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Abstract. Inductive game theory captures how a player inductively de-
rives his/her personal views from experiences. The player may have mul-
tiple views, some of which differ from the objective situation, but may
revise them with further experiences. This paper gives a logical formu-
lation of this revision process by focusing on the role of player’s beliefs.
For this objective, we take the AGM approach of belief revision. The
idea behind our logic is that the player’s belief state is represented by a
belief set of propositional formulas, thereby describing a revision process
for the belief states by using a revision operation in AGM theory. In
this setting, the player’s personal views are described as models for the
current belief set. We also present an application of our framework to a
class of inductive games, called festival games.

1 Introduction and Overview

Standard game theory assumes players to have sufficient knowledge or common
belief of the game they play. However, in a real social or economic situation,
such knowledge/belief is not given in advance, but rather emerges from the
individual experiences with bounded cognitive abilities and is revised through
time. Inductive game theory, originally introduced by Kaneko and Matsui [15]
and Kaneko and Kline [12] [13] [14], explores this issue and captures how a player
inductively derives his/her knowledge and beliefs of the game from experiences.

Inductive game theory distinguishes an objective situation and players’ per-
sonal views of the game. Players are assumed to have little initial knowledge
about the objective situation, but repetitively face given situation, to accumu-
late their experiences through their choices of available actions, and to construct
their personal views with the experiences. In the players’ construction, they
have different personal views based on their different experiences even when the
players face an identical situation. Moreover, a player may have multiple views,
some differing from the objective situation, but may revise them with further
experiences.

The difference in players’ views is due not only to their experiences, but also
to their memories, which are represented by memory functions. By introducing
memory functions, players’ abilities of memories can be represented in various



ways, although extensive games in standard game theory place some restrictions
on the representations. Therefore, even when gathering many experiences, a
player may only partially recall his experiences.

While inductive game theory provides a framework to derive a personal view
consistent with a player’s memories of the experiences, it has been less studied
how the derived view is revised by additional experiences. This paper provides
a framework for revision in inductive game theory based on the idea of AGM
(Alchourrón-Gärdenfors-Makinson) theory of belief revision [1]. By introducing
the revision process, we reflect a player’s inductive inference in decision-making.

Since standard game theory assumes players to have sufficient knowledge or
common belief of the structure, it is not good at treating inductive inferences
of the structure. Revision of beliefs in (epistemic) logic has also been applied
to standard game theory as in Binmore [2], Bonnano [4], van Benthem [17],
Board [3], and Feinberg [6] [7]3. However, such studies usually focus on beliefs
about opponent players’ actions. While it is important to consider belief for-
mations of opponents’ actions in interactive situations, we need to ask whether
such beliefs are plausible when the formation heavily depends on (common)
knowledge of the structure. Inductive game theory and this paper truly ask the
question: How do players cognize the (interactive) situations that they face?

Our logic is based on the standard classical propositional logic. Basic state-
ments in inductive game theory, such as the histories of player’s actions and
payoffs are associated with propositional atomic formulas, thereby describing
causality relations between histories or players’ strategies as compound formu-
las. In terms of this language, the player’s belief state is described by a belief set
of formulas, thus a revision process for the belief states is described by using a
revision operation in AGM theory. In this setting, the player’s personal views are
described as models for the current belief set (i.e., assignments of truth values
which satisfy all the formulas of belief set) in the semantics.

By means of this logic, we also show an application to festival games, which
are specific inductive games proposed by Kaneko and Matsui [15]. As explained
above, the players in inductive games accumulate their experiences and induc-
tively derive their personal views of the experiences. Festival games capture the
mechanisms of prejudices and discriminations resulting from experiences.

This paper is organized as follows. The next section gives the definition of
inductive game theory following Kaneko and Kline [14]. Section 3 presents our
logic for belief revision. Section 4 presents an application of our belief revision
to festival games. Finally, Section 5 gives conclusions and discusses further re-
search.

3 A theory of belief revision in itself is now a very active area of research, and it
connects with dynamic epistemic logic. Comprehensive surveys were published by
van Ditmarsch, et al. [5], van der Hoek and Pauly [10].



2 Inductive Game Theory

2.1 Information protocols

We define an information protocol Π below. Let W be a nonempty finite set
of information pieces, A be a nonempty finite set of actions, and ≺ be a finite
subset of

∪∞
m=0((W × A)m ×W ). Aw ⊆ A is the available action at w ∈ W .

When m = 0, (W ×A)0 ×W is regarded as W of a unary relation on W .
The relation ≺ is called a causality relation. Each element 〈(w1, a1), . . . ,

(wm, am), wm+1〉 ∈≺ is called a sequence of length m+ 1. Expression 〈ξ, w〉 de-
notes a generic element of

∪∞
m=0((W×A)m×W ), and 〈w〉 is that of (W×A)0×W .

Using a causal relation ≺, we give a partition on W . That is, WD := {w ∈
W | 〈(w, a), v〉 for some a ∈ A and v ∈ W} is called a set of decision pieces and
WE := W \WD a set of end pieces.

