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Abstract—We present a power-saving method for large-
scale distributed storage systems. The key idea is to use
virtual nodes and migrate them dynamically so as to skew
the workload towards a small number of disks while not
overloading them. Our proposed method consists of two kinds
of algorithms, one for gathering or spreading virtual nodes
according to the daily variation of workloads so that the active
disks are reduced to a minimum, the other for coping with
the changes in the popularity of data over a longer period.
For this dynamic migration, data stored in virtual nodes are
managed by a distributed hash table. Furthermore, to improve
the reliability as well as to reduce the migration cost, we
also propose an extension of our method by introducing a
replication mechanism. The performance of our method is
measured both by simulation and a prototype implementation.
From the experiments, we observed that our method skews the
workload so that the average load for the active physical nodes
as a function of the overall capacity is 67%. At the same time,
we maintain a preferred response time by setting a suitable
maximum workload for each physical node.

I. INTRODUCTION

Power-saving has become a central issue in today’s com-
puting systems. In particular, as a high percentage of the
total computing system’s energy is used by the data storage
systems, a number of suggestions for reducing power in
storage systems have been proposed, e.g. [2], [6], [7]. Many
of these studies have restricted their scope to storage systems
with a specific kind of central controller to manage the data
access or storage systems consisting of a relatively small
number of disks (typically, up to several dozen). However,
when considering increasingly large-scale computing sys-
tems as typified by cloud computing [1], scalability is of
major importance.

In this paper, we propose a power-saving method for
large-scale distributed storage systems. To reduce power
consumption of storage systems, a commonly-observed tech-
nique in the literature is to skew the workload towards a
small number of disks, thereby enabling the others to be
in a low-power mode. To apply this technique to large-
scale distributed storage systems, a possible approach is to
use replication; a recent example of which is [4] where
they investigated the efficient allocation of replicated data
to minimize the number of active disks, while all the data
are accessible. An alternative approach, not yet thoroughly

studied, is to migrate the stored data dynamically in such a
way that all data are gathered into as small a number of disks
as possible while not overloading them. The main objective
of our research is to explore the power-saving method using
the latter approach.

For dynamic migration, in our method, data stored in
virtual nodes are managed by a distributed hash table (DHT),
which has been adopted in the context of load-balancing
for DHTs (e.g., [3]). On the other hand, the migration
is controlled by two types of algorithms. One, called the
short-term optimization algorithm, is used for gathering or
spreading virtual nodes according to the daily variation of
the workload so that the number of active physical nodes
is reduced to a minimum. The other algorithm, called the
long-term optimization algorithm, is used for coping with
changes in the popularity of data over a longer period (for
example, a week). This leads to more effective short-term
optimization. Furthermore, we propose an extension of our
method by introducing a replication mechanism to reduce
the migration cost and improve reliability (i.e., fast recovery
from disk failure).

The performance of our method is measured both by
simulation and with a prototype implementation in terms
of the average load, the average response time, and the
migration cost. From the experiments with our prototype
implementation, we observed that our method skews the
workload so that the average load of the active physical
nodes as a function of the overall capacity is 67%. This
result indicates that our method effectively skews the work-
load while keeping to a preferred response time (whose
overall average is 80msec) by setting a suitable maximum
workload (i.e., threshold of migration) for each physical
node. Additionally, our simulation shows that the long-
term optimization algorithm consistently and continually
improves power consumption.

This paper is organized as follows. Section 2 presents
related work. Section 3 describes the underlying storage
system and the method of data migration. Section 4 intro-
duces our power-saving algorithms. Section 5 proposes a
replication mechanism in our method. Section 6 presents
the simulation results. Section 7 presents the evaluation by
means of a prototype implementation. Finally, Section 8
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Figure 1. Example of configuration of virtual nodes (For c = 5, d = 4)

concludes the paper and presents future work.

II. RELATED WORK

There have been a number of studies to reduce storage
power consumption. A commonly-observed feature in many
of these techniques is that they skew the workload, and can
be classified into the following categories according to the
variations in this approach.

