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Abstract. Conway’s Game of Life is a two-dimensional cellular au-
tomata known for the emergence of objects (i.e., patterns with special
properties) from simple transition rules. So far, various interesting ob-
jects named still-life, oscillator, and spaceship have been discovered, and
many methods to systematically search for such objects have been pro-
posed. Most existing methods for finding objects have comprehensively
search all patterns. However, attempting to obtain a large object in this
way may cause a state explosion. To tackle this problem and enhance
scalability, in this study, we propose a method to generate objects by
synthesizing some existing objects. The basic idea is to arrange multi-
ple pieces of existing objects and compose them by complementing the
appropriate patterns. The problem of finding complementary patterns is
reduced to the propositional satisfiability problem and solved using SAT
solver. Our method can reduce the object generation time compared to
the case where a large object is generated from the beginning. We also
demonstrate the usefulness of our proposed method with an implemen-
tation for automatic object generation.
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1 Introduction

Conway’s Game of Life [19] is a two-dimensional cellular automata known for the
appearance of objects (i.e., patterns with special properties). Objects in Game
of Life have attracted significant attention due to their behavior that resembles
living things. So far, various interesting objects named still-life, oscillator, and
spaceship have been discovered, and many methods to systematically search
for such objects have been proposed. Harold [16] proposed a method using De
Bruijn’s table [9], which was partially implemented as an object generation tool
[10]. Knuth mentioned in his book [13] how to reduce the object generation
problem to the satisfiability problem then showed that the problem can be solved
using a SAT solver. These methods can comprehensively search for all objects
that fall within a specific rectangular range. However, it is basically a brute force
search for patterns that satisfy the conditions for becoming an object, thus there
is a problem that the larger the size of the object, the longer it takes to search.



To avoid this scalability issue, a possible approach is to reuse the existing objects
to reduce the computational cost, that has not been thoroughly investigated.

In this study, we propose a method to generate a large object by synthesizing
multiple existing objects in Game of Life. The basic idea is to create a new object
(called a chimera) by joining a fragment of existing object with a fragment of
another object. The problem of finding complementary patterns is reduced to
the propositional satisfiability problem and solved using SAT solver.

We implement an automatic object synthesis tool using Python based on the
method described above. Using Z3py [1] as the SAT solver, we obtained that new
objects can be created by synthesizing objects belonging to the same category
for each of the three categories of still-lifes, oscillators, and spaceships. In our
experiments, we observed that new oscillator was obtained from two oscillators
with different periods.

The remainder of the paper is organized as follows. Section 2 presents an
overview of the Game of Life. Section 3 describes the method for synthesizing
objects using the SAT solver. In Section 4, we present some examples of synthe-
sizing objects. Section 5 describes related work. Finally, Section 6 concludes the
paper and presents future work.

2 Overview of the Game of Life

This section briefly presents an overview of the Game of Life and defines some
related concepts.

2.1 Rules

A cellular automaton is an automaton in which multiple cells spread over a grid
space change their state according to the state of neighboring cells. In Game of
Life, cells in the state of 0 or 1 are spread in a two-dimensional lattice space,
and transition with time according to the following three rules.

Birth: If the state of a cell is 0 and the state of exactly three cells out of the
touching eight cells (called neighbors) is 1, then its state transitions to 1 at
the next time.

Survival: If the state of a cell is 1 and the state of two or three cells in the
neighbors is 1, then its state transitions to 1 at the next time.

Death: A cell that does not meet either of the above two rules will transition
to 0 at the next time.

The formal definition of the Game of Life can be given as follows.

Definition 1 (Game of Life). Let N be the set of natural numbers. For a
two-dimensional lattice space P ⊆ N × N, the cell at the intersection point of
i-th row (from the top) and j-th column (from the left) is denoted by (i, j). Let
the time t = 0, 1, 2, . . . (∈ T = N). The state (0 or 1) of the cell (i, j) at a certain
time t is defined as the function σ : P × T → {0, 1}, and its value is denoted by



xt
i,j . A Game of Life with area P is a pair of σ (called the rules of the Game of

Life) and the area PGoL satisfying the following formula for any (i, j) ∈ P and
t ∈ T .

