
Deadlock Detection in the Scheduling of Last-Mile
Transportation Using Model Checking
Koji Hasebe∗

hasebe@cs.tsukuba.ac.jp
Mitsuaki Tsuji†

mits@osss.cs.tsukuba.ac.jp
Kazuhiko Kato∗

kato@cs.tsukuba.ac.jp

∗Department of Computer Science, University of Tsukuba
†College of Information Science, University of Tsukuba

1-1-1 Tennodai, Tsukuba 305-8573, Japan

Abstract—We propose a formal verification method for dead-
lock detection in the scheduling of transportation systems in
which vehicles run in fleets. Especially, as a prime example,
we here consider the last-mile transportation system based on
autonomous vehicles that we are currently developing. One of
the major features of our transportation system is the ability
for vehicles to run in a row without physical connecting points,
which makes it possible to smoothly reorganize the vehicles.
Meanwhile, owing to the rules for rearranging fleets and the
traveling route of vehicles, the system may fall into a deadlock
state where no vehicle can proceed to the next stop. To address
this issue, we propose in this paper a method of detecting
the possibility of a deadlock in a given operation schedule.
For this objective, we use a model checking method to search
all possible states of the system. We also show how to avoid
deadlock by modifying specification based on the well-known
idea of Coffman’s deadlock prevention. Finally, we demonstrate
the usefulness of the proposed method using examples.

I. INTRODUCTION

A next-generation transportation system called a last-mile
mobility system is beginning to be used as a supplement to
conventional transportation systems. This system is a compact
mobile transportation system operating at short to medium
distances, such as those between the stations of conventional
main transportation systems (e.g., train, airplane, and bus
systems), and has departure points and destinations within
relatively small areas. Typical examples are ParkShuttle [1]
running near Rotterdam in the Netherlands and CityMobil2
[2] in La Rochelle, France.

Last-mile transportation systems offer a convenient trans-
portation means especially for elderly people and people with
disabilities because a stop can be finely moved to where there
is passenger demand. Meanwhile, the transport network of
such a system tends to be complicated, and there thus remains
the problem that the speed of passenger transport is lost by
the transfer operation occurring during the movement process.

To improve this situation, the authors are developing a
last-mile public transportation system based on technologies
of semi-autonomous driving (See also [8] for the overview
of our research project.) Our vehicles consist of two types,
those that lead a fleet and are driven manually and those that
are driverless and follow another vehicle. One of the major
features of our system is the ability for vehicles to run in a fleet
without physical connecting points, which makes it possible
to smoothly reorganize the vehicles. With this feature, even if

passengers with different destinations get on the same fleet of
vehicles, by appropriately detaching or reorganizing vehicles
at branch points of the route, the passengers can reach their
destinations without transferring between fleets.

Additionally, by installing a central server to consolidate the
demand of passengers and periodically setting the operation
schedule according to the demand, it is possible to realize
efficient passenger transportation. However, when vehicles
travel according to the determined schedule, some vehicles
may concentrate at some stop points, resulting in a deadlock
state (i.e., a state in which no vehicle can move to the next stop
of the driving route). When arranging a schedule, therefore, it
is necessary to verify in advance that there is no possibility
of a deadlock. Meanwhile, in such a transportation system,
vehicles run in parallel and rules such as the organization
pattern of vehicles become complicated, while the number of
combinations of states of the system becomes large. It is thus
difficult to manually verify all behaviors in the system.

To address this issue, in this paper we present a method
of detecting the possibility of deadlock for a given schedule
by means of model checking. As a verification tool, in this
study we use SPIN [9], one of the most popular model
checkers for verifying the correctness of distributed systems.
For this objective, we first give a model of the target system
in the modeling language called Promela, and then explain
the assumptions to be made and the properties to be verified.
In particular, we discuss the assumption of fairness of each
process (i.e., behavior of a vehicle) and explain how to de-
scribe fairness in the model. We next demonstrate how to avoid
deadlock by modifying specifications when the possibility of a
deadlock is found for a given model. This technique is based
on the well-known idea of deadlock prevention [4]. Finally,
we also demonstrate the usefulness of our method and discuss
limitations due to state explosion using examples.