The first category, including MAID [2] and PDC [6],
focuses on the popularity (i.e., access rate distribution) and
concentrates popular data on specific disks. The second, as
typified by Pergamum [9], uses NVRAM to extend the low-
power mode period by caching data to a write store. The
final category considers redundancy (i.e., data replication).
In DIV [7], original and redundant data are separated into
different disks thereby allowing read/write requests to be
concentrated on the disks with the original data. In EERAID
[5], RIMAC [12], and eRAID [10], a data access on a disk in
low-power mode is transformed into accesses on active disks
or caches, and the required data are reconstructed from the
parities obtained during these accesses. In Hibernator [13]
and PARAID [11], data are collected or spread to adapt to
changes in operational loads. Our study mainly focuses on
the dynamic migration of storing data.

Although these studies in the literature restrict their scope
to storage with a specific kind of central controller to manage
the data access, recent work such as Harnik et al., [4]
addresses power-saving in large-scale distributed storage.
They investigated the efficient allocation of replicated data
so as to minimize the number of disks while all the data are
accessible. Our main motivation is to explore an efficient
technique to skew the workload by means of migration,
instead of taking the replication approach.

III. UNDERLYING SYSTEM AND DATA MIGRATION

The underlying storage system of our method consists of a
set of physical nodes, each of which contains a set of virtual
nodes. In our method, the number of virtual nodes in every
physical node is fixed at some specific number (denoted
by c). The physical nodes are segmented into blocks by
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Figure 2. Split of virtual node v
1/1
i into v

1/2
i and v

2/2
i

c, thus each block contains c2 virtual nodes. To simplify
our discussion, let us consider a usage environment where
the daily workload may vary, and five physical nodes are
required at off-peak time to maintain a certain expected
response time, but may increase up to four-fold. (Throughout
this paper, the increasing rate of system workload is denoted
by d. Thus, in this case d = 4.) In this case, the system
configuration is as follows. (See also Fig 1 for a graphical
presentation.) First, the required 20 (= c · d with c = 5,
d = 4) physical nodes are segmented into four blocks
named B1/1, B1/2, B1/4, and B3/4, where the physical
nodes in Bi/j are called p

i/j
1 , . . . , p

i/j
5 for each block. Next,

25 (= c2) virtual nodes named v
1/1
1 , . . . , v

1/1
25 are mapped

on B1/1 as in Fig 1 where the numbers in block B1/1

indicate the allocation of virtual nodes. For example, the
second virtual node, v

1/1
2 , is allocated on p

1/1
1 , and p

1/1
1

contains v
1/1
1 , . . . , v

1/1
5 . On the other hand, operations to

store/retrieve data are realized using the lookup mechanism
of a DHT. That is, 25 virtual nodes are allocated at equal
distances in the key space of the DHT.

When the system workload increases, each physical node
in B1/1 independently checks its own workload, and if it
exceeds its capacity, i.e. the maximum workload to maintain
a certain expected response time, one of the virtual nodes
is moved to another low-loaded active physical node in the
next block, B1/2. We call such a block a child. If there is no
such physical node, the leftmost node in a low-power mode
is activated. For finer-grained adjustment of the workload,
when moving a virtual node it is split as follows. (See
also Fig 2 for the graphical presentation. Here, we consider
Chord [8] as the underlying DHT.) For example, for the
case of i = 2 in Fig 2, when the workload of p

1/1
1 exceeds

capacity and virtual node v
1/1
2 is moved, a new virtual

node (called v
1/2
2 ) is created and put at the midpoint of

the key space covered by v
1/1
2 (i.e., the ID of v

1/2
2 is set as

(k + k′)/2), then the data corresponding to the key space
[k, (k +k′)/2] are copied to v

1/2
2 . Thus, through the built-in

mechanism for maintenance of routing tables, the key space
[k, k′] is shared equally by these nodes. At this moment,
the original virtual node is renamed as v

2/2
2 . Then v

1/2
2 is

moved to the point (which is indicated by the corresponding



number in the figure) in the next block (i.e., B1/2), while
v
2/2
2 stays at the same point as the original physical node.

