
Robustness and Failure Detection in Epistemic
Gossip Protocols

Kosei Fujishiro and Koji Hasebe

Department of Computer Science, University of Tsukuba
1-1-1, Tennodai, Tsukuba 305-8573, Japan

fujishiro@mas.cs.tsukuba.ac.jp, hasebe@cs.tsukuba.ac.jp

Abstract. Gossip problem is an information dissemination problem in
which networked agents (nodes) must share their secrets by the minimum
number of calls. In recent years, to solve the problem, various epistemic
gossip protocols have been proposed, where the agents decide who to
call based on the higher-order knowledge about the possession of secrets.
Although most previous studies on the epistemic gossip protocol have
restricted their scope to the environments including only reliable agents,
from the practical viewpoint, it is worthwhile investigating robust pro-
tocols against agent failure. In this paper, we assume the existence of
unreliable agents and analyze the robustness of some existing protocols
using epistemic logic. In our model, when an agent fails, it loses the se-
crets and telephone numbers gained by previous calls and returns to its
initial state. In addition, during each call, agents share not only their
possessing secrets but also the history of the transmission path of each
secret. For these settings, we show that the protocols ANY and PIG are
successful (i.e., the protocols always lead to the state where every agent
knows all secrets). We also show that the protocol CO is not immediately
successful under the assumption that agents can fail, but it becomes suc-
cessful if the protocol execution satisfies some conditions. Furthermore,
we clarify sufficient conditions for agents to detect the failure of other
agent, which are useful for designing robust protocols.

1 Introduction

A gossip protocol determines a one-to-one communication (call) to share se-
crets among networked agents (nodes). This network is represented as a directed
graph, where the edge from agent a to agent b indicates the relation that a knows
the telephone number of b, i.e. a can call b. Initially, each agent only knows its
own secret, and during each call, two agents share their secrets gained by pre-
vious calls. One of the main challenges with the gossip protocol is to find the
shortest sequence of calls that leads to everyone knowing all secrets. The mini-
mum length of sequence depends on the initial graph, and according to the early
studies [11, 9], it is 2n − 4 for the complete graph, and 2n − 3 for the other
connected graphs for agents n > 3.

Recently, to solve the problem, various epistemic gossip protocols have been
proposed [6, 5]. In these protocols, an agent decides who to call based not only

on the agent’s knowledge about its possessing secrets and telephone numbers,
but also on higher-order knowledge (i.e., the knowledge that the agent has about
the knowledge of other agents). These studies also analyzed the conditions for
the protocols to be successful (i.e., the protocols must achieve the state where
every agent knows all secrets) using epistemic logic [8]. The results provide use-
ful information for designing epistemic gossip protocols. However, most previous
studies on epistemic gossip protocols have been limited to models consisting of
only reliable agents, which were not realistic from a practical viewpoint. There-
fore, to enhance the reliability of the protocols, it is worthwhile investigating the
robustness against agent failure.

In this paper, we assume the existence of unreliable agents and analyze the
robustness of some existing protocols in such a model using epistemic logic.
Specifically, here we focus on the dynamic gossip protocols [6], where agents
exchange not only their possessing secrets but also their telephone numbers
when making a call. In our proposed model, when an agent fails, it loses the
secrets previously learnt and returns to its initial state. In addition, during each
call, agents share not only the secrets but also the history of the transmission
path of each secret.

For these settings, we analyzed the protocols ANY (ANY call), PIG (Possible
Information Growth), and CO (Call me Once), which were originally introduced
by [6]. For the former two, we prove that these are successful even in the environ-
ment where agents can fail. On the other hand, for the latter protocol, we prove
that it is not immediately successful, but it becomes successful if its execution
satisfies some conditions. Furthermore, we clarify sufficient conditions for agents
to detect the failure of other agents.

The contribution of this paper is twofold. First, we give a new model to
analyze the robustness of epistemic gossip protocols. Second, we demonstrate a
logical analysis of some epistemic gossip protocols and prove properties about
the robustness and failure detection. Although we do not present a concrete
robust protocol, our method is still useful in protocol verification and design.

The structure of this paper is as follows. Section 2 presents related work.
Section 3 defines our model and the logic used for the protocol analysis. Section
4 shows some properties about robustness and failure detection in some existing
epistemic gossip protocols. Finally, Section 5 concludes the paper and presents
possible future directions.

2 Related Work

The earliest studies of the gossip problem date back to the 1970s [11, 9]. (See
also [10] for a survey summarizing results on the classic gossip problem and its
variants as well as techniques to schedule centralized optimal calls.)

In recent years, as an approach to the gossip problem, there have been a
number of studies on the epistemic gossip protocol. Attamah et al. [2] have
proposed a method for the autonomous distributed control of calls by epistemic
gossip protocol and investigated its various extensions. Van Ditmarsch et al.

[6, 7] have presented some epistemic gossip protocols with dynamic setting, in
which agents exchange both their secrets and telephone numbers when making a
call. In [6, 7], they introduced some successful protocols named ANY, CO, LNS,
and PIG. Our model and analysis presented in this paper are extensions of the
method proposed in the studies [6, 7].

Apt et al. [1] provides a framework for formally analyzing the validity and
termination of the epistemic gossip protocol of the merge-then-learn method and
presents the protocol for complete graphs and ring graphs. On the other hand,
in our study and in [6], the learn-then-merge method is adopted in which the
information sent by each agent is acquired and then merged.

Cooper et al. [5] have extended the gossip problem by paying attention to
epistemic depth. Specifically, they set a state about higher-order knowledge as a
goal and investigate the optimal call scheduling for it. Unlike our research, their
focus is on centralized scheduling.

