved 24.0% of the
total running time in active mode, while the overall average
response time was 47.6 ms, where 0.43% of total accesses
were of disks in standby mode. These results indicate that
our method reduced the accesses of disks in standby mode
to less than one-tenth when compared with previous work
without degrading the latency and the effectiveness of power
consumption. In this study, we used only a dataset obtained
from Flickr, but we believe that our technique is widely

applicable to today’s datacenter-scale systems.
In future work, one of the most interesting and worthwhile

directions of investigation will be to develop a fully distributed
mechanism for power-aware datacenter-scale storage systems
based on this study. A possible approach is to integrate a
technique of a distributed hash table, such as Chord [11],
into our system. This would allow our system to be highly
scalable. Aside from this, we are also interested in refining
the evaluation. In particular, we consider that the evaluation
of real power consumption is important, in place of simply
measuring the duration of the idle/standby mode of the disks.
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