
Playing Geister by Estimating Hidden Information
with Deep Reinforcement Learning

Keisuke Tomoda
s2120620@s.tsukuba.ac.jp

Koji Hasebe
hasebe@cs.tsukuba.ac.jp

Department of Computer Science
University of Tsukuba

1-1-1, Tennodai, Tsukuba 305-8573, Japan

Abstract—A number of attempts have been made to solve
imperfect information games using reinforcement learning. Since
it is not easy to apply reinforcement learning directly to imperfect
information games, methods, such as Neural Fictitious Self-
Play (NFSP), have been proposed. In this study, we investigate
an alternative method to solve imperfect information games
using reinforcement learning. The basic idea is to learn from
self-playing the perfect information games where the hidden
information in the original game is revealed. Based on the policy
obtained from this learning, the current state of the game is
estimated from the opponent’s moves and the own best move.
We applied the proposed method to an imperfect information
game called Geister and evaluated its effectiveness through
experiments. As a result, we obtained that the winning rate was
higher than that of the direct learning of imperfect information
games using reinforcement learning.

Index Terms—Imperfect information game, Reinforcement
learning, Geister.

I. INTRODUCTION

A number of computer programs (agents) have been pro-
posed for playing various games. These studies range from
perfect information games, such as Go and chess, to imperfect
information games, such as poker [8] [3]. Some of them have
even outperformed professional human players.

Reinforcement learning is often used in developing such
programs. It is known that the method of reinforcement
learning is effective for solving perfect information games.
However, the optimal solution diverges for imperfect informa-
tion games (cf. [6]). To address this problem, the study [6]
proposed a method called Neural Fictitious Self-Play (NFPS)
and applied it to poker. This method integrated a well-known
learning model for Nash equilibrium with a technique of
learning from self-play. This method directly learns from
playing imperfect information games. However, to solve im-
perfect information games, an alternative approach, not yet
thoroughly studied, is to use the results learned from the
perfect information game obtained by revealing the hidden
information.

In this study, we propose a method for solving imperfect
information games by estimating hidden information using
reinforcement learning. The basic idea behind the proposed
method is to learn from self-playing the perfect information
games where the hidden information in the original game is
revealed. When playing a game, the policy (i.e., function that

determines the probability distribution over actions that yield
the highest value in a given state) obtained from this learning
is used to estimate the current state and the own best move by
assuming that the current state is where the opponent’s move is
rational. To evaluate the effectiveness of the proposed method,
we choose Geister as a target game, a chess-like imperfect
information game consisting of red and blue pieces whose
colors are undisclosed to the opponent.

We evaluated the proposed method through the following
experiments. First, to develop an agent (named PM) based
on the proposed method, we employed a deep reinforcement
learning framework called HandyRL [1] to learn the policy
for a fully informed Geister where the colors of all pieces
are exposed. We implemented an algorithm based on this
function for estimating the current board state (with hidden
piece colors) of the original Geister from the opponent’s move.
We also implemented an algorithm for determining the most
highly evaluated move on the estimated board state. As a
comparison, we obtained a policy by learning directly the
original Geister with imperfect information and developed an
agent (named II) deciding the moves based on this function.
These two agents played against an agent (named RDM) that
randomly chooses moves and an agent (named MCTS) based
on the Monte Carlo tree search [5]. As a result, the agent PM
won 93% and 62% against RDM and MCTS, respectively.
Additionally, as a result of playing PM and II directly against
each other, the winning percentage of PM was 64%.

These results suggest that the proposed method is effective
for solving imperfect information games using reinforcement
learning. However, the advantage of the proposed method over
NFSP, the dependency on a specific learning framework, and
its applicability to other games have not been investigated,
which are subjects for future work.

The rest of this paper is organized as follows. Section 2
presents related work. Section 3 overviews the rules of Geister.
Section 4 describes the proposed method. Section 5 presents
the experimental results. Finally, Section 6 concludes the paper
and presents future work.

II. RERATED WORK

A number of attempts have been made at developing agents
to play games. In perfect information games, such as chess [4]



and Go [10], agents have been developed that outperformed
human professional players.