Even if we limit our attention to the formal verification
of the transportation system, there are a number of methods
for verifying safety-related properties of various systems in
the literature. In particular, there have been many attempts
at verifying the safety of railroads, which are close to our
verification target. However, the issue of deadlock detection in
a system where vehicles form fleets and reorganize frequently,
as in our case, has not been thoroughly investigated. This
issue is expected to become more important as automatic

1

2

3 4

5

Fig. 1. Example of a traffic network (Example 1).

driving techniques develop in the future. Moreover, with the
development of logistics, our method can be applied not only
to passenger transport but also to various other transportation
systems, such as logistics systems in a factory and product
delivery systems.

The paper is organized as follows. Sections II and III give
an overview and the formal model of our target system,
respectively. Section IV explains our verification method.
Section V demonstrates deadlock detection and prevention
using an example. Section VI presents related work. Section
VII concludes the paper and discusses future research.

II. OVERVIEW OF THE TARGET SYSTEM

This section outlines the last-mile transportation system
targeted in this research.

A. Vehicles

Our transportation system consists of vehicles that are able
to run in a row without having physical contact points. (See
also [8] for a more detailed explanation of the system.)

The vehicles are classified according to their function into
two types.

• Lead vehicles: vehicles driven manually at the head of a
fleet of vehicles.

• Trailing vehicles (or trailers, for short): driverless vehi-
cles that run autonomously behind another vehicle.

Vehicles can be arbitrarily connected through electronic con-
trol to a fleet as long as the fleet capacity (i.e., the maximum
number of vehicles that can be connected to a lead vehicle) is
not exceeded.

B. Traffic network

In this transportation system, a traffic network, consisting of
routes on which the vehicles can move and some stops (i.e.,
boarding and alighting points), is determined. A specific ex-
ample of the traffic network is depicted in Fig. 1. (Throughout
this paper, this example is called Example 1.) In the figure,
the routes the vehicles can travel are represented by arrows
while stops are represented by circles and squares. Here, a
stop represented by a circle is a regular stop whereas a stop
represented by a square has branches to multiple routes or

（A）
vehicle pool

platform

（B）

platform

Fig. 2. Forms of a regular stop (A) and node (B).

TABLE I
EXAMPLE OF A SCHEDULE FOR THE TRAFFIC NETWORK OF EXAMPLE 1.

HA 1 → 2 → 3 → 1
HB 3 → 5 → 1 → 4 → 3
HC 4 → 5 → 2 → 4
T1 1 → 2 → 3 → 1
T2 1 → 2 → 3 → 5 → 1
T3 3 → 5 → 2 → 3
T4 3 → 5 → 1 → 2 → 3
T5 4 → 5 → 2 → 4
T6 4 → 3 → 5 → 1 → 4
T7 2 → 3 → 5 → 2
T8 5 → 1 → 2 → 3 → 5

is where a plurality of routes join. The latter type of stop is
called a node.

See Fig. 2 for the forms of a regular stop and node. The
operations of detaching vehicles from a fleet and connecting
new vehicles to a fleet are performed at nodes. For this
purpose, a node provides not only a temporary stopping space
for getting passengers on and off but also a parking space,
called a vehicle pool, for keeping detached vehicles until the
next time they are used. For each node, there is an upper
limit on the number of vehicles that can stop at this stopping
space and the vehicle pool and, as explained later, new vehicles
exceeding this upper limit cannot enter the node.

C. Traveling route of a vehicle

For our transportation system, we assume there is a central
server that aggregates the demand of passengers and periodi-
cally determines the traveling routes (i.e., operation schedule)
of vehicles. An example of the traveling routes of vehicles in
the traffic network of Example 1 is presented in Table I, where
HA, HB, and HC represent lead vehicles while T1,. . . ,T8
represent trailers. (Throughout the paper, this schedule is also
used as the example to explain our method and it is often
referred to as the schedule of Example 1.) In the table, the
initial position of each vehicle is indicated as the starting point
of the path of the route. To show the current traveling route
to passengers, each lead vehicle and trailer has a destination
board.

Here we note that the routes in this example are set so
that passengers can be transported between any two stops
without transfer. For example, if a passenger wishes to move
from Node 2 to 4, she only has to board vehicle HC or T5.
Furthermore, as seen in this example, routes are set according
to the current demand of passengers for each node. For
example, seven vehicles including Node 2 in their routes while

1

2

3 4

5

T2

T7

T1

HA

T6 HB

HC

T3

T5

T8

Fig. 3. A deadlock situation in Example 1.

only two vehicles include Node 4. This assumes a situation
that the demand for passengers is high at Node 2 and low at
Node 4.