σ(xt
i,j) =


1 (if

∑i+1
m=i−1

∑j+1
n=j−1 x

t
m,n = 3)

1 (if xt
i,j = 1 and

∑i+1
m=i−1

∑j+1
n=j−1 x

t
m,n = 2)

0 otherwise.

2.2 Boolean Representation of Rules

By considering the state of a cell as a Boolean value such that 1 is “true” and 0
is “false,” function σ representing the rules of Game of Life can be regarded as a
Boolean function δ that takes nine states of a cell and its neighbors as arguments
and returns its state at the next time step. Based on the above consideration, we
define δ(V (xt

i,j)) = σ(xt
i,j), where V (xt

i,j) = (xt
i−1,j−1, x

t
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t
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t
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2.3 Objects

There are patterns with special properties in Game of Life. In this study, such
a pattern is called an object. Objects can be classified into several categories
according to their properties, and the following three are well known.

Still-life: where the shape does not change, no matter how many transitions
are made;

Oscillator: that returns to the original shape after p transitions;
Spaceship: that returns to the original shape while moving in a certain direc-

tion through p transitions are known.

Formally, these categories of the objects can be defined as follows.

Definition 2 (Object). Rectangular area R ⊆ PGoL is called a spaceship with
the direction (a, b) and period p if xt+p

i,j = xt
i−a,j−b (i.e., σp(xt

i,j) = xt
i−a,j−b)

holds for any t ∈ T and (i, j) ∈ R. A spaceship with direction (0, 0) is called an
oscillator with a period p, and an oscillator with period 0 is called a still-life.

3 Object Synthesis

3.1 Definition

Object synthesis proposed in this paper is based on the method of creating a new
object by taking out fragments of two existing objects with the same period and
direction and inserting an appropriate pattern between them. Here, the synthesis
of two fragments with different periods is possible by taking common multiples
for both periods. For the new pattern created by synthesis to become an object



with period p, it is required that the states of all cells in the fragments and its
surrounding within p do not change after the transition of σp (i.e., applying σ
p times). Our object synthesis is defined as follows. We consider the case where
the two objects are arranged side by side and combined. However, the same
definition can be made when two objects are arranged vertically.

Definition 3 (Object synthesis). Let mmax,mmin, nmax, nmin,midu,midv, a,
b, p ∈ N be some specific values with midu < midv. Let R0, R1 ⊆ PGoL be
rectangular areas. For R0, R1, we define rectangular areas Rl(⊆ R0) and Rr(⊆
R1) as follows:

– Rl = {(i, j) | mmin ≤ i ≤ mmax, nmin ≤ j ≤ midu}.
– Rr = {(i, j) | mmin ≤ i ≤ mmax, midv ≤ j ≤ nmax}.

A rectangular area R2 = {(i, j) | mmin ≤ i ≤ mmax, nmin ≤ j ≤ nmax} is called a
synthesized object from Rl and Rr if the following formula

σp(xi,j) ↔ x(i−a),(j−b) (1)

is true for all (i, j) ∈ Rs = {(i, j) | mmin − p ≤ i ≤ mmax + p, nmin − p ≤ j ≤
nmax + p}.

Here, Rl and Rr are called left-side and right-side fragments, respectively.
Besides, Cl = {(i,midu) | mmin ≤ i ≤ mmax} and Cr = {(i,midv) | mmin ≤ i ≤
mmax} are called the joint edges of Rl and Rr, respectively. Rectangular area
Rb = {(i, j) | mmin ≤ i ≤ mmax, midu +1 ≤ j ≤ midv − 1}(̸⊆ R0, R1) is called a
complementary pattern of Rl and Rr.