One of the best known such studies on perfect information
games is that of Silver et al. [11]. They proposed a program
called AlphaZero based on the deep reinforcement learning
that makes it possible to learn from self-play in various perfect
information games. They demonstrated that the agents played
games sophisticatedly without any training data or game-
specific approaches.

The results of the study [11] suggest that reinforcement
learning is useful for solving games. However, in general,
applying reinforcement learning directly to imperfect informa-
tion games can lead to the problem that the solution diverges
during the learning process. A study that addressed this issue
is the work of Heinrich et al. [6]. As mentioned in the
previous section, they proposed NFSP that enables learning
an approximate Nash equilibrium from self-play in imperfect
information games. Other studies include the work by Brown
et al. [3]. Their method is based on the counterfactual regret
minimization (CFR) [12], an algorithm for computing Nash
equilibrium in an extensive-form game. Generally, CFR is
difficult to adapt directly to games with a large number of
states. To address this issue, they introduced a state reduction
technique. The main difference between these studies and ours
is that our approach is to solve a game through learning from
perfect information games, while their methods directly learn
from imperfect information games.

Osawa [9] proposed an algorithm for estimating hidden
information from other players’ game actions in a card game
called Hanabi. The experimental results showed that esti-
mating hidden information increases the game scores. Their
estimation algorithm assumes that other players act according
to a known strategy. However, our proposed method does
not limit the strategy of the opponent. It chooses a move by
estimating the opponent’s private information.

III. OVERVIEW OF GEISTER

A. Initial Setup

Geister is a two-player chess-like game where players take
turns moving their pieces on a 6×6 board, as shown in Figure
1. In the board, the left and right squares (indicated by an icon
in Figure 1) at the far end of the board, as seen by each player,
are special squares called “exits.” Each player has initially
eight pieces, four of which are blue and the other four are red.
The colors are visible only to the owner of the pieces. Before
starting the game, each player is free to place the eight pieces
she owns in the 2 × 4 area of the center of the front of the
board (marked gray in Figure 1 for the player on the bottom).
An example of the initial board setting from the viewpoint of
the player on the bottom is shown in Figure 2.

B. Rules

In the game, the first and second players take turns moving
one of their pieces. At each turn, the move is to an adjacent
square in either the vertical or horizontal direction, unless it
is outside the board or in a square that is already occupied by

Fig. 1. Board of Geister Fig. 2. An example of the initial board
setting from the viewpoint of the player
on the bottom.

her own piece. If a piece is moved to a square that belongs to
an opponent, the opponent’s piece is removed from the game
and may not be reused. Furthermore, each player can make a
special move called “escape” on her next turn if she has her
pieces in one of her exits.

C. Goal

The first player who achieves any of the following wins.
1) Escape one of her pieces.
2) Take all the opponent’s blue pieces.
3) The opponent takes all her red pieces.

IV. PROPOSED METHOD

A. Outline

The agent playing Geister developed by the proposed
method consists of the following three components.

1) Policy for the fully informed Geister (i.e., the Geister
where the colors of all pieces are revealed).

2) Algorithm for estimating hidden information in the
current board.

3) Algorithm for deciding the next move.
The policy was obtained by applying deep reinforcement

learning to the fully informed Geister. Based on this function,
an algorithm for estimating the current board state from the
opponent’s moves in a play in the original (i.e., including
hidden information) Geister is developed. The idea behind our
estimation method is to assume the rationality of the opponent.
It means that the higher the evaluation of the opponent’s
move in a board state, the higher the likelihood of that
state. In the previously estimated board state, the most highly
evaluated move is chosen using the policy. The details of these
components will be explained in the following subsections.

B. Learning Geister with Perfect Information

Our method learns a policy from fully informed Geister to
estimate the value of a move in a board state. We employ
deep reinforcement learning to learn the policy of the Geister
with perfect information. Here, the policy is a probability
distribution of the moves to be chosen for a given board
state. With sufficient learning, the resulting policy will be a
distribution so that the values of the moves that lead to winning
are larger and vice versa. Thus, the policy can be regarded as
the value of the moves on a given board state. Since the total
value and variance of the policy may vary depending on the



given board, which may affect the decision of moves, we use
the normalized distribution of the policy for each board.