Now let N = {1, . . . , n} be the set of players for an information protocol Π.
Player assignment is a function π : W → 2N that π(w) assigns a single player
for any w ∈ WD and N for any w ∈ WE . Player i’s payoff assignment is given
as a function hi : WE → R for all i ∈ N . We then complete the definition of an
information protocol as a quintuple Π = (W,A,≺, (π,N), (hi)i∈N ).

To describe a player’s personal view and an objective situation with informa-
tion protocols, we require two basic axioms and three non-basic axioms. To stipu-
late the basic axioms, we define a subsequence of a sequence in

∪∞
m=0((W×A)m×

W ). We say that 〈(w1, a1), . . . , (wm, am), wm+1〉 is a subsequence of 〈(v1, b1), . . . ,
(vk, bk), vk+1〉 iff [(w1, a1), . . . , (wm, am), (wm+1, a)] is a subsequence of [(v1, b1),
. . . , (vk, bk), (vk+1, b)] for some a and b. We use the notation 〈ξ, wm+1〉 v 〈ζ, vk+1〉
to state that 〈ξ, wm+1〉 is a subsequence of 〈ζ, vk+1〉. A supersequence is defined
likewise. A sequence 〈ξ, w〉 is maxial iff there is no proper supersequence in ≺.
A position 〈ξ, v〉 is an initial segment of some maximal sequence. The set of
positions is denoted Ξ.

We now state the basic axioms.

Axiom B1 If 〈ξ, w〉 ∈≺ and 〈ζ, v〉 v 〈ξ, w〉, then 〈ζ, v〉 ∈≺.
Axiom B2 If 〈ξ, w〉 ∈≺ and w ∈ WD, then there are a ∈ A and v ∈ W such

that 〈ξ, (w, a), v〉 ∈≺.

Axiom B1 requires that ≺ is closed under a subsequence relation, while axiom B2
states that a sequence ending with a decision piece can be extended to a longer
sequence in ≺. When an information protocol satisfies these basic axioms, we
call it a basic protocol.

As we shall see in the next subsection, basic protocols are used to describe
player’s personal views. On the other hand, to describe an objective situation,
inductive game theory introduces the concept of full protocol, which is a restricted
form of basic protocols. For the detailed definition of full protocols, see [14].

2.2 Players’ memories and inductively derived views

The central idea behind inductive game theory is the consideration of a player’s
memories, from which he/she derives a personal view of the objective situation.



Kaneko and Kline [14] formulated a player’s memories in terms of a memory
function, which maps each objective history of his/her play to the recollection
in the player’s mind.

Definition 1 (Memory function). LetΠ be a basic protocol and Ξi the set of
player i’s positions in Π; i.e., Ξi = {〈ξ, w〉 ∈ Ξ | i ∈ π(w)}. A memory function
mi for player i is a function mapping each element in a set Di with Ξi ⊆ Di ⊆ Ξ
to a finite sequence 〈ζ, v〉 = 〈(v1, b1), . . . , (vm, bm), v〉 satisifying two conditions:
(1) v = w; and (2) m ≥ 0 and vt ∈W , bt ∈ Avt for all t = 1, . . . ,m.

Here, the set Di, called a domain of accumulation (or a domain, for short)
means the objective description of player i’s accumulated experiences. Condition
1 guarantees that the latest information piece is what player i receives at the
current position. Condition 2 is a minimal requirement to represent players’
memories with information protocols. The above memory functions can represent
players’ forgetfulness or incorrect recollections. We call each sequence 〈ζ, v〉 given
by mi a memory thread, and each component (vt, bt) or vm+1 a memory knot. The
memory function of player i takes all of player i’s perceptions of the objective
world; i.e., each player recognizes an objective world only through his memory
function.

We now present a basic framework for an objective world.

Definition 2 (Objective situation). An objective situation is a pair
(Πo,mo) such that Πo = (W o, Ao,≺o, (π0, N), ho) is a full protocol with ho =
(ho

1, . . . , h
o
n) and mo = (mo

1, . . . ,m
o
n) is an n-tuple of memory functions in Πo.

On the other hand, a player’s personal view derived from his/her memories
is formulated in terms of the memory function. Let Ξo be a set of positions in an
objective situation (Πo,mo

i ). For a domain Di with Ξi ⊆ Di ⊆ Ξo, the memory
kit TDi , which describes the accumulated experiences in the mind of player i, is
defined as TDi := {mo

i 〈ξ, w〉 | 〈ξ, w〉 ∈ Di}. Basic experiences for player i is the
set of all subsequences of every sequence in TDi , denoted ∆TDi . In terms of the
basic experiences, we define a player’s inductively derived view (or i.d.view, for
short) as follows 4.

Definition 3 (I.d.view). Suppose the objective situation (Πo,mo) is fixed.
A pair (Πi,mi) of a protocol and a memory function for player i is called an
inductively derived view from a memory kit TDi iff

ID1 W i := {w ∈ W o | w occurs in some sequence in TDi}, W iD ⊆ W oD and
W iE ⊆W oE ;

ID2 Ai
w ⊆ Ao

w for each w ∈W i;
ID3 ∆TDi ⊆≺i;
4 The original definition in [14] requires one additional condition that mi is a perfect-

information memory function (i.e., mi〈ξ, w〉 = 〈ξ, w〉). However, in this paper we
omit this condition since our formulation does not explicitly treat the classification
of memory functions.