In Definition 3, the formula (1) must hold for all cells in R2 and its surround-
ing within p. To obtain a synthesized object, it is sufficient to choose a pattern of
Rb so that the formula (1) holds for only cells in Rb and its surrounding within
p. This is because Rl and Rr are parts of the existing objects. Thus, the cells in
Rl or Rr and in the area outside Rb and its surrounding within p should satisfy
the formula. In this study, we call Rm the area Rb and its surrounding within p.
If there exists a pattern such that all cells in Rb satisfy the following formula,
then, we obtain a synthesized object.

∧
σp(xi,j) ↔ xi−a,j−b (xi,j ∈ Rm). (2)

The problem of determining whether there exists an assignment of Boolean
values to each variable that satisfies a given propositional formula is known as
the Boolean satisfiability problem (SAT) [6].

Although this problem is known to be NP-complete, for the formulas in con-
junctive normal form (CNF), Davis-Putnam-Logemann-Loveland (DPLL) algo-
rithm [8] and the conflict-driven clause learning [14, 3] have been discovered to
reduce the search space. However, various SAT solver based on these algorithms
have been developed. The idea of our object synthesis is to derive the comple-
mentary pattern by converting the above formula into CNF and solve it using a
SAT solver.



3.2 Complementary Pattern

The definition of the complementary pattern in the object synthesis described
above is given as follows.

Definition 4 (Complementary Pattern). Let ex, ey, p, a, b ∈ N be specific
values. Let Re be a spaceship (with period p and direction (a, b)) defined as
follows.

Re = {(i, j) | ey−p ≤ i ≤ ey+m+p−1, ex−p ≤ j ≤ ex+n+p−1, m > 0, n > 0}.

A rectangular area Rc = {(i, j) | ey ≤ i ≤ ey +m− 1, ex ≤ j ≤ ex + n− 1, m >
0, n > 0} (⊆ Re) is called a complementary pattern of Re with period p and
direction (a, b) if σp(xt

i,j) = xt
i−a,j−b(−p ≤ a, b ≤ p) is satisfied for all (i, j) ∈ Re.

As seen in Definition 2, the complementary patterns for oscillator and still-
life can be obtained by considering the case that (a, b) = (0, 0) and the case that
both (a, b) = (0, 0) and p = 0, respectively.

Since the formula δp is equivalent to σ, by Definition 4, the complementary
pattern Rc satisfies the following expression.

ey+m+p−1∧
i=ey−p

ex+n+p−1∧
j=ex−p

(δp(V (xt
i,j)) ↔ xt

i−a,j−b) (3)

where V (xt
i,j) = {xt

i+u,j+v | −p ≤ u, v ≤ p}. By this translation, the problem of
object synthesis can be reduced to a satisfiability problem. Formula (3) is called
the complementary pattern constraints. The expression δp(V (xt

i,j)) ↔ xt
i−a,j−b

in Formula (3) is called the constraints on cells in the object.

Fig. 1. Example of synthesizing an oscillator with period 2.

Example 1. As a concrete example of the complementary pattern, we present the
complementary pattern for synthesizing oscillators. Let us consider the procedure
for combining the two oscillators shown in Figure 1 into one oscillator by filling
the blue frame with a complementary pattern. To generate such a complementary



pattern, first, cell constraints are created for the 8 ×4 cells shown in the green
frame. The complementary pattern constraints are expressed by connecting them
with logical product. Since the state of one cell around it is required to create
a constraint for one cell, 10 ×6 cells in the red frame are referenced. The state
of each cell inside the blue frame is represented as a variable, while that of the
outside is represented as a constant. If the cell at the upper left corner of the
red area is called (1, 1), We express the constraint of the completion pattern as
follows.

9∧
i=2

5∧
j=2

(δ(V (xt
i,j)) ↔ xt

i,j). (4)

Here, the cell constraints for (i, j) = (2, 5) and (i, j) = (6, 4) are, respectively,
represented by the following formulas.