D. Reorganization of vehicles

Vehicles autonomously form a new fleet at each node by
the following procedure. When a fleet arrives at a node,
among the trailers of this fleet and in the vehicle pool, the
trailers whose next destination coincides with the destination
of the lead vehicle are considered. Next, among these trailers,
we select trailers that do not exceed the fleet capacity in
descending order of the waiting time. However, owing to the
space limitation, if the fleet cannot enter the next node, that
fleet must wait at the current node.

E. Possibility of a deadlock

In the system described above, vehicles may be unevenly
distributed in the traffic network depending on the traveling
speed of vehicles. Furthermore, when this deviation becomes
large, some vehicles stay at a stop and the system may
eventually fall into a deadlock situation, where no fleet can
move to the next stop because the parking space of the next
stop is full.

An example of the deadlock situation is shown in Fig. 3.
Here, the square drawn beside each node indicates the vehicles
located there. In addition, squares connected by lines represent
vehicles forming a fleet. For example, vehicles located at Node
5 are HC, T3, T5, and T8, among which HC, T3, and T5 form
a fleet. Moreover, we assume that not more than five vehicles
can enter a node at a time owing to the space limitation. In
this setting, as a fleet is located at Nodes 2, 3, and 5 at the
same time, no fleet can move to the next node.

III. FORMAL MODEL OF THE TRANSPORTATION SYSTEM

This section gives formal specifications of our transportation
system. The Promela model shall be presented in the next
section.

A. Vehicles

Let V be the set of vehicles and VL, VT ⊆ V be the sets of
lead vehicles and trailers, respectively, satisfying V = VL∪VT
and VL ∩ VT = ∅. We define a function cap fleet : VL →

T81

2

3 4

5

HA T1

HC

T5

T2

T7

T6HB T3 T4

Fig. 4. Abstracted traffic network of Example 1.

N that returns the maximum number of vehicles of the fleet
containing a given lead vehicle.

B. Traffic network

As shown in Fig. 1, a traffic network can be formally
represented as a graph G = ⟨S,E⟩, where the vertex and
edge sets S and E are respectively the sets of stops and the
routes for the vehicles to move. The sets SR, SN ⊆ S are
respectively the sets of regular stops and nodes. In addition,
functions determining the maximum numbers of vehicles that
can enter at each node at a time and park in the vehicle pool are
defined as max enter : SN → N and cap pool : SN → N,
respectively.

C. Travel route

A travel route for a vehicle can be described as a sequence
e1, . . . , ek ∈ E. Here we define a function pass : SN → 2V

that represents the set of vehicles passing through the nodes.
Additionally, we define a function route : V → 2SN as
route(v) = {s ∈ SN | v = pass(s)}. As mentioned above,
the travel route of each vehicle in our system should be set so
that the passengers can move between any two stops without
transfer. That is, for any s, s′ ∈ SN with s ̸= s′, there exists
v ∈ V such that s, s′ ∈ route(v). Clearly, the schedule of
Example 1 satisfies this condition.

D. Model abstraction

In verification using model checking, model abstraction is
often effective as a means of reducing the number of states
in a target model. Also for our system, model abstraction
is required because a state explosion occurs when modeling
and verifying the system of Example 1. In the deadlock
detection of our transportation system, because vehicles are
not reorganized at regular stops, we omit them in the model.
Therefore, the traffic network of Example 1 is abstracted as
shown in Fig. 4, and we only consider this abstracted system
in the remainder of the paper.

IV. DEADLOCK DETECTION BY MODEL CHECKING

This section explains our deadlock detection method using
Example 1. We use the SPIN model checker as a verification
tool in this paper.

proctype HeadA()
{
 do
 ::(turnHA == true) ->
 cnctTrailer(HA);
 tran(HA);
 dcnctTrailer(HA);
 turnHA = false;
 od
}

Fig. 5. Description of the behavior of a vehicle as a process.

proctype Select()
{
 do
 ::(turnHA == false)
 && (turnHB == false)
 && (turnHC == false) ->

 canTranHA = false;
 canTranHB = false;
 canTranHC = false;

 canTran(HA);
 canTran(HB);
 canTran(HC);

 if
 ::(canTranHA == true)
 -> turnHA = true
 ::(canTranHB == true)
 -> turnHB = true
 ::(canTranHC == true)
 -> turnHC = true
 fi;
 od
}

Fig. 6. Description of the process “Select()” that controls the execution
of processes of vehicles.