ID4 πi(w) = πo(w) if w ∈W iD and πi(w) = N i if w ∈W iE , where N i := {j ∈
No | j ∈ πi(w) for some w ∈W iD};

ID5 hi(w) = ho
i (w) for all w ∈W iE .

In closing this section, to help readers understand the definition of inductive
game theory, we present a simple example called the absent-minded driver game
[14].

Example 1. Consider the one-player protocol (Πo,mo
1) described by the upper

figure in Fig 1 (C). Now suppose that player 1 plays the gameΠo three times and
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Fig. 1. Player 1’s i.d.views in absent-minded driver game

experiences the sequences leading to w1, w2, and w3 in this order. After each of
the plays, the objective history of his/her behavior is described as the following
sequence: D0

1 := φ, D1
1 := {〈(w, e), w1〉}, D2

1 := D1
1 ∪{〈(w, c), (w, e), w2〉}, D3

1 :=
D2

1 ∪ {〈(w, c), (w, c), w3〉}.
Let us consider the memory functions mR1 describing that player 1 can recall

only the latest memory knots within his experiences; that is, mR1 is defined
as mR1〈w〉 = 〈w〉, mR1〈(w, c), w〉 = 〈(w, c), w〉, mR1〈(w, e), w1〉 = 〈(w, e), w1〉,
mR1〈(w, c), (w, e), w2〉 = 〈(w, e), w2〉, mR1〈(w, c), (w, c), w3〉 = 〈(w, c), w3〉.

Thus the corresponding sequence of basic experiences is ∆T 0
D1

:= φ, ∆T 1
D1

:=
{〈w〉, 〈(w, e), w1〉}, ∆T 2

D1
:= ∆T 1

D1
∪{〈(w, c), w〉, 〈(w, e), w2〉}, ∆T 3

D1
:= ∆T 2

D1
∪

{〈(w, c), w3〉}, and some of the player’s i.d.views obtained from the basic expe-
riences are depicted as figures (A)–(C) in Fig 1 .

As the example shows, we may consider (possibly an infinite number of)
multiple i.d.views that differ from the objective situation, examples of which are
given as the lower figures of (B) and (C) in Fig 1, respectively.

3 Logical Formulation of Inductive Game Theory

In this section, we first briefly overview the AGM theory of belief revision [1] then
presents our logical formulation of inductive game theory. We here introduce a



minimal setting which formulates a player’s beliefs about experienced sequences.
An extension, including the concepts of player’s strategy and payoff, shall be
considered in the next section.

3.1 AGM theory of belief revision

We suppose a propositional language L over a finite alphabet Σ of propositional
atomic variables s, t, . . . , s1, s2, . . . with the usual sentential connectives (¬, ∧,
∨, →, and ↔). Propositional formulas are denoted by ϕ,ψ, . . . , ϕ1, ϕ2, . . ..

As the syntax for L, we suppose the usual inference system of classical propo-
sitional logic. Consequence relation ` is defined by this logic. The set of all logical
consequences of a set Γ ⊆ L (i.e., the set {ϕ | Γ ` ϕ}) is denoted Cn(Γ ). De-
ductively closed sets of propositional formulas, i.e. K = Cn(K), are denoted
K,K ′, . . . and are called belief sets.

As the semantics for L, we suppose the usual truth assignment and models
of propositional logic. A truth assignment is a function σ : Σ → {1, 0}. A truth
assignment σ is called a model of a proposition ϕ if σ satisfies ϕ in the classical
sense. A model of a set of propositions Γ is a truth assignment σ that satisfies
all ϕ ∈ Γ .

The AGM theory of belief revision considers three types of operations on
belief sets: expansion +̇, contraction −̇ and revision ?. For a belief set K and a
formula ϕ, expansion operation is defined as K+̇ϕ := Cn(K∪{ϕ}). Contraction
operation is assumed to satisfy the following postulates.

P1 K−̇ϕ is a theory;
P2 K−̇ϕ ⊆ K;
P3 If ϕ 6∈ K then K−̇ϕ = K;
P4 If 6` ϕ then ϕ 6∈ K−̇ϕ;
P5 If ϕ ∈ K then K ⊆ (K−̇ϕ)+̇ϕ;
P6 If ` ϕ↔ ψ then K−̇ϕ = K−̇ψ;
P7 (K−̇ϕ) ∩ (K−̇ψ) ⊆ K−̇(ϕ ∧ ψ);
P8 If ϕ 6∈ K−̇(ϕ ∧ ψ) then K−̇(ϕ ∧ ψ) ⊆ K−̇ϕ.

Revision operation can be defined by Levy identity, i.e. K ? ϕ := (K−̇¬ϕ)+̇ϕ
(cf. Chapter 1 in [9]).