Similar to our research, van den Berg [3] has assumed the existence of unre-
liable agents in the setting of dynamic gossip and investigated their effects and
how to identify them. However, as a possible application, unlike our research,
the prevention of the spread of fake news is emphasized. Therefore, the modeling
of agent “unreliability” is different with ours. In that setting, there is a result
that is similar to the one in this research that the existing protocol called LNS
will not succeed owing to the existence of unreliable agents. It also describes
the counterintuitive and interesting results about the difficulty of identifying
unreliable agents.

This paper also analyzes the failure detection in an environment where agents
can fail. Failure detection is a central research issue for ensuring the reliability
of distributed systems. As an early important study, Chandra and Toueg [4]
have argued the importance of failure detectors in distributed systems. This
study defines two classes of failure detectors with the notions of completeness
and correctness, and shows how they can be used to solve consensus problems
in asynchronous systems where crash failures can occur.

3 Basic Concepts

In this section, we define our proposed model including unreliable agents and
introduce epistemic logic used in protocol specification and analysis.

3.1 Modeling Agent Failure

Our model is obtained by adding events of agent failure to the model defined by
[6]. We first define the set of events as follows.

Definition 1 (Event). Let xy denote the call from agent x to agent y and
[x1 . . . xk] denote the simultaneous failure of agents x1, . . . , xk. We write either
xy or yx as xy. A call or an agent’s failure is called an event. Let C and F be the
sets of calls and failures, respectively. The set of events E is defined as E = C∪F.
We write x ∈ e to denote that agent x is involved in the event e.

Protocol execution is modeled as a sequence of events defined below.

Definition 2 (Event sequence). The expression e1; e2; . . . ; en is used to de-
note the sequence e1, e2, . . . , en of n events. E∗ is the set of all event sequences.
Throughout we also use some notations defined below.

– Empty sequence is denoted by ϵ.

– Semi-colon is also used to concatenate events or event sequences.

– σ ⊑ τ indicates that either σ is a prefix of τ or σ = τ .

– σn is used to denote the n-th event in the sequence of σ ∈ E∗

– σ|n is used to denote the prefix of σ up to the n-th event.

– For each x ∈ A, σx is used to denote the subsequence of σ consisting of all
σn which x is involved in.

In [6], during a call, agents exchange their secrets and telephone numbers
gained by previous calls, while in our model, we assume that the history of the
transmission path of each secret is also exchanged. This history is represented
by a tree structure, called a memory tree, and is defined below.

Definition 3 (Memory tree). A memory tree is a binary tree defined as fol-
lows.

– Base Case: ⟨x⟩ is a memory tree for any x ∈ A.

– Ind. Step: if T and T ′ are memory trees, then ⟨T, xy, T ′⟩ is a memory tree
for any call xy.

We denote the root of a memory tree T by r(T) and the set of all leaves by
leaves(T). For the memory tree Tx of agent x, leaves(Tx) is the set of secrets
owned by x. For T = ⟨T1, xy, T2⟩, we define TL and TR as TL = T1 and TR = T2,
respectively. We denote that T is a subtree of T ′ by T ⊆ T ′.

Next, we define the gossip graph. The gossip graph is a directed graph indi-
cating the agents’ knowledge about their telephone numbers at a certain point in
time. Formally, a gossip graph consists of a set A of agents, a binary relation N
over A representing the agents’ knowledge about telephone numbers, and a class
{Tx}x∈A each of which represents the set of memory trees stored by an agent.
Similar to the definition of [6], (x, y) ∈ N means that x knows the telephone
number of y. Throughout, we also use the notations Nxy and Nx to denote
(x, y) ∈ N and {y ∈ A | Nxy}, respectively.

Definition 4 (Gossip graph). A gossip graph is a tuple G = (A,N, {Tx}x∈A),
where A is a finite set of agents, N is a subset of A×A and Tx is a memory tree
belonging to x. A gossip graph which satisfies Tx = ⟨x⟩ and (x, x) ∈ N for any
x is called an initial gossip graph. A gossip graph is weakly connected if in the
graph (A,N) for any x, y ∈ A there exists a directed path from x to y. A gossip
graph is complete if N = A×A. Agent x is called expert if leaves(Tx) = A.

A gossip graph that represents the initial state is called the initial gossip
graph. Along with a protocol execution, a gossip graph starts with one of the
initial gossip graphs and changes every time an event occurs. Intuitively, when
a call occurs between agents, all information contained in each other’s memory
tree is shared, whereas when an agent fails, it loses the stored memory tree and
returns to the initial state. These processes are formally defined as follows.

Definition 5 (Event-induced gossip graph). For an initial gossip graph
G = (A,N, {Tx}x∈A) and an event sequence σ, a new gossip graph Gσ =
(A,Nσ, {Tσ

x }x∈A) obtained by executing σ in G is defined as follows.

– Base Case: if σ = ϵ, thenN ϵ = N and T ϵ
x = Tx for all x. (Therefore, Gϵ = G.)