A. Specifications in Promela

We explain how to describe the system defined in Section
III with Promela.

In our model, the behavior of each lead vehicle is described
as a process, and the vehicle moves to the next node when the
process is executed. As an example, the process of the lead
vehicle HA written in Promela is shown in Fig. 5.

In addition, the process of each lead vehicle is controlled
by the process Select() that satisfies the fairness proper-
ties described in the next subsection. Process Select() is
defined in Fig. 6. The process Select() examines whether
each lead vehicle can be moved to the next node by the
function canTran(). For example, if the lead vehicle HA can
move, the variable canTranHA will be true, and the variable
turnHA will be true if the move is permitted. The process
Select() nondeterministically selects the lead vehicle that
actually moves from the set of movable vehicles.

inline cnctTrailer(head)
{
 mtype t;

 do
 ::(head == HA) &&
 (currp_HA == h1) &&
 (len(h1_HA) > 0) &&
 (len(trailers_HA) < MAX_LINK) ->
 h1_HA?t; trailers_HA!t
 ::(head == HA) &&
 (currp_HA == h2) &&
 (len(h2_HA) > 0) &&
 (len(trailers_HA) < MAX_LINK) ->
 h2_HA?t; trailers_HA!t
 ::(head == HA) &&
 (currp_HA == h3) &&
 (len(h3_HA) > 0) &&
 (len(trailers_HA) < MAX_LINK) ->
 h3_HA?t; trailers_HA!t
 ::(head == HB) ... -> ...
 ::(head == HC) ... -> ...
 ::else -> break
 od
}

Fig. 7. Specifications of the reorganization of vehicles.

The lead vehicle selected by Select() moves to the next
node. Then, by the function cnctTrailer(), the lead vehicle
disconnects the current training vehicles and chooses vehicles
in descending order of passengers’ waiting time. Fig. 7 shows
the Promela code of function cnctTrailer() that defines
the operation of the reorganization of a new fleet. Here, the
information on the position of each vehicle is treated using a
channel. The channel manages the order of vehicles at a node
in descending order of waiting time by message passing.

B. Fairness constraints

Modeling the behaviors of lead vehicles in a system as
parallel processes may result in starvation owing to the
concentration of executions in specific processes. Here, a
starvation state is a state where even though a vehicle can
move to the next node, some other vehicles continue to move
indefinitely and block the vehicle from moving forever. In the
verification without fairness constraints, a counterexample due
to starvation may be output even for a model in which no
counterexample due to a deadlock is detected. However, such
a counterexample does not need to be considered for an actual
system, except in the case of assuming a special situation such
as the failure of a vehicle.

Therefore, in this paper, verification is performed on the
premise that each process representing the behavior of a lead
vehicle is executed evenly to some extent without considering
a counterexample in the reachability of the vehicle due to such
a starvation condition.

The notion of fairness is often classified into three cate-
gories.

(F1) Unconditional fairness: every process gets its turn in-
finitely often.

(F2) Strong fairness: every process that is enabled infinitely
often gets its turn infinitely often.

(F3) Weak fairness: every process that is continuously en-
abled from a certain time often gets its turn infinitely
often.

To exclude the starvation state, it is necessary to perform
verification by assuming two fairnesses. The first is fairness in
checking whether the lead vehicle can move to the next node.
The second is fairness in the movement of the lead vehicle,
which shall be discussed in Section IV-D.

As explained in Section III, each lead vehicle actually
moves after confirming whether it can move to the next node.
However, if the unconditional fairness of the confirmation
is not satisfied, some of the lead vehicles will repeat the
operation indefinitely, so that the other lead vehicles never get
the opportunity to check whether they are ready to move to
the next node. It is therefore necessary to perform verification
on all the lead vehicles on the assumption of unconditional
fairness that “at any time, each lead vehicle will eventually
confirm whether it can move to the next node.” In our Promela
model, the process Select() presented in Fig. 6 is introduced
to satisfy this assumption. The process Select() sequentially
confirms whether each lead vehicle can move to the next node.
Thus, by executing the process Select() alternately with the
lead vehicle process, it is possible to satisfy the assumption
of unconditional fairness of the confirmation.