In contrast, when the system workload is decreasing, split
virtual nodes are gradually moved back to the original point.
For example, when the workload of p

1/1
1 becomes low and

able to absorb v
1/2
2 , the data stored in this virtual node are

merged into v
2/2
2 and then removed from the key space. At

this moment, the merged node is renamed as v
1/1
2 and put

into the same position as v
2/2
2 . Finally, if a physical node

has no active virtual node, it enters a low-power mode.
This migration process occurs for each block according

to the daily variation of the system workload. For exam-
ple, after all the virtual nodes in B1/1 are migrated to
B1/2, again, virtual nodes v

2/2
i and v

1/2
i are split into the

pairs 〈v3/4
i , v

4/4
i 〉 and 〈v1/4

i , v
2/4
i 〉, and then the first-half

nodes are moved to B3/4 and B1/4 in a similar way. This
process is realized by using the algorithms, called short-
term optimization algorithms. In addition, we also provide
an auxiliary algorithm, called the long-term optimization
algorithm, to maintain the effectiveness in an environment
where the popularity of data varies. The details of these
algorithms are explained in the next section.

Here we would like to note that the mapping of the virtual
nodes of any two blocks of a parent-child relationship is
orthogonal. That is, as indicated in Fig 1, the virtual nodes
in a block are allocated in vertical lines if and only if the
virtual nodes in its parent as well as its child blocks are
allocated in horizontal lines. Because any physical node in
a parent block has all the physical nodes in its child block
as destinations of migration, the physical nodes in the child
block can be efficiently activated from the left. This fact is
demonstrated in later sections.

Finally, we comment on the migration cost. To reduce the
migration cost, instead of moving the whole data stored in a
virtual node, there is an alternative way. That is, when v

1/2
2

is removed, the stored data remain in p
1/2
2 and are reused

at the time of the next splitting operation. This enables the
migration by copying the difference from the previous day.
Indeed, the advantage of this technique is the trade-off with
the disk space, however if the system has enough space on
the disks and can afford to create some redundancy, this
technique can be useful for effective migration. In Section
6, we present the introduction of a replication mechanism
using this technique.

IV. POWER-SAVING ALGORITHMS

Our power-saving method relies primarily on two types
of algorithm. In this section, we introduce the type named
short-term optimization algorithm, which copes with the
daily variation of the system load. This algorithm consists
of two parts; one is used when the workload is increasing
and the other when the workload is decreasing, and they
are run at regular intervals. We next explain why we require

Algorithm 1 Short-term optimization (extension)
if cap(p) ≤ load(p) then

for all p′ ∈ (On(Bcld),Off (Bcld)) do
if state(p′) = 0 then

activate p′

end if
if cap(p′)− (load(p′) + Σv′′∈queue(p′)load(v′′))
≥ load(child(v′)) then

queue(p′)← append(queue(p′), v′)
end if

end for
end if
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Figure 3. Example of migration (when system workload is increasing)

the auxiliary algorithm, named long-term optimization algo-
rithm, which is used for load-balancing in each block, and
then introduce the algorithm.

A. Short-term optimization algorithm for extension

When the system workload is increasing during the nomi-
nal period of a day, each active physical node behaves in the
following way at regular intervals (e.g., every 30 minutes
or one hour), which is called the short-term optimization
algorithm for extension, consisting of the following two
steps.

1) Each active physical node p
j/k
i checks its own work-

load, and if the workload exceeds its capacity, then this
node asks for the current capacity of every physical
node in its child block (i.e., p

2j−1/2k
i ∈ B2j−1/2k for

i = 1, . . . , c).
2) If there are physical nodes in active mode that do not

exceed their capacity, then p
j/k
i chooses one of them as

the destination of migration of its virtual node. (Note
that, due to the manner of allocation, such a virtual
node is uniquely determined when the destination is
decided.) Otherwise, p

j/k
i activates the leftmost among

the physical nodes in a low-power mode in the child
block, and then migrates the corresponding virtual
node.