– Ind. Step: if σ = σ′; e,
• for the case where e is a call xy,

Nσ′;xy
z =

{
Nσ′

x ∪Nσ′

y (z ∈ {x, y})
Nσ′

z (otherwise)

Tσ′;xy
z =

{
⟨Tσ′

x , xy, T σ′

y ⟩ (z ∈ {x, y})
Tσ′

z (otherwise)

• for the case where e is a failure e = [x1 . . . xk],

Nσ′;[x1...xk]
z =

{
N (z ∈ {x1, . . . , xk})
Nσ′

z (otherwise)

Tσ′;[x1...xk]
z =

{
Tz (z ∈ {x1, . . . , xk})
Tσ′

z (otherwise)

A call xy is said to be valid if the gossip graph G = (A,N, {Tx}x∈A) satisfies
Nxy. In addition, we consider the failure [x1 . . . xk] to be valid at G for any gossip
graphG. Thus, it is assumed that the failure (in some cases, consecutively) occurs
at any timing between calls. However, consecutive failures are regarded as one
simultaneous failure. For example, [x1]; [x2]; [x3] is regarded to be the same as
[x1x2x3]. When any element σn of the sequence σ of events is valid in Gσ|n−1,
σ is said to be valid in G.

Example 1. Consider the sequence ab; [b]; ca. Figure 1 shows event-induced graph
Gσ for each prefix σ ⊑ ab; [b]; ca. In the graphs of the leftmost column, each node
labeled x represents agent x. Each dashed arrow from x to y represents Nxy,
and solid one represents y ∈ leaves(Tσ

x). Arrows to oneself is omitted. Each row
corresponds to Gσ = (A,Nσ, {Tσ

x }x∈A) for the same prefix σ.

The Gossip graph partially represents the knowledge of agents, but not the
higher-order knowledge. Therefore, the higher-order knowledge of the agents in
the epistemic gossip protocol is represented by the Kripke model (cf. [8]). A state
(possible world) in the model is called a gossip state.

a b

ab
c

a b

ab

a b c

T �
a T �

b T �
c

ab

[b]

ca

a b c

a b c

a b c

a b c

a b

cab

ca

a b

ab
cb

b

N�
x , leaves(T �

x)

a b

cab

ca

Fig. 1. Event-induced graphs for each prefix σ ⊑ ab; [b]; ca

Definition 6 (Gossip state). A gossip state is a pair (G, σ) of an initial gossip
graph G and a finite event sequence σ that is valid in G.

In our model, each agent assumes the initial gossip graph and the event se-
quence that realize the current gossip state on the basis of the following common
knowledge.

– The set of agents is A.
– The gossip graph changes depending on events, as defined in the Definition

5.
– The graph when no event has occurred yet is one of the initial gossip graphs.
– When no event has occurred yet, each agent does not know the telephone

numbers that the other agents know.
– Each agent does not know the protocols followed by the other agents.

The last statement being common knowledge means that the agent considers
any valid sequence to be executable, although in reality not all valid sequences
may be executed depending on the given protocol.

Based on the assumptions stated above, the notion of accessibility relation
is defined below. Here, different relations are given for two types of call modes,
asynchronous and synchronous call. Asynchronous call cannot be recognized by
agents other than the calling agents. However, synchronous are recognized by all
agents, but it is impossible to know who is calling. In either call mode, the failure
of the other agents cannot be recognized. Furthermore, if (3) in Definitions 7 and
8 are assumed, the failure of oneself cannot be recognized.

Definition 7 (Asynchronous accessibility relation). LetG = (A,N, {Tx}x∈A)
and H = (A,O, {Ux}x∈A) be initial gossip graphs, and let σ and τ be valid event
sequences in G and H, respectively. The asynchronous accessibility relation ∼x

is the reflexive, symmetric, transitive closure of binary relation ∼′
x on gossip

graphs defined as follows.

(1) (G, ϵ) ∼′
x (H, ϵ) if Nx = Ox.

(2) For any (σ, τ) ̸= (ϵ, ϵ), we have (G, σ) ∼′
x (H, τ) if any one of the following

conditions hold:

(a) σ = σ′; yz, x /∈ {y, z}, and (G, σ′) ∼′
x (H, τ);

(b) σ = σ′; yz, τ = τ ′; yz, x ∈ {y, z}, for each u ∈ {y, z} it is the case that
Nσ′

u = Oτ ′

u and Tσ′

u = Uτ ′

u , and (G, σ′) ∼′
x (H, τ ′);

(c) σ = σ′; [x1 . . . xk], x /∈ {x1, . . . , xk}, and (G, σ′) ∼′
x (H, τ);

(d) σ = σ′; [x1 . . . xk], τ = τ ′; [y1 . . . yl], x ∈ {x1, . . . , xk} ∩ {y1, . . . , yl}, and
(G, σ′) ∼′

x (H, τ ′).

(3) (Optional) If σ = σ′; [x1 . . . xk] and x ∈ {x1, . . . , xk}, then (G, σ) ∼′
x (G, ϵ).

Definition 8 (Synchronous accessibility relation). LetG = (A,N, {Tx}x∈A)
and H = (A,O, {Ux}x∈A) be initial gossip graphs, and let σ and τ be valid event
sequences in G and H, respectively. The synchronous accessibility relation ≈x

is the reflexive, symmetric, transitive closure of binary relation ≈′
x on gossip

graphs defined as follows.

(1) (G, ϵ) ≈′
x (H, ϵ) if Nx = Ox.

(2) For any (σ, τ) ̸= (ϵ, ϵ) we have (G, σ) ≈′
x (H, τ) if any one of the following

conditions hold:

(a) σ = σ′; yz, τ = τ ′;uv, x /∈ {y, z, u, v}, and (G, σ′) ≈′
x (H, τ ′);

(b) σ = σ′; yz, τ = τ ′; yz, x ∈ {y, z}, for each u ∈ {y, z} it is the case that
Nσ′

u = Oτ ′

u and Tσ′

u = Uτ ′

u , and (G, σ′) ≈′
x (H, τ ′);

(c) σ = σ′; [x1 . . . xk], x /∈ {x1, . . . , xk}, and (G, σ′) ≈′
x (H, τ);

(d) σ = σ′; [x1 . . . xk], τ = τ ′; [y1 . . . yl], x ∈ {x1, . . . , xk} ∩ {y1, . . . , yl}, and
(G, σ′) ≈′

x (H, τ ′).