C. Safety properties

The property that our system must meet at the minimum is
as follows.

(P1) All passengers can eventually reach their destination
from any stop without transfer.

Therefore, for the property (P1) to be satisfied, it is sufficient
if for any pair of nodes, there exists a vehicle that passes these
nodes infinitely. That is, it is sufficient if the following property
(P2) holds.

(P2) For any s, s′ ∈ SN with s ̸= s′, at least one vehicle
v ∈ V satisfying v ∈ pass(s) and v ∈ pass(s′) moves
forever.

That is, if the property (P2) is satisfied, there is at least
one vehicle that transports any passenger without transfer,
regardless of which two points the passenger travels through.

Property (P2), in other words, guarantees that the schedule
does not require passengers to transfer and that the system
does not fall into a deadlock state. However, this property
is the minimum requirement and stronger properties need
to be satisfied when considering the efficiency of transport
in the system. Here, “efficient” means that all the vehicles
continue moving on the designated route, so that the system
can realize the transport function without waste, and does not
mean that scheduled routes are optimized to minimize, for
example, distance and time. In this sense, in addition to (P2),
we consider the following property (P2′).

 1

2

3 4

5 HC

T5

T7

HB T4 T8

HA T1 T2

T3

T6

Fig. 8. Example of starvation.

(P2′) All vehicles move forever.

D. Safety properties with linear temporal logic formulae

To verify the properties (P2) and (P2′) presented in Section
IV-C, it is necessary to describe them in linear temporal logic
(LTL) so that SPIN can perform verification. However, the
property “for any s, s′ ∈ SN with s ̸= s′, there exists a vehicle
v such that v ∈ pass(s) and v ∈ pass(s′)”, which is a part
of (P2), can be easily verified with methods other than model
checking, and we only describe the property (P2′) in LTL.

To verify whether a vehicle continues circling the route, it
is necessary to select the node of initial position and another
arbitrary node on the route and then verify the property that
the vehicle continues visiting these two nodes alternately. Such
a property can be described by LTL as a kind of response
property (i.e., a property of the form “□(φ→ ♢ψ)” in LTL). .
For example, the logical expression that T1 continues to travel
in the order of Nodes 1, 2, and 3 is as follows.

(L1) □(pos(T1, 1) → ♢pos(T1, 2))
∧□(pos(T1, 2) → ♢pos(T1, 1)),

When verifying (L1) using SPIN and the model obtained so
far, a kind of starvation is detected as a counterexample such
that when a vehicle (say, v) tries to move to the next node
(say, n), other vehicles arrive at node n at that exact time, and
v can never move. Such a counterexample is shown in Fig.
8, where the lead vehicle HC continues to visit Node 2 at the
time that the lead vehicle HA is going to move.

This observation reveals that the unconditional fairness
realized by the process Select() alone is insufficient. That
is, this unconditional fairness just guarantees fairness with
respect to the guarded command that “if the next node is not
occupied, then the vehicle can move there.” Meanwhile, in the
case of a real system, it is hard to imagine circumstances in
which specific vehicles continue to interfere with the progress
of other vehicles indefinitely, and this counterexample is thus
negligible. It is therefore also necessary to assume fairness
regarding the actual movement of the vehicle. Specifically, it is
necessary to introduce strong fairness that “if the lead vehicle
is in a state where it can move, it will certainly move.”

This strong fairness can be described in LTL as follows.

(L2)
∧

v∈VL
(□♢CanTran(v) → □♢Tran(v)),

where the predicate symbol CanTran(v) means that “the
lead vehicle v can move to the next node”, while the symbol
Tran(v) means that “v actually moves to the next node.”
(Here we note that although the predicate symbols are used
above, these statements can be expressed in propositional
formulae.)