C. Estimation of Hidden Information

We present the formal description of our estimation method
for hidden information as follows. Here, the symbol R denotes
the set of real numbers.

First, let Pi (for i = 1, 2) be the set of pieces owned by
player i, and let P = P1 ∪ P2. Assume that each piece is
assigned a unique ID. The set of coordinates of the board is
denoted by C = {(1, 1), . . . , (6, 6)}. Let posi : Pi → C and
coli : Pi → {blue, red} be the functions that determine the
positions and colors of each piece of player i on the board,
respectively. A state of the board in the game is represented
as quadruple ⟨pos1, pos2, col1, col2⟩. Let S be the set of all
possible states of the board. The subjective state of the board
from the viewpoint of player i can also be represented as a
triple ⟨pos1, pos2, coli⟩. This is because the color of player
j(̸= i)’s piece is unknown. We denote the set of subjective
boards for player i by Si. According to the game rules, the
set of possible moves (actions) for a given state s ∈ S is
uniquely determined. Let us denote this set as As.

As mentioned earlier, the value of a move a ∈ As at a state
s ∈ S is determined by the normalized value of the policy
function. Let us denote this function by pol : A× S → [0, 1].

With the above setting, assume that in the n-th turn, the
subjective state for player i is si ∈ Si and the opponent makes
a move a ∈ As. The function Ei : Si × As × Colj → R
determining the certainty that the colors of the opponent’s
pieces is colj is defined as follows.

E(si, a, col) := γ ·
n−1∑
k=0

E(ski , a
k, col) + pol(a, si).

In the past moves up to the state si, the k-th state transition
is assumed to be ⟨ski , ak⟩. Additionally, γ is a constant that
represents the weight for past estimates.

D. Decision of the Next Move

The method for player i to determine the move in state s is
as follows. First, find the value of each a ∈ As in each si ∈ Si

using the policy pol. Additionally, likelihood of each possible
state si ∈ Si from the viewpoint of player i (denoted by esi )
is evaluated using the function E. In practice, the likelihood
is calculated for all possible combinations of colors of the
opponent’s pieces. Finally, based on these results, the action
is obtained by calculating the following value:

argmax
a∈As

pol(a, si) · esi .

V. EXPERIMENTAL EVALUATION

A. Basic Settings

To evaluate the effectiveness of the proposed method for
solving imperfect information games, we conducted the fol-
lowing experiments. First, we implemented an agent named
PM based on the proposed method described in Section IV. For
comparison, we implemented an agent named II that directly

Fig. 3. Change in the winning rate in the plays against RDM

learns a policy for the imperfect information game using deep
reinforcement learning, and chooses a move with the highest
evaluation by the policy for the state of the board in each
turn. As a common opponent for comparing the performance
of PM and II, we also implemented an agent named RDM
that randomly selects a move at each turn and an agent named
MCTS that decides a move using Monte Carlo tree search.

We evaluated the performance of agents PM and II by
comparing their winning rates against RDM and MCTS,
respectively. Here, we evaluated the winning rate for each case
by measuring the average of 100 plays. To evaluate the impact
of learning duration on the winning rate, we measured every
9 hours during the learning progress. Here, at the beginning
(i.e., when the learning period is 0), the agent has not learned
anything and chooses a random action.

As a reinforcement learning framework, we used HandyRL,
an implementation of the distributed reinforcement learning
algorithm based on IMPALA [7]. For training, we used a
machine equipped with a XeonE5-1620 CPU, 192 GB of
memory, and two RTX2080Ti GPUs. In the implementation of
MCTS, the root node is evaluated 300 times where nodes are
selected according to UCB1 [2]. In this case, the color of the
hidden opponent’s piece is randomly assumed from possible
combinations and evaluates a node.

B. Results

Figure 3 shows the change in the results of PM and II
playing against RDM, as a function of the length of the
learning time. Similarly, Figure 4 shows the change in the
results of PM and II playing against MCTS. Furthermore,
Figure 5 shows the change in the winning rate of PM when
PM and II directly play against each other, as a function of
the length of the learning time.

