
Identifying Playstyles in Games with
NEAT and Clustering
Yu Iawasaki

iwasaki@mas.cs.tsukuba.ac.jp
Koji Hasebe

hasebe@cs.tsukuba.ac.jp

Department of Computer Science, University of Tsukuba
1-1-1, Tennodai, Tsukuba 305-8573, Japan

Abstract—In the research of agents playing computer games,
attempts have been made to create agents with particular
playstyles. A typical approach adopted in previous studies is to
define the reward functions so that the agent has the desired
playstyle. However, based on this approach, it is difficult to
identify other playstyles that have not been specified in advance.
The purpose of this paper is to create agents with playstyles
by combining a genetic algorithm called NeuroEvolution of
Augmenting Topologies (NEAT) and clustering based on the
logs of gameplay by agents. Here, individuals of NEAT are
classified in some species by clustering according to the play log
and crossed with the same species. We evaluated our method
by an experiment with a roguelike game and observed that
multiple playstyles were identified. Furthermore, by comparing
the proposed method with the method using only NEAT, it was
shown that the bias in the number of individuals among playstyles
can be suppressed.

Index Terms—Game AI, Playstyle, NEAT, Clustering.

I. INTRODUCTION

Studies on computer programs (agents) that play games
are actively conducted. Also, numerous studies have been
conducted to achieve other goals than the pure strength [1],
for example, entertaining humans or imitating human plays.
Recently, attempts have been made to create various types of
agents with different playstyles [2]–[4]. Here, the playstyle
means a set of characteristic actions of the player [5].

A typical approach adopted in previous studies is to define
the reward functions beforehand so that the agent has the
desired playstyle. However, based on this approach, only
the style assumed in advance can be identified. Thus, as an
application of this method, to use the created agents for test
play, it is necessary to identify playstyles that are not expected
by game designers and engineers.

To address this issue, the purpose of this paper is to identify
agents with multiple playstyles without predefining styles.
The basic idea is to combine an optimization method using
a genetic algorithm called NeuroEvolution of Augmenting
Topologies (NEAT) [6] with clustering related to the logs of
games played by agents. In this method, NEAT searches for
many individuals who highly adapt to the game (i.e., indi-
viduals who play the game well) by mutation and crossover.
Furthermore, by clustering groups based on the individuals’
play logs in each population, those who perform similarly
are grouped into the same cluster. This allows us to search
for multiple playstyles that are optimized for the game, while

protecting against excessive natural selection by dividing them
into species for similar playstyles.

In this study, we evaluated the proposed method through
an experiment with MiniDungeons [2], which is a kind of
roguelike game. We designed a simple stage of the game as
well as a single reward function that determined the total score
of the game. From the experiment, we observed that four
playstyles were identified by the proposed method. Further-
more, a comparative experiment was conducted between the
proposed method and a case where only NEAT was used. As
a result, the bias in the number of individuals among different
playstyles can be suppressed. This suggests that the use of
clustering would help identify multiple playstyles in games.

Our proposed method is considered to have multiple ap-
plications. First, agents with playstyles will help to efficiently
discover potential bugs in test play in game development. Also,
games, where enemies with different playstyles appear, will
make human players more fun.

This paper is organized as follows. Section II presents
related work. Section III gives formal definitions of games
and playstyles. Section IV describes our proposed method.
Section V presents the experimental results. Finally, Section
VI concludes the paper and presents future work.

II. RELATED WORK

Tychsen et al. [5] is one of the earliest studies on playstyle
in games. They defined the notion of playstyle as a set of
distinct behaviors of players.

Holmgård et al. [2], [3] gave a model of the evolution of
player’s decision making and created five agents with different
playstyles through learning. They created agents specified
by linear networks and used an evolutionary strategy. They
defined reward functions for these playstyles respectively.

Tampuu et al. [4] created two playstyles of cooperation and
hostility on the hockey game called Pong of Atari 2600. These
playstyles were implemented by defining two distinct reward
functions based on Deep-Q-Network [7].

As discussed above, these studies have adopted the same
approach that defines reward functions so that the agent has the
intended playstyle. These agents are applied for level design,
automated play testing [2], and for opponents who attract
humans. However, because this method assumes the playstyle
in advance, there is a possibility that biases affect due to game
designers’ and engineers’ preconceptions. On the other hand,



our method does not define any specific playstyles in advance
thereby identifying unexpected playstyles.