From the above discussion, the formula for verifying the
movement of vehicles is of the form “(L2) → (L1)”, but it is
difficult to directly use such a long formula. In general, SPIN
verifies by converting an LTL formula to a Büchi automaton,
but the size of the automaton increases exponentially with the
length of the formula [3]. Meanwhile, because the formula
used to verify the movement of all vehicles at the same time
becomes prolonged in proportion to the number of vehicles,
there is a possibility that the process of converting the LTL
formula to a Büchi automaton does not end in a feasible time.
Indeed, verified as it is with the formula above, conversion
to the Büchi automaton did not end. However, verifying
simultaneously that all vehicles keep moving is equivalent
to verifying that each vehicle keeps moving individually.
Therefore, when the formula is long as in our example, it is
enough to describe the formula individually for each vehicle
and perform the verification one by one.

E. Verification using labels

The model described using Promela presented above defines
the behavior of each lead vehicle as a process, which is to be
repeatedly executed as much as possible. Thus, if no process
can be executed, it can be considered that a deadlock state
in the system occurs. Section IV-D describes the verification
method using the LTL formulae, but SPIN also provides a
verification method with the End label. More precisely, by
specifying the End label in the model described in Promela,
SPIN can judge whether or not the system is in a normal
termination state with the presence or absence of the End label
when the process stops. Employing this technique, we can also
detect a deadlock by verifying the model described without
specifying the End label.

V. VERIFICATION RESULTS

This section presents verification results and discusses the
problem of state explosion in verifying our target system.

A. Results obtained for initial settings

We first considered the abstracted traffic network and
the schedule of Example 1. In addition, we assume that
cap fleet(v) = 3 for all v ∈ VH and max enter(s) = 4
for all s ∈ SN . For this model, we have verified property
(P2′). As explained above, SPIN found the deadlock situation
presented in Fig. 3 to be a counterexample.

B. Deadlock prevention

Regarding the occurrence of deadlocks, it is well known that
a deadlock situation can arise if and only if all the following
conditions hold simultaneously [4].

(D1) Mutual exclusion: only one process may use a resource
at a time.

(D2) Hold and wait: a process already holding a resource may
request a new resource.

(D3) No preemption: only the process holding a resource can
release it.

(D4) Circular waiting: multiple processes form a circular
chain where each process waits for a resource that is
held by the next process in the chain.

Generally, we can prevent deadlocks by arranging the sys-
tem specifications so that one of these conditions does not
hold. In our case, however, it is hard to eliminate the first three
conditions by simple modification of a system. Therefore, in
the remainder of this section, we consider a way of preventing
condition (D4) from being established.

C. Arrangement of model

For (D4) not to be satisfied, we consider the following
arrangements of the model.

(A1) Add a restriction that at each of Nodes 2, 3, and 5, there
must be no situation where at least one lead vehicle is
stopped at the same time.

(A2) For each s ∈ SN and for any v ∈ VH , cap pool(s) −
cap fleet(v) > 0.

(A3) For each node, increase the value of cap pool.

The arrangement of (A1) eliminates the situation in which,
at each of Nodes 2, 3, and 5, a fleet cyclically waits for
the next node to be released. In the case of our model, we
have to consider only the situation that the lead vehicles HA,
HB, and HC are respectively present at Nodes 2, 3, and 5
simultaneously. Meanwhile, arrangements (A2) and (A3) are
related to the number of vehicles that can stop at each node.
This prevents the situation that a fleet cannot move due to
occupation of the next node.

1

2

3 4

5

HB

T6

T7

T2

T3

T8

HC

T3

HA T1 T4

Fig. 9. Detected counterexample after modification (A1).

1

2

3 4

5

HB

T4

T8

T3
T2

T1

HA

T7

HC

T5

T6

Fig. 10. Detected counterexample after modifications (A1) and (A2).

T3

T7

T8

1

2

3 4

5

HA T1

HC

T5

T6 T4 T2 HB

Fig. 11. Detected starvation situation as a counterexample.

D. Verification results after modifications to the model

1) Result of (A1): We verified the model with modification
by (A1) in the first model, and as a result, a deadlock as
shown in Fig. 9 was detected as a counterexample. In this
counterexample, there is no circular waiting of lead vehicles
as shown in the previous counterexample in Fig. 3. However,
owing to the existence of disconnected trailers at Node 2,
another instance of circular waiting occurs, resulting in a
deadlock.

2) Result of both (A1) and (A2): We also verified the model
with modifications by both (A1) and (A2), and as a result,
a deadlock as shown in Fig. 10 was detected again as a
counterexample.