(3) (Optional) If σ = σ′; [x1 . . . xk] and x ∈ {x1, . . . , xk}, then (G, σ) ≈′
x (G, ϵ).

The Kripke model, which is based on the accessibility relation and the gossip
state defined above, is called the gossip model.

Definition 9 (Gossip model). Given a set of agents A, the asynchronous
gossip model and the synchronous gossip model are respectively the tuples

G∼ = (G, ⟨∼a⟩a∈A, ⟨
e−→⟩e∈E) and G≈ = (G, ⟨≈a⟩a∈A, ⟨

e−→⟩e∈E),

where

– G is the set of gossip states;

– ∼a and ≈a are relations defined in 7 and 8;

–
e−→ is the relation on G such that for any G where event e is valid and for
any σ it is the case that (G, σ)

e−→ (G, σ; e).

3.2 Epistemic Logic

To specify and analyse protocols, we use epistemic logic defined below.

Definition 10 (Language). Given a set of agents A, the language L used to
specify conditions of protocols is defined by the following BNF:

φ ::= N(a, b) | S(a, b) | C(ab, c) | F(a) | ¬φ | (φ ∧ φ) | Kaφ

where a, b, c ∈ A. We define connectives →, ∨ and ↔ in a standard way and
denote the dual of Ka by K̂a.

Intuitively, N(a, b) means that a knows the telephone number of b. S(a, b)
means that a knows the secret of b. C(ab, c) means that ab is included in the
call involving c. C(ab, c) is false whenever c is neither a nor b, and C(ab, a) and
C(ab, b) are true at (G, σ) when σ contains ab. F(a) indicates that a has failed at
least once. Kaφ means that a knows φ, and K̂aφ means that a considers φ to
be possible.

Formally, the truth conditions for the formulas are defined as follows.

Definition 11 (Semantics). Let G∼ = (G, ⟨∼a⟩a∈A, ⟨
ab−→⟩a,b∈A) be an asyn-

chronous gossip model. For any (G, σ) ∈ G with G = (A,N, {Tx}x∈A) and for
any formula φ in L, we define G∼, (G, σ) |= φ by induction on φ as follows.

G∼, (G, σ) |= ⊤ iff always

G∼, (G, σ) |= N(a, b) iff Nσab

G∼, (G, σ) |= S(a, b) iff b ∈ leaves(Tσ
a)

G∼, (G, σ) |= C(ab, c) iff ab ∈ σc

G∼, (G, σ) |= F(a) iff [x1 . . . xk] ∈ σ and a ∈ {x1, . . . , xk}
G∼, (G, σ) |= ¬φ iff not G∼, (G, σ) |= φ

G∼, (G, σ) |= (φ1 ∧ φ2) iff G∼, (G, σ) |= φ1 and G∼, (G, σ) |= φ2

G∼, (G, σ) |= Kaφ iff for any (H, τ) with (G, σ) ∼a (H, τ),

we have G∼, (H, τ) |= φ

We define G≈, (G, σ) |= φ by replacing ∼a with ≈a in the above condition on
Kaφ.

The algorithm that specifies the behavior the agent should follow in the
epistemic gossip protocol is defined below. In this study, we assume that all
agents follow the same protocol.

Definition 12 (Gossip protocol). A gossip protocol is the nondeterministic
algorithm of the following form:

while not all agents are experts and there are u, v ∈ A s.t. φ(u, v) is
satisfied and call uv is valid;

select u, v ∈ A s.t. φ(u, v) is satisfied and call uv is valid;
execute call uv;

where φ(u, v) is a formula in the language L.

For a given protocol P, all possible sequences of events that can be executed
according to that protocol are called the P∼-permitted sequence. A set of P∼-
permitted sequences is called extensions.

Definition 13 (Permitted sequence). Let P be a protocol given by condition
φ(x, y) and G be an initial gossip graph.

– A call ab is P∼-permitted in (G, σ) if G∼, (G, σ) |= φ(a, b), call ab is valid in
Gσ and not all agents are experts in Gσ.

– A failure [x1 . . . xk] is P
∼-permitted in (G, σ) if there exists a P∼-permitted

call in (G, σ).

– An event sequence σ is P∼-permitted in G if each event σn+1 is P
∼-permitted

in (G, σ|n).
– The extension of P in G is the set of all P∼-permitted event sequences in G,

denoted by P∼
G.

– A sequence σ ∈ P∼
G is P∼-maximal on G if it is infinite or there is no event

e such that σ; e ∈ P∼
G.

P≈-permitted, P≈
G and P≈-maximal are defined similarly. When we discuss both

P∼ and P≈ together, we simply write P.

Given an initial gossip graph and a protocol, the more number of sequences
are included in the extension of the protocol that succeed in spreading the secret,
the more the protocol is considered to be successful. Thus, protocols are classified
into the following four types, depending on their level of success.

Definition 14 (Successful). Let G be an initial gossip graph and P be a pro-
tocol.

– A sequence σ ∈ PG is successful if it is finite and in Gσ all agents are experts.

– A sequence σ ∈ PG is fair if it is finite or for any call xy the following
condition holds.

If for any i ∈ N there exists j ≥ i such that xy is P-permitted in
Gσ|j , then for any i ∈ N there exists j ≥ i such that σj = xy.