III. DEFINITION OF PLAYSTYLE

In this section, we give a formal definition of the playstyle.
First, we define games as complete information extensive-form
games in game theory (cf. [8]). An extensive-form game is
a situation in which one or more players make consecutive
decisions according to a policy and each player obtains a
reward according to the result. However, for the sake of
simplicity, we only consider games with a single player.

Definition 1. A complete information extensive-form game is
a tuple (A,H,Z, χ, σ, u), where:
• A is a set of actions;
• H is a set of non-terminal choice nodes of game tree;
• Z is a set of terminal nodes of game tree, disjoint from
H;

• χ : H → 2A is the action function, which assigns to each
choice node a set of possible actions;

• σ : H × A → H ∪ Z is the successor function, which
maps a non-terminal node and an action to a new node;

• u : Z → R is the reward (or, utility) function.
Here, R denotes the set of real numbers.

For a given game G = (A,H,Z, χ, σ, u), a strategy is
defined as follows.

Definition 2. A strategy s : H → A is a function for a player
to choose an action a ∈ A at each node h ∈ H .

In the following, S is used to denote the set of strategies.
Also, we use the word “play log” that means a log of gameplay
by an agent, represented as a metric (n-tuple) of real numbers.
For example, each dimension of a vector includes the number
of collected coins or the number of killed enemies. The
variable y ∈ Rn (n ≥ 1) is used to indicate a play log and the
symbol Y denotes the set of play logs.

Next, the play function is defined below.

Definition 3. A play function p : S → Y is a function that
returns a play log for a given strategy s.

That is, play function determines the history of players’
behaviors in games according to its strategy.

Next, the notion of a valid solution is defined as follows.

Definition 4. Let s be a strategy for a game G. Let z be a
terminal node in G according to s. For a given θ ∈ R, s is a
valid solution of G if u(z) > θ. Here, θ is called a threshold
of the valid solution.

The symbol S∗ is used to denote the set of valid solutions.
Finally, the playstyle is defined as follows.

Definition 5. Let S∗ be the set of valid solution of a game G
for a given threshold θ. A list (S∗1 , . . . , S

∗
c ) with S∗i ⊂ S∗ (for

i = 1, . . . , c) is called a list of playstyles of G with granularity
c ≥ 1 if it satisfies the following conditions.
• S∗i ∩ S∗j = ∅ (∀i, j ≤ c);

• ‖ 1
|S∗

i |
∑

s∈S∗
i
p(s)− 1

|S∗
j |
∑

s∈S∗
j
p(s)‖ ≥ δb (∀i, j ≤ c);

• ∀sa, sb ∈ S∗i (‖p(sa)− p(sb)‖ ≤ δi) (∀i ≤ c);

where δb ∈ R is the threshold of distance between playstyles
and δi ∈ R is the threshold of distance between strategies of
the playstyle itself.

IV. PLAYSTYLE GENERATION METHOD

In this section, we present our proposed method to generate
agents with multiple playstyles, combining NEAT with a
clustering technique. NEAT [6] is a genetic algorithm that
optimizes the structures and weights in feedforward neural
networks. Population evolves to get higher values of the fitness
function with mutation, crossover, and selection. Notably,
NEAT provides a mechanism called speciation. The specia-
tion combines individuals with similar topologies as a group
(spices) to protect them with new characteristics from natural
selection. The index of species classification is the genetic
distance δ(i, j), which represents the topological difference
between individuals i and j. NEAT selects individuals solely
based on the fitness and the topology similarity and does
not consider the game log, which is used to characterize the
playstyle. Therefore, individuals who are slightly inferior are
eliminated, although they can be sufficiently recognized as
individuals with different playstyles.

To solve this problem, we introduce an algorithm called
C-NEAT obtained by incorporating a clustering method into
NEAT. In each population of mating, clustering is performed
based on the individuals’ play log. Here, close species are
mated so that the optimization is not aggregated in one
direction by a single fitness function.

Algorithm 1 C-NEAT
1: function C-NEAT(T, k)
2: population, species, fitnesses ← init()
3: for t← 1, T do
4: population ← reproduce(population, species, fitnesses)
5: fitnesses ← evaluate(population)
6: cluster ← clustering(k, population)
7: species ← speciate(population, species, cluster)
8: end for
9: end function

The detailed algorithm of C-NEAT is presented in Algo-
rithm 1. In Line 5 each individual plays the game and sets
its fitness based on the sum of the rewards obtained until the
end condition. Here, the variables “population” and “fitnesses”
indicate the arrays of individuals and fitness, respectively. At
this step, each individual receives and stores the play log,
which includes information such as the number of events and
the history of actions. This play log is in the form of vectors
or matrices.