3) Detected starvation: A deadlock did not occur when
upper limits of the numbers of vehicles in vehicle pools at
Nodes 1 to 5 were set as four, six, six, three, and four,
respectively. However, the starvation situation presented in Fig.
11, where only HA continues to move, was detected. This
situation is not due to the fairness condition of the model, but
due to constraints on the number of vehicles that can enter the
node at the same time.

As mentioned earlier, such a situation cannot happen for real
systems, and it should thus be ignored as a false counterexam-
ple. However, a method of efficiently eliminating such false
counterexamples has not been established and its development
remains a future task.

 1

2

3 4

6

5

Fig. 12. More complicated model.

E. Other results

The verification results presented above reveal that deadlock
occurs regardless of other settings when the upper limit of
the number of vehicles remaining at each node is relatively
small. We therefore further conducted various arrangements
including (A3) and verified the cases that these upper limits
were changed at each node.

The results are summarized in Table II. For the verification,
we used a Mac Pro having 3.7GHz Quad-Core Intel Xeon E5
and 64GB memory. In the table, for each case, if a deadlock
situation and a starvation situation are detected, there is a
check mark in the columns of “D” and “S” respectively. These
results indicate that adding restrictions to the upper limits
can reduce the number of occurrences of deadlock in many
cases. However, it is seen that there are deadlocks even if the
constraint is too strong.

F. Problem of the state explosion

Generally, in model checking, the verification time increases
exponentially with respect to the size of the target model and
the LTL formula used in the verification. Therefore, when the
model becomes large, it is necessary to reduce the verification
time using a technique such as abstraction and division of the
model. In response to this problem, in this paper we conduct
a simple abstraction of ignoring regular stops.

However, a state explosion may occur if verification is
performed on a model more complicated than that in the above
example. For example, when verifying the behavior of T1 for
the model shown in Fig. 12, verification did not terminate even
after 1 hour. The depth of the search at that time was about
5.6 million, the number of states was about 600 million, and
the amount of memory used was 120 GB. The solution we
are currently considering is to describe only the circulation
route of the target vehicle in the model when verifying the
movement of each vehicle. For other vehicles, we describe
only the movements for travel on this route, and abstract the
actions for traveling elsewhere. The details of this method are
the subject of future work.

TABLE II
VERFICATION RESULTS OF VARIOUS CASES.

The values of max enter Modifications Num. of states Execution time (sec) Num. of counterexamples D SNode 1 Node 2 Node 3 Node 4 Node 5

4 4 4 4 4

– 14620031 45.7 348 ✓
(A1) 12661 0.04 4 ✓
(A2) 13777 0.05 2 ✓

(A1),(A2) 12661 0.04 4 ✓

5 5 5 5 5

– 3.9e+08 1.3e+03 8239 ✓
(A1) 12661 0.04 4 ✓
(A2) 3165420 4.02 489 ✓

(A1),(A2) 2756053 3.46 717 ✓

6 6 6 6 6

– 1.0e+10 4.2e+03 0
(A1) 6.8e+08 2.7e+03 36586 ✓
(A2) 4.8e+08 2.4e+03 23912 ✓

(A1),(A2) 4.2e+08 1.7e+03 29410 ✓
4 6 6 3 5 – 6.5e+08 3.4e+03 0
4 6 6 2 6 – 7.7e+08 3.1e+03 1 ✓
4 6 6 3 4 – 4.5e+08 1.8e+03 1 ✓

VI. RELATED WORK

A number of studies on deadlock detection have been
conducted by taking formal approaches. Deadlock detection
for railroads was studied in [13] and [12]. In these papers, the
authors modeled the operation of trains on actual railway lines
and described the basic patterns of and solutions to deadlock.
To detect and prevent deadlocks in a flexible manufacturing
system (FMS), [6] proposed a method that uses Petri nets.
Similar to [6], in [14] and [11], the FMS was modeled using
Petri nets, but the transitions falling into a deadlock were found
using a reachability graph.

Meanwhile, our research proposes a deadlock detection
method for last-mile transportation systems. Unlike a railroad
or FMS, such systems have complicated behaviors where
vehicles can form fleets and the formation is frequently
reorganized. In this sense, the problem of deadlock addressed
in this research is not that of railroads and the FMS that have
been dealt with so far.