– P is strongly successful on G if all maximal σ ∈ PG are successful.

– P is fairly successful on G if all fair and maximal σ ∈ PG are successful.

– P is weakly successful on G if there exists σ ∈ PG which is maximal and
successful.

– P is unsuccessful on G if there is no σ ∈ PG which is maximal and successful.

4 Analysis of Robustness and Failure Detection

In this section, we present the results of our protocol analysis.

4.1 Properties on Robustness

We analyze the following three protocols [6].

ANY (ANY Call) φ(x, y) := ⊤
While not every agent knows all secrets, randomly select a pair xy such that
x knows y’s number and let x call y.

PIG (Possible Information Growth) φ(x, y) := K̂x

∨
z∈A(S(x, z) ↔ ¬S(y, z))

Call xy can be made if x knows y’s number and if x considers it possible
that there is a secret known by one of x, y but not the other.

CO (Call Me Once) φ(x, y) := ¬C(xy, x) ∧ ¬C(yx, x)
Agent x may call agent y if x knows y’s number and there was no prior call
between x and y.

Here, we assume that the number of failures is finite. Thus, for protocol P,
we restrict PG to a set of sequences, each of which contains a finite number of
failures.

First, we confirm that for the protocols ANY and PIG, the properties shown
in [6] also hold even if the agents fail.

Theorem 1. Protocol ANY is fairly successful on G iff G is weakly connected.

Proof. We can prove the statement in a way similar to [7]. We prove only ⇐ part
because the converse is obvious. Let σ be an ANY-permitted and fair sequence.
It suffices to show that σ is not infinite. For contradiction, we assume that σ is
infinite. Now that we assume that σ contains only a finite number of failures,
there is a finite prefix τ ⊑ σ such that for any τ ′(τ ⊑ τ ′ ⊑ σ), we have Nτ = Nτ ′

and leaves(T τ
x) = leaves(T τ ′

x) for any x ∈ A. Since σ is not successful, there are
x, y ∈ A such that Nxy and leaves(T τ

x) ̸= leaves(T τ
y) (Otherwise σ is successful

because G is weakly connected). However, since σ is fair, in σ the call xy is
executed after τ . This is a contradiction. ⊓⊔

Theorem 2. Protocol PIG∼ is fairly successful on G iff G is weakly connected.

Proof. We can prove the statement by similar argument of [7]. We prove only ⇐
direction because the converse is obvious. Let σ be a PIG∼-maximal sequence.

We first show that if σ is infinite, it is not fair. Since we assume that σ
contains only a finite number of failures, there is a finite prefix τ ⊑ σ such that
for any τ ′(τ ⊑ τ ′ ⊑ σ), we have Nτ = Nτ ′

and leaves(T τ
x) = leaves(T τ ′

x) for
any x ∈ A. Further, since σ is not successful, there are x, y ∈ A such that Nxy
and leaves(T τ

x) ̸= leaves(T τ
y). This implies that after τ the call xy is always

PIG∼-permitted. However, xy is not executed after τ . Therefore, σ is not fair.
We next show that if σ is finite, it is successful. The sequence σ is finite

only if all agents are experts in Gσ or for any x, y ∈ A it is the case that
G∼, (G, σ) ̸|= K̂x

∨
z∈A(S(x, z) ↔ ¬S(y, z)). In the former case, σ is successful

by definition. In the latter case, by definition of K̂x, we have G∼, (G, σ) |=
Kx¬

∨
z∈A(S(x, z) ↔ ¬S(y, z)). This implies that for any x, y ∈ A it is the case

that leaves(Tσ
x) = leaves(Tσ

y). Therefore, σ is successful.

ab

bc

ca

[b]

a b c

a b c

a b c

a b c

[b]

bc

a b c

a b c

ca

a b c

a b c

ab; [b]; bc is not successful

ab; bc; [b]; ca is not successfulab; bc; ca is successful

Fig. 2. A counter example of Theorem 13 in [7]

Finally, it remains to show that there exists a successful σ. Let σ be a suc-
cessful ANY-permitted sequence of minimum length. We show that σ is also
PIG∼-permitted. Clearly, in σ there is no call between two experts. The prefix
σ|1 is PIG∼-permitted. We need to show that each σn+1 is PIG∼-permitted in
Gσ|n. If σn+1 is a failure, then it is clearly PIG∼-permitted in Gσ|n. Thus, we as-

sume σn+1 is a call xy. In the case leaves(T
σ|n
x) = A, we have leaves(T

σ|n
y) ̸= A

Therefore, xy is PIG∼-permitted in Gσ|n. In the case leaves(T
σ|n
x) ̸= A, let

z ∈ A\ leaves(Tσ|n
x). Then we have (G, σ|n) ∼x (G, σ|n; zy) and leaves(T

σ|n
x) ̸=

leaves(T
σ|n;zy
y). Therefore, xy is PIG∼-permitted in Gσ|n. ⊓⊔

The reason why these theorems hold is that ANY and PIG are the “careful”
protocol for failures. In other words, in these protocols, agents are forced to
repeatedly exchange information in case of failure. A careful protocol assumes
the worst case and decides who to call, regardless of whether or not the other
agent actually fails. Therefore, if fairness is not assumed, redundant calls may
be repeated.

Unlike ANY and PIG, the property shown in [6] does not hold for CO. More
precisely, CO is successful in a weakly connected graph when there is no agent
failure (cf. Theorem 13 in [7]) but it does not when failure may occur. As a
counterexample of this theorem in our model, in Figure 2, we show a sequence
of events beginning with a weakly connected initial gossip graph but do not
achieve a successful state.