As shown in Figure 3, both PM and II maintain a constant
high winning rate regardless of the learning duration when
playing against RDM. This result indicates that both PM and II
could maintain choosing “good” moves over random choices.
Even though PM’s board estimation assumes the rationality



Fig. 4. Change in the winning rate in the plays against MCTS

of the opponent, it has a high winning rate against irrational
opponents, such as RDM. This may be because good moves
that lead to winning are common to some extent in all board
states.

As shown in Figure 4, in the play against MCTS, the win-
ning percentage of II was highest after 36 hours of learning,
and then gradually decreased as the learning period increased.
On the other hand, it was confirmed that the winning rate
of PM increased with the increase in the learning duration.
Furthermore, the final winning rate of PM against MCTS
was about 33% higher than that of II. This result indicates
that PM’s board estimation worked effectively against MCTS
because MCTS rationally choose their moves. When learning
directly from an imperfect information game, such as II,
the problem of policy convergence is known, and a similar
phenomenon is observed.

As shown in Figure 5, when PM and II directly play against
each other, the winning rate of PM is eventually 64%. This
suggests that PM’s board estimation is effective against II that
chooses the moves rationally, similar to the case of playing
against MCTS. In our experiment, PM performs better than II
with sufficient learning time.

VI. CONCLUSIONS AND FUTURE WORK

This study presents a method for solving imperfect informa-
tion games using deep reinforcement learning. The idea behind
our method is to learn the optimal policy by self-play in the
perfect information game, where the hidden information in the
original game is revealed. Based on this policy, the proposed
method estimates a state with imperfect information so that
the opponent’s move is most reasonable as the real state, and
chooses the most effective move on the estimated state. We
implemented an agent playing Geister, a kind of imperfect
information game, and compared its performance with that of
an agent developed by applying direct reinforcement learning
to imperfect information games. The experimental results
showed that the proposed method performs better than the

Fig. 5. Change in PM’s winning rate when PM and II directly play against
each other

agent based on the Monte Carlo tree search that chooses a
rational pointing move.

The performance of the proposed method was verified for
one type of game and learning model. In future studies, we will
evaluate the effectiveness of the proposed method for various
games and learning models.

REFERENCES

[1] Website of HandyRL:https://github.com/DeNA/HandyRL.
[2] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite time analysis of the

multiarmed bandit problem. Machine Learning. vol.47, pp.235-256,
2002.

[3] N. Brown and T.Sandholm. Superhuman AI for multiplayer poker.
Science, vol.365, pp.885-890, 2019.

[4] M. Campbell, A. J. Hoane and F. Hsu. Deep Blue. Artificial Intelligence
vol.134, pp.57-83, 2002.

[5] R. Coulom, Efficient selectivity and backup operators in monte-carlo tree
search. In International conference on computers and games, pp.72-83,
2006.

[6] J. Heinrich and D. Silver. Deep Reinforcement Learning from Self-Play
in Imperfect Information Games. arXiv:1603.01121, 2016.

[7] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y.
Doron, V. Firoiu, T. Harley, I. Dunning, S. Legg, and K. Kavukcuoglu.
IMPALA: Scalable distributed Deep-RL with importance weighted
actor-learner architectures. arXiv:1802.01561, 2018.

[8] M. Moravčı́k, M. Schmid, N. Burch, V. Lisy, D. Morrill, N. Bard, T.
Davis, K. Waugh, M. Johanson and M. Bowling. Deepstack: Expert-
level artificial intelligence in heads-up no-limit poker. Science, vol.356,
pp.508-513, 2017.

[9] H. Osawa. Solving hanabi: Estimating hands by opponent’s actions
in cooperative game with incomplete information. Workshops at the
Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[10] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M.
Lanctot, et al. Mastering the game of Go with deep neural networks and
tree search. Nature, vol.529, pp.484-489, 2016.

[11] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M.
Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan and
D. Hassabis. A general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play. Science, vol.362, pp.1140-1144,
2018.

[12] M. Zinkevich, M. Johanson, M. Bowling and C. Piccione. Regret Min-
imization in Games with Incomplete Information, neural information
processing systems, pp.1729-1736, 2008.