VII. CONCLUSIONS AND FUTURE WORK

We proposed a deadlock detection method for last-mile
transportation systems. In particular, using model checking,
it was possible to comprehensively verify the behavior of the
system that is complicated by the reorganization of fleets and
the timing of movements of the vehicles. In addition, we
discussed specific issues to be solved in actual verification,
such as fairness assumptions required for verification and how
to describe the safety properties using LTL. Although this
paper treated our last-mile transportation system, the method
proposed in the paper is expected to be available not only
to the transportation system but also to various objects. In
particular, it is thought that a system responsible for logistics
involving unmanned traveling is essentially the same as the
transportation system dealt with in this research.

In future work, we plan to address issues such as a method
of dividing and verifying the model to make it possible to
verify more complex systems.

REFERENCES

[1] http://www.2getthere.eu/projects/rivium-grt/
[2] http://www.citymobil2.eu/
[3] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking, The MIT

Press, 1999.
[4] E. G. Coffman, JR., M. J. Elphick, and A. Shoshani. System Deadlocks,

ACM Computing Surveys, vol.3, issue 2, pp.67–78, 1971.
[5] S. Colin, A. Lanoix, O. Kouchnarenko, and J. Souquières. Using CSP∥B

Components: Application to a Platoon of Vehicles, 13th International
Workshop on Formal Methods for Industrial Critical Systems, pp.103–
118, 2009.

[6] J. Ezpeleta, J. M. Colom, and J. Martı́nez. A Petri Net Based Deadlock
Prevention Policy for Flexible Manufacturing Systems, IEEE Transac-
tions on Robotics and Automation, vol.11, issue 2, pp.173–184, 1995.

[7] S. Gnesi, G. Lenzini, D. Latella, C. Abbaneo, A. Amendola, and P.
Marmo. An Automatic SPIN Validation of a Safety Critical Railway
Control System. The International Conference on Dependable Systems
and Networks (DSN 2000), pp.119–124, 2000.

[8] K. Hasebe, K. Kato, H. Abe, R. Akiya, and M. Kawamoto. Traffic
Management for Last-Mile Public Transportation Systems Using Au-
tonomous Vehicles. 3rd IEEE International Smart Cities Conference
(ISC2 2017), 8 pages, 2017.

[9] G. J. Holzmann. The Model Checker SPIN. IEEE Transactions on
Software Engineering, vol.23, issue 5, pp.279–295, 1997.

[10] M. Kamali, L. A. Dennis, O. McAree, M. Fisher, and S. M. Veres.
Formal Verification of Autonomous Vehicle Platooning, ArXiv e-prints,
2016.

[11] H. Lei, K. Xing, L. Han, F. Xiong, and Z. Ge. Deadlock-free scheduling
for flexible manufacturing systems using Petri nets and heuristic search.
Computers & Industrial Engineering, vol.72, pp.297–305, 2014.

[12] F. Mazzanti, G. O. Spagnolo, S. D. Longa, and A. Ferrari. Deadlock
Avoidance in Train Scheduling: A Model Checking Approach. 19th
International Workshop on Formal Methods for Industrial Critical
Systems (FMICS 2014), pp.109–123, 2014.

[13] F. Moller, H. N. Nguyen, M. Roggenbach, S. Schneider, and H. Treharne.
Defining and Model Checking Abstractions of Complex Railway Models
Using CSP∥B, Haifa Verification Conference (HVC2012), pp.193–208,
2013.

[14] M. Uzam. An Optimal Deadlock Prevention Policy for Flexible Man-
ufacturing Systems Using Petri Net Models with Resources and the
Theory of Regions. International Journal of Advanced Manufacturing
Technology, vol.19, pp.192–208, 2002.

[15] K. Winter and N. J. Robinson. Modeling Large Railway Interlockings
and Model Checking Small Ones. 26th Australasian Computer Science
Conference (ACSC2003), pp.309–316, 2003.

[16] M. E. Zaher, J. M. Contet, P. Gruer, F. Gechter, and A. Koukam.
Compositional Verification for Reactive Multi-Agent Systems Applied
to Platoon non Collision Verification. Studia Informatica Universalis,
vol.10, no.3, pp.119–141, 2012.