The result shown above is obtained because CO, unlike ANY and PIG, is a
protocol that reduces too much redundancy and, thus, fails to fully recover fail-
ures. A closer look at the cause yields two useful suggestions. The first suggestion
is obtained from the counterexample sequence ab; bc; [b]; ca, which suggests that
agents who may fail should not be experts first. This occurs because the infor-

mation owned by such agents may be lost owing to a failure in the future. The
other suggestion is obtained from the counterexample sequence ab; [b]; bc, which
suggests that information should not be routed through an agent who may fail.
This occurs because the transmission of information may fail depending on the
timing of the agent failure.

The following theorem shows that a successful sequence can be achieved if
we schedule the partial sequence of calls to avoid the undesired steps presented
in the counterexamples above.

Theorem 3. For an initial gossip graph G = (A,N, {Tx}x∈A), we assume the
following.

– A single agent a is the only agent who can fail.
– There are at least two agents who do not fail.
– The restriction of G to A \ {a} is weakly connected.
– There is x ∈ A \ {a} such that Nxa.

Then the sequence xa;σ; ya obtained by the following procedure is CO-permitted
and successful (even if σ contains a finite number of a’s failures).

(1) Execute a call xa.
(2) Execute CO among the agents in A \ {a} (let us denote the event sequence

executed in this step by σ, which may contain some [a]).
(3) Select an agent y ∈ A \ {a} other than x and then execute a call ya.

Proof. By executing the call xa in (1), x obtains the secret and the telephone
number of a. Since CO is strongly successful in a weakly connected graph when
there is no agent failure (cf. Theorem 13 in [7]), σ is finite and after the execution
of σ, all z ∈ A \ {a} are experts. Since there are at least two agents who do not
fail, there is an agent y ∈ A \ {a} other than x. By the call ya in (3), a lastly
becomes an expert. Therefore, xa;σ; ya is successful. Moreover, since there is no
calls which a is involved in, xa;σ; ya is CO-permitted. ⊓⊔

However, in the framework of epistemic gossip protocol, such scheduling can-
not be realized directly. This fact suggests to us, as an alternative approach,
to design a protocol with the level of carefulness that reconciles the trade-off
relationship between the protocol CO and the protocol ANY or PIG. This is an
ideal protocol that is able to detect failures and recover lost information when
needed. In the next subsection, as a first step in designing such protocol, we in-
vestigate sufficient conditions in the sequence of calls that allow agents to detect
failures.

4.2 Analysis of Failure Detection

In this subsection, we assume that the following are common knowledge between
agents: gossip graph G is complete; only one particular agent (say, a) can fail;
failure can occur only once. Formally, assuming these three things to be common
knowledge means that we consider G, which consists of only gossip state (G, σ)

for which the three facts stated above hold. Also, ≈x is used as the reachabil-
ity relation. Under these assumptions, we use the notation σ ≈x τ to denote
(G, σ) ≈x (G, τ) and the notation σ |= ϕ to denote G≈, (G, σ) |= ϕ.

For a given protocol P and agents a, x ∈ A, if σ |= KxF (a), agent x is said to
detect a’s failure in σ ∈ PG. By the definition of |=, this is equivalent to [a] ∈ τ
for any τ that satisfies σ ≈x τ . A counterexample τ of this condition, namely
τ that satisfies σ ≈x τ and [a] /∈ τ , is called an optimistic path. The formal
definition is given below.

Definition 15 (Optimistic path). For an event sequence σ, an optimistic
path of x for σ is a sequence τ such that σ ≈x τ and [a] /∈ τ . Let optx : E∗ → 2E

∗

be the function which maps an event sequence σ to the set of optimistic paths
of x for σ. That is, we define optx as follows.

optx(σ) := {τ | σ ≈x τ and [a] /∈ τ}.

In order to show that σ |= KxF (a) holds, it suffices to show that the set
optx(σ) is empty. By the definition of ≈x, the set optx(σ) can be calculated by
induction on σ:

– Base Case: If σ = ϵ, then optx(σ) = {ϵ}.
– Ind. Step: If σ = σ′; c and c ∈ C,

• For the case x ∈ c, let c = xy. Then it follows that

optx(σ) = {τ ; c | τ ∈ optx(σ
′) and Tσ′

y = T τ
y }.

• For the case x /∈ c, it follows that

optx(σ) = {τ ; c′ | τ ∈ optx(σ
′) and x /∈ c′}.

If σ = σ′; [a], then optx(σ) = optx(σ
′).

Here we note that no assumptions about telephone number appear in the
calculations presented above, because we assume that G is a complete graph. In
addition, optimistic path is usually calculated bottom-up beginning with τ = ϵ.

Example 2. For σ = ax; [a]; ab; bx, the set optx(σ) can be calculated by the
following steps:

optx(ϵ) = {ϵ}
optx(ax) = {ϵ; ax | T ϵ

a = T ϵ
a} = {ax}

optx(ax; [a]) = {ax}
optx(ax; [a]; ab) = {ax; c | x /∈ c}

optx(ax; [a]; ab; bx) = {ax; c; bx | x /∈ c and T
ax;[a];ab
b = T ax;c

b }.

Since there is no call c such that x /∈ c and T
ax;{a};ab
b = T ax;c

b , we have optx(σ) =
∅. Therefore, after the execution of σ, agent x can detect the failure of a. In a
similar way, we can determine whether σ |= KxF (a) is true or not, given σ ∈ E∗.