3.2 Logical formulation

As explained in the previous section, in inductive game theory, a unique objective
situation is described by a pair (Πo,mo) of full protocol and memory functions,
while player’s accumulated memories are described by basic experiences ∆TDi .
Thus, an accumulating process of memories for player i can be represented by
a sequence ∆T 0

Di
,∆T 1

Di
, . . . which is obtained from a sequence D0

i , D
1
i , . . . of

his/her objective histories.
Our logical formulation of inductive game theory is given along with the

following steps. We first fix the propositional language L whose atomic formulas



are used to denote statements of the form “a sequence 〈ξ, w〉 may occur”. Thus,
relations over sequences, such as negation and causality, can be represented by
(compound) formulas. We next define a player’s belief state as a belief set, which
consists of beliefs about experienced sequences and some ex-ante beliefs about
causality relations over sequences. For a given sequence ∆T 0

Di
,∆T 1

Di
, . . . of basic

experiences, the corresponding sequence K0
i ,K

1
i , . . . of belief sets is defined by

the revision operator in AGM theory. On the other hand, as explained in the
previous subsection, we can obtain (possibly multiple) i.d.views from a given
basic experiences ∆T j

Di
. In our framework, an i.d.view (Πi,mi) is defined by an

assignment function σ such that σ(〈ξ, w〉) = 1 if and only if 〈ξ, w〉 ∈≺i. Finally,
we show that any assignment σ obtained from ∆TDi is a model for belief set Ki

obtained from ∆TDi . This means that a player’s i.d.view can be regarded as a
personal view constructed from the current belief state.

We here fix the objective situation (Πo,mo) = (W o,
Ao,≺o, (πo, No), ho,mo), sequence D0

i , D
1
i , . . . of domains, and the correspond-

ing sequences ∆T 0
Di
, ∆T 1

Di
, . . . of basic experiences. For convention, we consider

the initial domain D0
i := φ.

The language L is defined as follows.

Definition 4 (Language). The propositional language L is defined by consid-
ering an alphabet Σ that provides a sufficient number of atomic propositions to
denote any sequence in ≺o. That is, we suppose that there is a bijective mapping
∗ : Σ →≺o.

To simplify our discussion, throughout we omit sequences whose length is 1; i.e.,
sequences of the form 〈w〉.

Next, for∆T 0
Di
,∆T 1

D2
, . . ., we define the corresponding sequence of the player’s

belief sets.

Definition 5 (Belief sets). Suppose that ∆T j+1
Di

is obtained from ∆T j
Di

by
adding a sequence 〈ζ, v〉 ∈≺o for each j = 0, 1, . . .. That is, ∆T j+1

Di
:= ∆T j

Di
∪

{〈ζ, v〉}. (If ∆T j+1
Di

\ ∆T j
Di

includes multiple sequences, the following rules are
applied one by one to each of the sequences.) The corresponding sequence of the
player i’s belief sets K0

i ,K
1
i , . . . is inductively defined as follows.

– For each j = 0, 1, . . .,Kj
i is defined to be the deductive closure of the union of

two kinds of sets Kj
i,EX (called experienced beliefs) and Kj

i,CA (called beliefs
about causality), and K0

i is fixed as
R1-1 K0

i,EX := {¬s | s ∈ Σ and the length of s∗ is 2},
R1-2 K0

i,CA := {s→ t | s, t ∈ Σ and t∗ v s∗}.

– For given Kj
i = Cn(Kj

i,EX ∪Kj
i,CA), the belief set Kj+1

i is defined by

R2-1 Kj+1
i,EX := Kj

i,EX\{¬t | t ∈ Σ, and s∗ v 〈ζ, v〉} ∪ {s | s∗ = 〈ζ, v〉}
R2-2 Kj+1

i,CA := Kj
i,CA.



Intuitively, R1-1 represents the player’s initial belief in the impossibility of any
elementary sequence. R1-2 and R2-2 represent the persistent belief about causal-
ity; i.e., if a sequence may occur then its subsequence also may occur. R2-1
represents the belief that any experienced sequence may occur.

For this formulation, the following theorem holds.

Theorem 1. For a given objective situation (Πo,mo) and sequence of basic ex-
periences ∆T 0

Di
,∆T 1

Di
, . . . obtained from a sequence of domains D0

i , D
1
i , . . ., the

corresponding sequence K0
i ,K

1
i , . . . can be characterized by revision operation ?

in AGM theory.

Proof. By Levy identity, it is enough to show that R2-1 in Definition 5 can be
characterized by contraction and expansion operations. That is, for any s ∈ Σ
with s∗ = 〈ξ, w〉, if we define the operation of R2-1 as Kj+1

i := (Kj
i −̇¬s)+̇s, then

−̇ and +̇ satisfy postulates P1–P8 and the condition that (Kj
i +̇s) = Cn(Kj

i ∪
{s}), respectively. Clearly, operation +̇ is an expansion operator in AGM theory.
We here only consider the case for P3 of −̇, since the other cases are trivial or
shown by similar argument. If ¬s 6∈ Kj

i , then ¬t 6∈ Kj
i for any t with t∗ v s∗

because s→ t ∈ Kj
i . Therefore, by definition R2-1, Kj

i −̇¬s = Kj
i . ut

As a corollary of this theorem, any belief set appearing in a sequenceK0
i ,K

1
i , . . .

is consistent. This indicates that our logic formulates a revision process where
the player always constructs consistent belief state from experiences.