More formally, this procedure is presented in Algorithm 1.
In this algorithm, Bcld is the child block of p, and “queue”
represents the request queue for holding the requests for
migration.
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Figure 4. Example of migration (when system workload is decreasing)

To help the reader understand this process, we present a
simple example (see also Fig 3 for the graphical presen-
tation, where the nodes in low-power mode are denoted
by gray shading). Initially, the workload of every virtual
node in block B1/1 is 10 and is equally shared by the
child nodes when splitting. The capacity of every physical
node is equal to 40. All the physical nodes in B1/2 are in
low-power mode. In this setting, when the workloads of all
nodes in B1/1 increase, each node migrates one of its virtual
nodes according to the algorithm. Here, if at the beginning
the workload of p

1/1
1 exceeds its capacity, then this node

activates p
1/2
1 and v

1/2
1 is moved to this physical node, and

subsequently the remaining nodes from p
1/1
2 to p

1/1
4 may

choose the same physical node, p
1/2
1 instead of activating

other nodes in B1/2. Furthermore, if p
1/1
1 and p

1/1
3 become

overloaded again, then these nodes can migrate their virtual
nodes to p

1/2
2 , so that p

1/2
3 as well as p

1/2
4 are still in a

low-power mode. Such effective migration is realized by the
manner of allocation.

B. Short-term optimization algorithm for reduction

After the peak-time of day and when the system workload
is decreasing, reducing power consumption requires gather-
ing the split virtual nodes into their parent blocks again.
However, for effectiveness in power-saving, this cannot be
realized solely by the reverse process of extension. We
explain this by using a simple example. (See Fig 4 for a
graphical presentation.) Let us consider the situation where
the workload of B1/1 becomes low and has room to absorb
some of the virtual nodes in B1/2. Now assume that the
remaining capacity of p

1/1
4 is 2, while the other in B1/1 is

1 (these are presented as parenthetical numbers below the
physical nodes), and the virtual nodes at the points of the
encircled numbers are migrated to B1/2, thus, these can be
migrated to B1/1. In addition, the workload of every virtual
node in Bcld is equal to 1. In this situation, the best solution
for minimizing the active nodes in B1/2 is to migrate v

1/2
7 ,

v
1/2
10 , v

1/2
14 , and v

1/2
15 , that enables both p

1/2
2 and p

1/2
3 to

enter the low-power mode. Otherwise fewer nodes can be in
a low-power mode or at least one physical node in B1/1 is
overloaded. This problem can be formally stated as follows.

Problem: For a given pair of blocks, Bprt and Bcld, with
a parent-child relationship, find a maximal set S of the

Algorithm 2 Short-term optimization (reduction)
function findSolution(M1,M2, . . . ,Mc)
N ← {M1}, T ← φ
for all Mi ∈ {M2, . . . ,Mc} do

for all M ∈Mi do
for all M ′ ∈ N do

M ′′ ←M ∩M ′

if not is include(T ,M ′′) then
T ← append(T ,M ′′)

end if
end for
N ← T , T ← φ

end for
end for
return one of the maximum elements from N

function is include(T ,M)
for all S ∈ T do

if M ⊆ S then
return true

end if
end for
return false
end function

physical node in Bcld such that all the virtual nodes in S
can be merged with their corresponding virtual nodes in Bprt

without overloading any physical nodes in Bprt.

The solution of this problem cannot be achieved when
every node behaves independently. That is, our algorithm,
called the short-term optimization algorithm for reduction,
gathers the information of the workload at regular intervals
and then calculates the best solution among all possible
combinations of migration. This algorithm consists of the
following four steps.

1) Each p′i ∈ Bcld sends the information of load(v′) for
all v′ ∈ p′i to all the physical nodes in Bprt.

2) Each pi ∈ Bprt lists all possible combinations of
a subset of physical nodes in Bcld such that pi

can absorb their virtual nodes without exceeding its
capacity.