From now on, we consider a more general pattern of σ that satisfies σ |=
KxF (a). The pattern of σ, shown in Theorem 4 below, is a generalization of σ
presented in Example 2. The underlying idea is that an agent can detect the
failure by comparing information before and after the a’s failure. Before proving
the theorem, we provide some lemmas. Hereafter, we use suba(T) to denote
{T ′ ⊆ T | a ∈ r(T ′)}.

Lemma 1. If a finite event sequence σ satisfies [a] /∈ σ, then for any x ∈ A and
for any T ∈ suba(T

σ
x) there is τ ⊑ σ such that T = T τ

a .

Proof. We prove this by induction on σ.

– Base Case: If σ = ϵ, for any x ∈ A it is the case that Tσ
x = T ϵ

x = ⟨x⟩. Thus,
the statement holds for σ = ϵ.

– Ind. Step: Let σ = σ′; c and c ∈ C. We fist consider the case a /∈ c. Let
c = yz. Then it follows that

suba(T
σ
x) =

{
suba(T

σ′

y) ∪ suba(T
σ′

z) if x ∈ {y, z},
suba(T

σ′

x) otherwise.

Therefore, by the induction hypothesis, we have the statement. We then
consider the case a ∈ c. Let c = ay. Then it follows that

suba(T
σ
x) =

{
suba(T

σ′

a) ∪ suba(T
σ′

y) ∪ {Tσ
a } if x ∈ {a, y},

suba(T
σ′

x) otherwise.

We can take τ = σ for Tσ
a . Therefore, together with the induction hypothesis,

we have the statement. ⊓⊔

Lemma 2. If an event sequence σ satisfies [a] /∈ σ, then for any x ∈ A and for
any T, T ′ ∈ suba(T

σ
x) it is the case that T ⊆ T ′ or T ′ ⊆ T .

Proof. By Lemma 1, for any x ∈ A and for any T, T ′ ∈ suba(T
σ
x) there are

τ, τ ′ ⊑ σ such that T = T τ
a and T ′ = T τ ′

a . If τ ⊑ τ ′, then T τ
a ⊆ T τ ′

a , that is,
T ⊆ T ′. If τ ′ ⊑ τ , then T τ ′

a ⊆ T τ
a , that is, T

′ ⊆ T . ⊓⊔

Lemma 3. For any event sequence σ and any x ∈ A, if [a] /∈ σ and r(Tσ
x) = ax

(xa, resp.), then for any T ∈ suba(T
σ
x,R) (suba(T

σ
x,L), resp.), it is the case that

T ⊆ Tσ
x,L (Tσ

x,R, resp.).

Proof. Since we assume r(Tσ
x) = ax (xa, resp.), there is a prefix τ ⊑ σ such

that τ = τ ′; ax and Tσ
x = T τ

x . Furthermore, we have Tσ
x,L = T τ

x,L = T τ ′

a (T τ ′

x ,

resp.) and Tσ
x,R = T τ

x,R = T τ ′

x (T τ ′

a , resp.). Since [a] /∈ σ implies [a] /∈ τ ′, using

Lemma 1, for any T ∈ suba(T
τ ′

x) there is a prefix ρ ⊑ τ ′ such that T = T ρ
a .

Moreover, since ρ ⊑ τ ′, we have T ρ
a ⊆ T τ ′

a , that is, T ⊆ T τ ′

a . Therefore, for any
T ∈ suba(T

σ
x,R) (suba(T

σ
x,L), resp.), we have T ⊆ Tσ

x,L (Tσ
x,R, resp.). ⊓⊔

Theorem 4. When agent x obtains agent a’s secret distributed before and after
a’s failure from two paths which do not share any nodes, x can detect a’s failure.
Formally, if {b1, . . . , bk}, {c1, . . . , cl} ⊆ A and {b1, . . . , bk}∩{c1, . . . , cl} = ∅ with
k, l ≥ 0, and if σ is a sequence consisting of the following events:

ab1, b1b2, . . . , bk−1bk, bkx, ac1, c1c2, . . . , cl−1cl, clx, [a],

and if

ab1 ≺ b1b2 ≺ · · · ≺ bk−1bk ≺ bkx (1)

ac1 ≺ c1c2 ≺ · · · ≺ cl−1cl ≺ clx (2)

ab1 ≺ [a] ≺ ac1 (3)

where e1 ≺ e2 means that e1 is executed earlier than e2 in σ, then σ |= KxF (a).

Proof. We divide the proof according to whether k and l are equal to 0 or not,
respectively.

– For k = l = 0, we have σ = ax; [a]; ax. Then optx(σ) = {ax; ax | T ax;[a]
a =

T ax
a }. Since T

ax;[a]
a ̸= T ax

a , we have optx(σ) = ∅. Therefore, σ |= KxF (a).
– For k > 0 and l = 0, we have σ = σ′; ax or σ = σ′; bkx. If σ = σ′; ax,

then r(Tσ
x) = ax. By the conditions (1), (2) and (3), it is the case that

Tσ′

a = ⟨a⟩ and Tσ′

x has ⟨⟨a⟩, ab1, ⟨b1⟩⟩ or ⟨⟨b1⟩, b1a, ⟨a⟩⟩ as a subtree. Since Tσ
x

is ⟨Tσ′

a , ax, T σ′

x ⟩ or ⟨Tσ′

x , xa, T σ′

a ⟩, using Lemma 3, we have σ |= KxF (a). If
σ = σ′; bkx, by the conditions (1), (2) and (3), the tree Tσ′

bk
has ⟨⟨a⟩, ab1, ⟨b1⟩⟩

or ⟨⟨b1⟩, b1a, ⟨a⟩⟩ as a subtree, and Tσ′

x is ⟨⟨a⟩, ax, ⟨x⟩⟩ or ⟨⟨x⟩, xa, ⟨a⟩⟩. Since
the tree Tσ

x is ⟨Tσ′

bk
, bkx, T

σ′

x ⟩ or ⟨Tσ′

x , xbk, T
σ′

bk
⟩, using Lemma 2, we have

σ |= KxF (a).
– For k = 0 and l > 0, we have σ = ax; [a]; ac1; c1c2; . . . ; cl−1cl; clx. Let