Finally, for given basic experiences ∆T j
Di

(j = 0, 1, . . .), we define the corre-
sponding assignment function as follows.

Definition 6 (Assignment function). For each ∆T j
Di

(j = 0, 1, . . .), the cor-
responding assignment σj

i is an assignment satisfying the following conditions.

A1 For any s, t ∈ Σ with t∗ v s∗, if σj
i (s) = 1 then σj

i (t) = 1.
A2 For any s ∈ Σ, if σj

i (s) = 1 and s∗ ∈WD then there exists t ∈ Σ such that
s∗ v t∗ and σj

i (t) = 1.
A3 For any s ∈ Σ such that the length of s∗ is 2, if s 6v 〈ξ, w〉 for all 〈ξ, w〉 ∈

∆T j
Di

then σj
i (s) = 0.

A4 For any s ∈ Σ, if s∗ ∈ ∆T j
Di

then σj
i (s) = 1.

A5 For any s∗ with σ(s) = 1 satisfies conditions ID1, ID2, and ID4 in the
definition of i.d.view (i.e., Definition 3).

Intuitively, A1 and A2 respectively correspond to the basic axioms B1 and B2. A3
means that a sequence consisting of any unexperienced sequence does not appear
in the i.d.view. A4 represents condition ID3 in the definition of i.d.view. A5
stipulates that the set of sequences determined by σj

i satisfies all the conditions
except for ID3 in the definition of i.d.view. By A5, we restrict our attention to
the assignments which can be regarded as an i.d.view.

By condition A4 in Definition 6, the following theorem holds.



Theorem 2. Suppose that an objective situation (Πo,mo) and a sequence of
domains D0

i , D
1
i , . . . in (Πo,mo) are given. For j = 0, 1, . . ., let ∆T j

Di
be basic

experiences and Kj
i be the belief set obtained from ∆T j

Di
. If σj

i is an assignment
function obtained from ∆T j

Di
, then σj

i is a model for Kj
i .

In closing this section, we demonstrate a revision process for player’s beliefs
in terms of our logic in the case of the absent-minded driver game presented in
Example 1.

Example 2. Consider the protocol (Πo,mo
1) described as the left figure in Fig 1.

Propositional atoms and the bijective mapping ∗ from Σ to ≺o are fixed as

s∗1 = 〈(w, e), w1〉,
s∗2 = 〈(w, c), (w, e), w2〉,
s∗3 = 〈(w, c), (w, c), w3〉,
s∗4 = 〈(w, c), w〉,

s∗5 = 〈(w, e), w2〉,
s∗6 = 〈(w, c), w3〉,
s∗7 = 〈(w, c), (w, e), w1〉.

In fact, infinitely many sequences other than those in the list above can be
considered, but for simplicity, we here focus attention on sequences whose length
is less than 3. Let us consider the situation that player 1 repeatedly plays the
game and accumulates experiences. Suppose that the process of accumulation is
D0, . . . , D3, such that D0 := φ, and Dj := Dj−1∪{s∗j} for each j =1, 2, and 3. If
the player’s memory function is assumed to be mR1, the corresponding sequence
of basic experiences ∆T 0

D, . . . , ∆T
3
D is φ, {s∗1}, {s∗1, s∗4, s∗5}, {s∗1, s∗4, s∗5, s∗6}. For

this sequence, the revision process of the belief sets is

K0
Ex := {¬s1,¬s4,¬s5,¬s6},

K0
CA := {s2 → s4 ∧ s5, s3 → s4 ∧ s6, s7 → s1 ∧ s4},

K1
Ex := {s1,¬s4,¬s5,¬s6},

K2
Ex := {s1, s4, s5,¬s6},

K3
Ex := {s1, s4, s5, s6},

where Kj
CA = K0

CA for j = 1, 2, 3. Note that for ∆T 1
D, both ¬s2 and ¬s3 are

derivable, while for ∆T 2
D and for ∆T 3

D, none of s2, s3, s7 or their negations
can be derived. On the other hand, the corresponding sequence of assignment
functions (denoted σj) is defined as

σ0(si) = 0 for i = 1, . . . , 7,
σ1(s1) = 1, σ(si) = 0 for i = 2, . . . , 7,
σ2(s1) = σ2(s4) = σ2(s5) = 1, σ2(s3) = σ2(s6) = 0,
σ3(s1) = σ(s3) = σ3(s4) = σ3(s5) = σ3(s6) = 1.

For both σ2 and σ3, any value is possible for s2 and s7. This results in mul-
tiple i.d.views. For example, in the case that σ2(s2) = 1 and σ2(s7) = 0, the
corresponding i.d.view is the upper figure in Fig 1 (B), while in the case that
σ2(s2) = 0 and σ2(s7) = 0, it is the lower figure in Fig 1 (C).