In Line 6, individuals are classified into k clusters with
clustering methods, such as k-means, based on these play logs.
At this step, the variable “cluster” stores the correspondence
between individuals and cluster IDs. The value of k is set
as the number of different playstyles desired to be created.



In clustering, the function σ, which determines whether two
different individuals i and j belong to the same cluster, are
defined by

σ(i, j) =

{
0 (ci = cj)

1 (ci 6= cj),

where ci indicates the cluster the individual i belongs.
Based on the result of clustering, in Line 7 speciation

is performed to classify individuals into species. Here, the
variable “species” determines the correspondence between
individuals and species IDs. The distance of genomes δ′(i, j)
in C-NEAT is defined by the following equation

δ′(i, j) = δ(i, j) + α · σ(i, j),

where α is a parameter. The bigger the value of α, the
stronger correlation to the clustering result than the topological
structure. This equation classifies individuals with similar play
logs and topology into the same species as much as possible.

Finally, Line 4 produces new individuals with mutations and
crossover between the same species. These operations from
Line 4 to Line 7 are repeated T times to analyze the last
population.

V. EVALUATION BY EXPERIMENTS

A. Basic Settings

In this study, we conducted experiments using a roguelike
game called MiniDungeons [2], [3], developed by Holmgård
et al., to evaluate the performance of our proposed method.
Multiple reward functions were defined in their work for each
playstyle to emerge. In contrast, we designed a stage and
defined a single reward function.

MiniDungeons is a game in which the player (agent) can
repeatedly move to reach the exit. Agents can earn a positive
reward for acquiring each treasure and potion or defeating
monsters. When the agent fights a monster, he dies if his
physical strength becomes zero, acquiring a negative reward.
Furthermore, a negative reward is obtained as a penalty for
the passage of time for each movement.

In our experiments, each individual in C-NEAT receives
the state and reward from the environment, and outputs the
selected action with the network. This operation is repeated
until the agent reaches the goal, the physical strength is 0 or
less, or the specified number of turns has passed. After the
end of the play, the total rewards obtained during this play are
set to the fitness value of the agent, and the agent’s play log is
recorded. Then, based on this play log, individual clustering
was performed, and a new population was created by mutation
and crossover. The above steps are repeated a fixed number
of times.

The neurons of the input and output layers in the initial
state of the network of the individual is presented in Table I.
This setting is based on the study by Holmgård et al. [2]. At
each action in the game, the individual receives information
from the environment about the shortest distance to each
object and the remaining health as inputs. Here, there are
two possible distances: (a) the distance when approaching

the object safely avoiding monsters (b) the distance without
avoiding them. Therefore, a total of eight input neurons were
provided. Similarly, there were seven output neurons. At each
decision point, the action corresponding to the output neuron
with the maximum value is selected, and the agent moves one
square toward the object. These input and output neurons are
initially fully connected, and neurons and edges are added or
removed from the hidden layer during natural selection.

TABLE I: The neurons of the input and output layers in the
initial state of the network.

Input layer

Health
Distance to Monster

(Safe) Distance to Treasure
(Safe) Distance to Potion
(Safe) Distance to Exit

Output layer

Move to Monster
(Safe) Move to Treasure
(Safe) Move to Potion
(Safe) Move to Exit

B. Parameter Settings

To evaluate the effectiveness of clustering on the identifica-
tion of playstyles, we compared with the case where playstyles
were identified only by NEAT without clustering. Here, to
facilitate the evaluation, we designed a stage and rewards so
that three possible optimal styles can be considered. Therefore,
we set the parameters as k = 3, θ = −∞, δb = −∞, and
δi =∞, respectively.

The stage used in the experiments is shown on the left of
Figure 1. Furthermore, the rewards for each action and value
of each game parameter are presented in Tables II and III,
respectively. The stage and rewards were designed to have two
optimal styles and one suboptimal style. The four playstyles
including a non-optimal style assumed to occur in the final
population are presented on the right of Figure 1. In this game,
Style 1 collects treasures and Style 2 defeats the monsters to
reach the goal (13 points). Style 3 goes straight to the exit
(12 points) and Style 4 fights against monsters and die (-26
points). Except for these four playstyles, all other behaviors
were counted as “others.”

The other parameter settings are as follows. The nonhier-
archical k-means method was adopted, where the number of
clusters was set to 3. Before clustering, we conducted nor-
malization of the play logs and principal component analysis
(PCA). 20 trials were performed for averaging.