– 0 ↔ δ(0, 0, 0, 0, 0, 0, xt
3,4, 1, 1).

– xt
6,4 ↔ δ(xt

5,3, x
t
5,4, 1, x

t
6,3, x

t
6,4, 0, x

t
7,3, x

t
7,4, 1).

A new object can be obtained by joining the fragments taken out from the
two existing objects with a complementary pattern. We call it a chimera. The
following proposition guarantees that a chimera obtained from the two objects
with period p and direction (a, b) is actually an object with the same period and
direction.

Proposition 1. Let R (⊆ PGoL) be a rectangular area consisting of three rect-
angular areas R0, R1, R2. Suppose σp(xt

i,j) = xt
i−a,j−b(−p ≤ a, b ≤ p) holds for

all (i, j) ∈ R0 ∪ R1, and σp(xt
i,j) = xt

i−a,j−b holds for all (i, j) ∈ R2, then R is
an object with period p and direction (a, b).

The two fragments and their complementary patterns correspond to R0, R1,
and R2 in the above theorem, respectively. From Definition 4, the complementary
pattern does not change the boundary pattern between R0 and R2 as well as
betweenR1 andR2. Thus, σ

p(xt
i,j) = xt

i−a,j−b(−p ≤ a, b ≤ p) holds for all (i, j) ∈
R0 ∪ R1. From the same definition, the expression σp(xt

i,j) = xt
i−a,j−b(−p ≤

a, b ≤ p) holds for all (i, j) in the complementary pattern. Thus, σp(xt
i,j) =

xt
i−a,j−b(−p ≤ a, b ≤ p) holds for all (i, j) ∈ R2. From the above theorem, the

chimera is an object with period p and direction (a, b).
In closing this section, we would like to note a limitation on our object

synthesis. As mentioned in Definition 3, when synthesizing an object, a fragment
taken from an existing object must always share at least three sides with the
original object. For example, the fragment of the object shown in the blue frame
in Figure 2 must be cut out so as to share the top, bottom, and left sides with
the original object, as in the patterns surrounded by the red frames in (a) and
(b). Therefore, the pattern shown by the red frame in (c) is not a fragment of the
original object. The fragment may be the same as the original object. However,
in that case, it is allowed that the complementary pattern becomes a pattern
composed of all 0s. In order to avoid such trivial composition, it is necessary to
add some new constraints to the complementary pattern.



(a) (b) (c)

Fig. 2. Example of correct/incorrect fragments of an object.

4 Implementation

We have implemented a simple tool for automating the object synthesis method
described above. Here, the Python library Z3py is used to derive the proposi-
tional function δp and cell constraints. Besides, this library is used to derive
variable assignments, making it possible to satisfy the constraints of the com-
pletion pattern.

Below are some examples of objects produced by synthesis using our imple-
mentation. Figure 3 shows an example of synthesizing an oscillator. Here, the
objects (a), (b), and (c) are oscillator with period of 2, fixed object, and oscilla-
tor with a period of 3, respectively. First, we picked a fragment from these three
objects (as shown by the red frames in (d) of the figure). Next we synthesized
fragments of (a) and (b) by inserting a complementary pattern (as shown by the
left blue frame in (d)) and further synthesized the pattern obtained thereby and
the fragment of (c) by inserting a complementary pattern (as shown by the right
blue frame). As a result, we obtained an oscillator with period of 6, as shown in
(d) was finally obtained. The times required for these syntheses were about 60
and 290 seconds, respectively.

(a) (b) (c) (d)

Fig. 3. Example of synthesizing an oscillator.



Figure 4 shows an example of synthesizing a spaceship. In this figure, both
(a) and (b) are spaceships with period 2 and direction (0,−1), respectively.
Similar to the previous example, we first picked a fragment (as shown by the red
frames in (c) in the figure) from each of the objects, respectively. By inserting
a complementary pattern (as shown by the blue frame) between these patterns,
we obtained a spaceship with period 2 and direction (0,−1).