4 Application to Festival Games

In this section, we apply our logic to a specific inductive game, the festival game,
which was developed by Kaneko and Matsui [15] and Kaneko and Mitra [16]. The
main objective in this section is to formulate the festival games in terms of our
logic, thereby showing the revision process of players’ beliefs. Especially, we focus
attention on the process where players’ prejudice is exposed as discriminatory
behaviors caused by their experiences. For this objective, we first introduce the
definition of festival games following [15] and then present the formulation of
festival games in terms of our logic.

4.1 Festival games

The festival game considers that each of the players belongs to an ethnic group,
and the player’s festival location is chosen. Each player then decides his attitude,
friendly or unfriendly, after observing ethnic groups at his location. Using this
framework, Kaneko and Matsui [15] studied how prejudices, as a fallacious image
of ethnic groups, arise from players’ experiences and how discrimination arises
as an unfriendly attitude.

Let us define the objective situation (Πo,mo) = (W o, Ao,≺o, (πo, N), ho,
mo) for festival games. We consider the number of ethnic groups ε. The set
N = {1, . . . , n} of players is then partitioned into ethnic groups, e1, . . . , eε with
|Nj | ≥ 2 for j = 1, . . . , ε. The set Ao of actions consists of the choices of festival
locations, {f1, . . . , fm}, and the attitude, friendly or unfriendly, denoted by frd
and unfrd, respectively. That is, Ao = {f1, . . . , fm} ∪ {frd, unfrd}.

The festival game consists of two stages: the first stage of choosing festival
locations and the second stage of acting in festivals. Since the first stage is indeed
a simultaneous decision stage, we assume that player i chooses his/her festival
location at the position

〈ξ1, w1
i 〉 = 〈(w1

1, l1), . . . , (w
1
i−1, ln), w2

i 〉

with i ≤ n, and l1, . . . , li−1 ∈ {f1, . . . , fm}. At that position, the player obtains
a memory thread mi〈ξ1, w1

i 〉 = 〈w1
i 〉. This means that the players decide their

festival locations in order of their indices, but each cannot observe the choices
of the other players before making the decision.

In the second stage, player i’s position is given as

〈ξ2i , w2
i 〉 = 〈(w1

1, l1), . . . , (w
1
n, ln), (w2

1, a1), . . . , (w2
i−1, ai−1), w2

i 〉

with i ≤ n, and a1, . . . , ai−1 ∈ {frd, unfrd}. For the position 〈ξ2i , w2
i 〉, player

i obtains a memory thread as mi〈ξ2i , w2
i 〉 = 〈(w1

i , li), w
2
i 〉. Unlike the setting

of Kaneko and Matsui [15], information piece w2
i conveys to player i infor-

mation about the number of participants in festival fj with li = fj for each
ethnicity group. Formally, this information (denoted Ej) is defined by Ej =
(x1, x2, . . . , xε)j , where xk indicates the number of participants in ethnic group



k = 1, . . . , ε. We use notation w2
i = Ej to denote that player i receives ethnic

configuration Ej .
Finally, player i’s position after the second stage is given as

〈ξ3, w3
j 〉 = 〈(w1

1, l1), . . . , (w
1
n, ln), (w2

1, a1), . . . , (w2
n, an), w3

j 〉

with w3
j ∈WE . Here, j = 1, . . . ,m|N | · 2|N | since the resulting position is deter-

mined by the players’ choices of locations (among m alternatives) and attitude
(between frd and unfrd). For the position 〈ξ3, w3

j 〉, player i obtains a memory
thread as mi〈ξ3, w3

j 〉 = 〈(w1
i , li), (w

2
i , ai), w3

j 〉. The information piece w3
j provides

the numerical payoffs.
According to the above setting, ≺o consists of m|N | · 2|N | maximal sequences

of the form 〈ξ3, w3
j 〉 and their subsequences. The set W o is determined by ≺o,

and π is defined such that π(wj
i ) = {i} for any wj

i ∈ W oD and π(w3
j ) = N for

any w3
j ∈WE .

For determination of players’ payoffs ho = (ho
1, . . . , h

o
n), we first introduce

players’ strategies. A strategy of player i (denoted sti) is a pair (li, ri) of choices
for the first and second stages. Here, ri is a function mapping {f1, . . . , fm}×E to
{frd, unfrd}, where E is the collection of all possible ethnicity configurations. We
here note that every player may change strategy in the recurrent plays of the
game (Πo,mo). To indicate strategy st′i that is deviated from sti by replacing
the choice of location li with l′i, we use expression sti[li/l′i]. The replacement of
a player’s attitude is indicated analogously.

Let Si be the set of strategies for player i. For a strategy profile st ∈ S1 ×
· · · × Sn, the player’s payoff is determined by his/her attitude and the mood of
the location he chose. The mood of festival fk with fk = li for player i (denoted
µi) is given by the number of friendly people at li other than player i; that is,
µi(l, r) =

∑
lj=li,j 6=i rj(lj , Ej), where l = (l1, . . . , ln), r = (r1, . . . , rn), and frd

and unfrd are interpreted as 1 and 0, respectively. We then define the payoff
function of player i as hi(li, ri) = ri(li, Ei) · µ(l, r).