A play log was represented as a vector. This stored the
number of times the agent visited each type of squares, and
the number of times the action type of the output layer is
selected in Table I.

C. Experimental Results

Figure 2 shows the results of classifying the agents in the
final population based on the playstyles presented in Figure 1
for each case using NEAT and C-NEAT. In the case of NEAT,
about 75% of agents followed Style 1 to collect treasures.
This is because if the agent chooses the lower route first
without taking the potions, its health will be 0 and it will



Fig. 1: Stage (Left) and the four possible behaviors (Right).

TABLE II: Reward setting.

Reward Value

Movement -1
Reaching the exit 20

Acquisition of a tresure 3
Acquisition of a potion 1

Defeating a monster 4
Death -20

get a big negative reward. Thus, many agents with this style
eventually survived by avoiding dangerous monsters and get
the maximum score safely. However, when C-NEAT was used,
Style 2 to defeat monsters accounted for 20.8%, which was
about twice as much as when NEAT alone was used. This is
because the clustering of play logs can protect agents with
different styles from natural selection by a single reward
function. The same was observed for other styles. From the
above results, it was shown that the population of playstyles
by NEAT is useful and that the use of C-NEAT can suppress
evolution in a single direction. Since this experiment used
only a simple game, further evaluation is needed to confirm
its usefulness for more complex games with potentially more
styles.

The result of PCA of the play logs of the final population
in C-NEAT is shown in Figure 3. The coordinates of each
point in this figure represent the play log of each of the 200
individuals. Also, the color and shape indicate the playstyles
of an individual. The play logs of individuals with the same
playstyle are arranged in a close space, as shown in this
figure. Therefore, it is considered that the species of different
playstyles can be promoted based on the play log by properly
determining the number of clusters.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we proposed a method for identifying different
playstyles only by a single reward function in a game without

TABLE III: Parameter settings.

Parameter Value

Initial Health 30
Health required to defeat a monster 10

Health recovered by a potion 10
Maximum number of movements 80

Number of individuals in a population 200
Number of populations 200

Number of clusters 3

!"#"$

"!#!$

!"#$%

&!#"%

&'#(%

)#*%

!"#$

%"&$

''"($

!"'$

$�/&"5

/&"5

4UZMF� 4UZMF� 4UZMF� 4UZMF� 0UIFST

Fig. 2: Comparison of the ratios of generated playstyles.

Fig. 3: Result of PCA of the play logs of the final population
in C-NEAT.

predefining specific playstyles and reward functions. The basic
idea was to combine NEAT, with the clustering of play logs.
Specifically, individuals adapted to the game as they evolved
through natural selection of NEAT. Clustering of play logs
suppressed monotonous evolution so that more playstyles
survived. The experiment using a roguelike game shows that
our method can generate agents with multiple playstyles. We
also observed that by using clustering, it is possible to suppress
individual bias between playstyles.

However, to make the analysis easier, the experiments in
this study use only a simple game enough to predict the
playstyles that are generated. Therefore, further evaluation
should clarify the effectiveness of our method for more
complex games potentially including numerous playstyles. To
increase the scalability of our method, we should improve the
clustering and evolution mechanism to survive the sub-optimal
playstyles.

REFERENCES

[1] R. Lara-Cabrera, M. Nogueira-Collazo, C. Cotta, and A. Fernández-Leiva,
“Game artificial intelligence: Challenges for the scientific community,”
CEUR Workshop Proceedings, vol. 1394, pp. 1–12, 01 2015.

[2] C. Holmgård, A. Liapis, J. Togelius, and G. N. Yannakakis, “Evolving
personas for player decision modeling,” 2014 IEEE Conference on
Computational Intelligence and Games, pp. 1–8, 2014.

[3] ——, “Evolving models of player decision making: Personas versus
clones,” Entertainment Computing, vol. 16, pp. 95–104, 2016.

[4] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru,
J. Aru, and R. Vicente, “Multiagent cooperation and competition with
deep reinforcement learning,” PloS one, 2017.

[5] A. Tychsen and A. Canossa, “Defining personas in games using metrics,”
in Proceedings of the 2008 Conference on Future Play, 2008, p. 73–80.

[6] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary Computation, vol. 10, pp. 99–127,
2002.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learning,”
ArXiv, vol. 1312.5602, 2013.

[8] K. Leyton-Brown and Y. Shoham, “Essentials of game theory: A concise
multidisciplinary introduction,” Synthesis lectures on artificial intelligence
and machine learning, vol. 2, no. 1, pp. 1–88, 2008.