(a) (b) (c)

Fig. 4. Example of synthesizing a spaceship.

As shown in the above examples, we demonstrated that our method correctly
performed the synthesis. In the oscillator’s synthesis, it was shown that oscilla-
tors with different periods can be synthesized. It is suggested that an oscillator
with a larger period can be generated by repeating this operation. From the pre-
vious examples, the size of the complementary pattern for synthesis is generally
as large as or larger than each fragment to be synthesized, so it is necessary to
keep sufficient space between the fragments for synthesis. If the search for the
complementary pattern fails due to insufficient space, it is necessary to redo the
search at a wider space. Thus, finding the minimum size of the complementary
pattern required for synthesis is useful for shortening the search time. However,
this is unclear and further investigation is required. To reduce the time to con-
vert the constraint of each cell to CNF, efficient conversion technique, such as
Tseitin conversion would be useful.

5 Related Work

De Bruijn diagram [9] has been widely used as a useful tool in the study of
cellular automata. McIntosh [15, 17] proposed a method to enumerate still-life
by arranging predetermined small patterns. The basic idea was that the patterns
of 3 × 3 square appearing in still-life were classified into 284 types of patterns,
then still-lifes of any size and patterns were generated by connecting 3×3 square
patterns in the catalog one-by-one according to some connection rules. First, 3×n
patterns were generated by 3× 3 square belonging to the catalog is generated as
a horizontally long pattern of 3 × n based on the connection rules of two 3 × 2



rectangles. Next, m×n pattern is completed by stacking the previously obtained
3× n patterns while shifting them vertically one cell at a time.

A tool for creating an object using the De Bruijn diagram is Eppstein’s gfind
[10, 11]. This tool used Dr Bruijn diagram to search for a spaceship, which is a
kind of gridder.

Bounded model checking [4] is a model checking [5], which limits the tran-
sition sequences of a state transition system to a finite length for verification.
In [13], Knuth suggested how to apply the logical formula used in the bounded
model checking to convert the problem of object generation in Game of Life into
satisfiability problem. Let T (X,X ′) be a logical formula that returns true if the
transition from pattern X is reachable to X ′. Here, if Xn is reachable from X0

by n-times state transitions, the formula
∧n

k=1 T (Xk−1, Xk) is true. If X0 = Xn,
then this formula returns true when X0 is an oscillator with period n. Thus, if
this equation is converted to CNF and solved using the SAT solver, the concrete
pattern of the oscillator can be obtained. By adding some suitable conditions and
changing values of the parameters, we can derive still-life, spaceship, and garden
of Eden. In [13], it was introduced how to convert the expression T (X,X ′) to a
CNF, which facilitates the solution using the SAT solver. There have been some
implementations of this method, such as Cunningham’s Logic Life Search [7] and
Goucher’s ikpx [12].

6 Conclusions and Future Work

In this study, we proposed a method for synthesizing objects in Conway’s Game
of Life. The basic idea is to join two existing objects by inserting an appropriate
pattern to obtain a new object. The constraints that the complementary pattern
between the fragments must satisfy is described as a logical formula in which the
state of each cell constituting the pattern is a variable. This formula becomes
true if and only if a pattern that satisfies the constraint is input. Thus, the
object synthesis problem can be reduced to the satisfiability problem, which can
be solved using the SAT solver. We implemented the proposed method using
Python with Z3py as an SAT solver and demonstrated the synthesis of various
objects, such as still-life, oscillator, and spaceship.

Future research will consider finding regularity in shape from a large number
of automatically generated objects by synthesis. Objects with the same period
and direction of movement partially share some specific patterns while others are
composed of different patterns. From this observation, it is expected that various
objects can be generated by applying a (set of) certain non-deterministic ma-
nipulation rules to a specific pattern. We especially want to clarify such rules by
focusing on the relationship with stochastic one-dimensional cellular automata.
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