4.2 Logical formulation of festival games

To give a logical formulation of the above example, we here extend our logic
introduced in the previous section to capture the concepts of strategies and
payoffs. We first introduce the language as follows:

Definition 7 (Language for festival games). The language L is defined by
fixing the alphabet Σ to denote:

– occurrence of any sequence in ≺o,
– statements of the form “player i chooses fj as his festival location,” denoted
li = fj ,

– statements of the form “the ethnicity configuration at festival fj is Ej” (de-
noted Ej),

– statements of the form “player i chooses frd (unfrd) as his attitude in the
festival he chose,” denoted ai = frd (ai = unfrd, respectively),



– statements of the form “player i’s payoff is x”, denoted payoffi = x.

For readability, we introduce equational expressions instead of single characters
to denote these propositional atoms.

In terms of this language, we next give the definition of the sequence of
player i’s belief sets, K0

i ,K
1
i , . . .. The idea behind our definition is as follows. In

addition to Definition 5, we also consider the player’s belief about his/her current
strategy, experienced ethnicity configurations. Strategy sti = (li, ri) with li = fk,
ri(li, Ej) = frd/unfrd is described as the set of formulas li = fk ∧ (li = fk ∧Ek) →
{frd, unfrd} for all Ek ∈ E, where the expression {frd, unfrd} denotes one of frd
and unfrd. The latest decisions of location and attitude, as well as the resulting
payoff, are uniquely determined in the current belief set.

Definition 8 (Belief sets in festival games). Suppose that ∆T j+1
Di

is ob-
tained by adding a sequence 〈ζ, v〉 ∈≺o for each j = 0, 1, . . .. That is, ∆T j+1

Di
:=

∆T j
Di

∪ {〈ζ, v〉}. Let stji = (fj , ri) be a strategy of player i at the j-th play of
the game. (For convention, we consider st0i := st1i .) The corresponding sequence
of his/her belief sets K1

i ,K
2
i , . . . is defined as follows.

– For each j = 0, 1, . . .,Kj
i is defined to be the deductive closure of the union of

four kinds of sets Kj
i,EX, Kj

i,CA, Kj
i,ST, Kj

i,AUX (where the third and fourth
are respectively called beliefs about strategy and auxiliary beliefs), and K0

i is
fixed as:
R1-1 K0

i,EX := {¬s | s ∈ Σ and the length of s∗ is 2},
R1-2 K0

i,CA := {s→ t | s, t ∈ Σ and t∗ v s∗}
∪{li = fj ↔ ¬li = fk | k 6= j, j ≥ l, k ≥ m}
∪{Ej ↔ ¬Ek | Ej 6= Ek, Ej , Ek ∈ E}
∪{ai = {frd, unfrd} ↔ ¬ai = {unfrd, frd}}
∪{li = fk ∧ Eh → {frd, unfrd} ↔ ¬(li = fk ∧ Eh → {frd, unfrd})}
∪{payoffi = x→ ¬payoffi = x′ | x 6= x′},

R1-3 K0
i,ST := {fj} ∪ {fj ∧ Ej → ai = {frd, unfrd} | Ej ∈ E, {frd, unfrd} is

determined by r0i in st0i },
R1-4 K0

i,AUX := {(s→ payoffi = x) ∧ (s′ → payoffi = x′) → ¬s | x < x′}.
– For given Kj

i = Cn(Kj
i,EX ∪Kj

i,CA ∪Kj
i,ST ∪Kj

i,AUX) the belief set Kj+1
i is

defined by
R2-1 (1) Kj+1

i := Θ \ {¬s | s ∈ Σ and s∗ v 〈ζ, v〉} ∪ {s | s∗ = 〈ζ, v〉},
where Θ is obtained by the following rules R2-1 (2)–(4):

R2-1 (2) if 〈ζ, v〉 = 〈(w1
i , fk), w2

i 〉, then Θ := Kj
i,EX \ {¬li = fk}∪ {li = fk},

R2-1 (3) if 〈ζ, v〉 = 〈(w1
i , fk), w2

i 〉 where w2
i = Ek, then Θ := Kj

i,EX \
{¬Ek} ∪ {Ek},

R2-1 (4) if 〈ζ, v〉 = 〈(w1
i , fk), (w2

i , ai), w3〉 where w2
i = Ek and hi(w3) = x,

then Θ := Kj
i,EX \ {¬ϕ} ∪ {ϕ} where ϕ ≡ li = fk ∧ (li = fk ∧Ek → ai =

{frd, unfrd}) → payoffi = x},
R2-2 Kj+1

i,CA := Kj
i,CA,

R2-3 (1) if stj+1
i = stji [fk/fh], then Kj+1

i,ST := Kj
i,ST \ {¬li = fh} ∪ {li = fh},



R2-3 (2) if stj+1
i = stji [ri/r

′
i], then Kj+1

i,ST := Kj
i,ST \ {¬ρi} ∪ {ρi} where ρi

is formula of the form
∧

k=1,...,m, E∈E(li = fk ∧ E → ai = {frd, unfrd})
determined by ri,

R2-4 Kj+1
i,AUX := Kj

i,AUX.