σ = σ′; clx. Then Tσ′

cl
has ⟨⟨a⟩, ac1, ⟨c1⟩⟩ or ⟨⟨c1⟩, c1a, ⟨a⟩⟩ as a subtree,

and Tσ′

x has ⟨⟨a⟩, ax, ⟨x⟩⟩ or ⟨⟨x⟩, xa, ⟨a⟩⟩ as a subtree. Since the tree Tσ
x

is ⟨Tσ′

cl
, clx, T

σ′

x ⟩ or ⟨Tσ′

x , xcl, T
σ′

cl
⟩, using Lemma 2, we have σ |= KxF (a).

– For k > 0 and l > 0, we have σ = σ′; bkx or σ = σ′; clx. If σ = σ′; bkx, by the
assumption that {b1, . . . , bk}∩{c1, . . . , cl} = ∅ and the conditions (1), (2) and

(3), it is the case that Tσ′

bk
= T

ab1;b1b2;...;bk−1bk
bk

and Tσ′

x = T
ac1;c1c2;...;cl−1cl;clx
x .

Since {b1, . . . , bk}∩{c1, . . . , cl} = ∅, it follows that ⟨b1⟩ ⊆ Tσ′

bk
and ⟨b1⟩ ̸⊆ Tσ′

x .
Using Lemma 2, we have σ |= KxF (a). If σ = σ′; clx, By the assumption
that {b1, . . . , bk} ∩ {c1, . . . , cl} = ∅ and the conditions (1), (2) and (3), it is

the case that Tσ′

cl
= T

ac1;c1c2;...;cl−1cl
cl and Tσ′

x = T
ab1;b1b2;...;bk−1bk;bkx
x . Since

{b1, . . . , bk} ∩ {c1, . . . , cl} = ∅, it follows that ⟨c1⟩ ⊆ Tσ′

cl
and ⟨c1⟩ ̸⊆ Tσ′

x .
Using Lemma 2, we have σ |= KxF (a). ⊓⊔

5 Conclusions and Future Work

In this paper, in order to increase the reliability of epistemic gossip protocols,
we proposed a logical analysis method of robustness against agent failure. In our

model, when agent fails, it loses the secrets and telephone numbers gained by
previous calls and returns to the initial state. In addition, during each call, agent
share not only the secrets but also the history of the transmission path of each
secret.

For this settings, we showed that the protocols ANY and PIG are fairly
successful if the graphs were connected, as in the case where no failure is assumed.
On the other hand, for the protocol CO, we showed that there exists a sequence
of calls that is not successful in a weakly connected graph. These results suggest
the need for a failure detection mechanism. Therefore, in this paper, we also
showed the sufficient condition of the sequence of calls for an agent to detect the
failure of other agents in PIG. Our results provide useful information to make
the protocol robust against agent failure.

There are still issues to be addressed as an extension of this study. Although
condition that the sequence of calls must satisfy to detect other agent’s failure,
we have not achieved a concrete protocol that allows the sequence that satisfies
this condition. Moreover, currently, we have only obtained a sufficient condition.
Thus, there should be a more general form of a sequence of calls where someone
can detect a failure. From a more practical point of view, the robustness against
various other types of failures such as the Byzantine failure of agents and com-
munication failures has not yet been clarified. We plan to address these research
issues by extending the framework given in this study.

References

1. Apt, K.R., Grossi, D., van der Hoek, W.: Epistemic protocols for distributed gos-
siping. Electronic Proceedings in Theoretical Computer Science 215, 51–66 (Jun
2016)

2. Attamah, M., Van Ditmarsch, H., Grossi, D., van der Hoek, W.: Knowledge and
gossip. In: ECAI. pp. 21–26 (2014)

3. van den Berg, L.: Unreliable Gossip. Master’s thesis, Universiteit van Amsterdam
(2018)

4. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM (JACM) 43(2), 225–267 (1996)

5. Cooper, M.C., Herzig, A., Maffre, F., Maris, F., Régnier, P.: The epistemic gossip
problem. Discrete Mathematics 342(3), 654–663 (2019)

6. van Ditmarsch, H., van Eijck, J., Pardo, P., Ramezanian, R., Schwarzentruber, F.:
Epistemic protocols for dynamic gossip. Journal of Applied Logic 20, 1–31 (2017)

7. van Ditmarsch, H., van Eijck, J., Pardo, P., Ramezanian, R., Schwarzentruber,
F.: Dynamic gossip. Bulletin of the Iranian Mathematical Society 45(3), 701–728
(2019)

8. Fagin, R., Moses, Y., Halpern, J.Y., Vardi, M.Y.: Reasoning about knowledge. MIT
press (1995)

9. Hajnal, A., Milner, E.C., Szemerédi, E.: A cure for the telephone disease. Canadian
Mathematical Bulletin 15(3), 447–450 (1972)

10. Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.L.: A survey of gossiping and
broadcasting in communication networks. Networks 18(4), 319–349 (1988)

11. Tijdeman, R.: On a telephone problem. Nieuw Archief voor Wiskunde 3(19), 188–
192 (1971)