Intuitively, R1-1 and R2-1 revise the beliefs about experienced sequences, while
R1-2 and R2-2 mean the beliefs about causality. These are essentially the same
as Definition 5, but R1-2 is extended to maintain the uniqueness of choices
of locations, attitude, the resulting payoff, and ethncity configurations. R1-3
and R2-3 revise the current strategy. Finally, R1-4 and R2-4 revise the player’s
strategy if there is another strategy which improves the latest payoff.

We here note that for all the operations in the above definition except for
the belief revision for experienced sequences, every removed formula is identical
to the negation of corresponding added formula. Thus, if we consider the sub-
traction (\) and the addition (∪) to be −̇ and +̇, respectively, these operations
clearly satisfy postulates P1–P8 and the condition that Kj

i +̇ϕ = Cn(Kj
i ∪{ϕ}).

Therefore, by this fact and Theorem 1, we can prove the following theorem.

Theorem 3. For a given objective situation (Πo,mo) in a festival game, se-
quence of basic experiences ∆T 0

Di
,∆T 1

Di
, . . ., and sequence of strategies st0i , st

1
i , . . .,

the corresponding sequence K0
i ,K

1
i , . . . defined by Definition 8 can be realized by

revision operation ? in AGM theory.

Moreover, by our construction of the initial belief set, K0
i , and by this theo-

rem, every belief set appearing in the sequence is guaranteed to be consistent.
We finally define assignment functions that are obtained from given basic

experiences and a player’s strategy.

Definition 9 (Assignment functions). For each ∆T j
Di

and the strategy stji
of the j-th play of the game for player i, the corresponding assignment σj

i is an
assignment function satisfying conditions A1–A5 in Definition 6 and the follow-
ing.

A6 σ(li = fk) = 1 iff (w1
i , fk) appears in the sequence 〈ξj,3, wj,3〉.

A7 σ(Ek) = 1 iff f1, . . . , fm appears in the sequence 〈ξj,3, wj,3〉 and Ek is the
ethnicity configuration derived from f1, . . . , fm.

A8 σ(ai = frd) = 1 iff (wj,2
i , frd) appears in the sequence 〈ξj,3, wj,3〉.

Intuitively, A6 means that player i chooses fj as his/her location. A7 represents
the location configuration. A8 means that player i chooses frd (or unfrd) as the
attitude. For this semantics, the following theorem still holds.

Theorem 4. Suppose that an objective situation (Πo,mo
i ) and a sequence of

domains D0
i , D

1
i , . . . in (Πo,mo

i ) are given. For j = 0, 1, . . ., let ∆T j
Di

be basic
experiences, stji be the strategy of player i, and Kj

i be the belief set obtained from
∆T j

Di
. If σj

i is an assignment function obtained from ∆T j
Di

, then σj
i is a model

for Kj
i .



5 Concluding Remarks

This paper provided a dynamic framework to revise players’ personal views
of their experiences following inductive game theory. In addition, we applied
our framework to festival games to explain how prejudices and discrimination
emerge. In a subsequent paper, we will investigate festival games within our
framework.

We finally comment on our findings. First, our inductive derivation differs
from learning theory approaches in the literature such as those of Fudenberg and
Levine [8]. Standard learning theories do not focus on the learning of structure,
but on the learning of beliefs of opponents’ actions. Second, while making use
of the framework of inductive game theory developed by Kaneko and Kline and
Kaneko and Matsui, our theory focuses on a permanent revision process based on
the player’s experiences. While the developers of inductive game theory focused
on how to construct a player’s view consistent with his experiences, we focused
on how to change a playerfs personal view when he has a new experience.

Finally, the treatment of experiences in our theory slightly differs from the
standard belief revision theory pioneered by Alchourrón, Gärdenfors and Makin-
son [1] (so-called AGM theory). In contrast to AGM theory, our theory distin-
guishes between what a player originally believes and what he logically derives
from the original belief. This is based on our motivation that the players are
not simply a database, but have some logical abilities. This approach is simi-
lar to the belief base theory, which distinguishes between the belief base and
the consequence.5 However, the theory of the belief base focuses neither on the
new observations as the experiences in our theory nor on their accumulation.
Our theory combines the use of accumulated observations and beliefs logically
derived from them for decision-making.

In further research, we will investigate (i) how players with different views
make decisions in our theory and (ii) the direction of various players’ views after
repetitive revision. In standard game theory, players face an identical situation
and know that even when considering incomplete information games. Our theory
is a first step to inquiring whether it is possible to achieve and to analyze mis-
understandings pointed out by Kaneko [11]. In a society in which people do not
necessarily recognize identical environments, we wonder how people harmonize
with each other. This question will drive future research.
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