3) All the results obtained in the previous step are
gathered into a specific single node in Bprt, and the
solution is found using Algorithm 2 below. Here Mi

represents the result calculated by pi.
4) The solution is announced to all the physical nodes

in Bcld, and then the virtual nodes are gathered into
Bprt according to this solution.

More formally, this procedure is presented in Algorithm
2. Intuitively, each element in Mi indicates one of the
largest sets of physical nodes which can be in a low-
power mode under the best situation possible for pi. Thus,
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Figure 5. Example of inefficient migration and reconfiguration

every intersection of elements chosen singly from each Mi

indicates a possible solution if all the physical nodes absorb
as many of their virtual nodes as possible. Therefore, any
of the largest intersections among all possible combinations
is a solution of the problem.

We comment here on the computational complexity of this
algorithm. Generally, for a given c of the number of physical
nodes in a child block, the computational complexity to find
the best solution is (c−1)·(cCb 1

2 cc)3, although the number of
all possible combinations becomes 2c2

. Indeed, as far as our
experiments are concerned, we were able to find a solution in
a feasible time for the condition c ≤ 15. Note that, according
to the value of 2c2

for the input c, we were able to find a
solution in a feasible time for the condition around c ≤ 5,
if we checked the results of all possible combinations one
by one without any strategy.

In consideration of this result of computational complex-
ity, for larger systems, we propose to separate a child block
into several sub-blocks which consist of about 10 physical
nodes, and apply the algorithm to every distinct sub-block.
As we shall show in Section 6, we considered the condition
that c = 100 by taking this approach in our simulation,
and observed that it still effectively skews workload without
search-space explosion.

C. Long-term optimization algorithm

So far we have explained how our method reduces power
by moving virtual nodes according to the daily variation of
the workload. However, to maintain effective power-saving,
it requires load-balancing in each block. We explain this
by using a simple example. (See Fig 5 for a graphical
presentation.) In the upper two blocks, B1/1 is the parent
block of B1/2, each of which consists of four physical nodes.
The capacity of each node equals 10. We assume that due
to changes in popularity of stored data, the workload of
v
1/1
i ∈ p

1/1
1 (for i = 1, . . . , 4) becomes 5 while the workload

of the others is 2, so the physical node in B1/1 is much
busier than in the others. In such a case, this physical node
should migrate its virtual nodes earlier than the others, and
consequently all the physical nodes in B1/2 should become
active while their workload is low.

To avoid this problem, our method provides an auxil-
iary algorithm named the long-term optimization algorithm,
which is intended for load-balancing in each block at reg-
ular relatively longer periods (such as, once a week). For
example, in the case of Fig 5, p1/1 detects the imbalance,
and exchanges some of its virtual nodes (say, v

1/1
1 and v

1/1
2 )

with the low-loaded nodes on the same row (say, v
1/1
5 and

v
1/1
6 ) in the same block. (The result is shown as the lower

two blocks in the figure.) At that point, the allocation of
all the other blocks is also changed in the same way. (Note
that this migration requires the exchange of all data stored
in each pair of virtual nodes between the different physical
nodes. However, if the pair is on the same row, in half the
blocks the corresponding pair is in the same physical node,
hence we reduce the migration cost.) In this case, by this
reconfiguration, the activation of p

1/2
4 is delayed, so we can

reduce the active nodes in B1/2.
However, in a more realistic situation, it is possible that

the requirement for reconfiguration in one block conflicts
with the requirement of another. In this paper, this problem
is not thoroughly investigated and one of the future work.

V. MANAGEMENT OF REPLICAS

In this section we explain how to introduce a mechanism
for data replication into our proposed system for improving
the migration cost and reliability. This can be realized by
the following two additional operations when splitting or
merging a virtual node. (See also Fig 6 for the graphical
presentation. In this figure, the boxed items indicate the data
kept in the original node, while the encircled items indicate
replicas which are updated after the migration.) Here ρ < c
is the number of replicas.

Split: When the virtual node vj/k on p ∈ Bprt is split
into 〈v2j−1/2k, v2j/2k〉 and v2j−1/2k is moved into
the child block Bcld, the data stored in the key
space of v2j−1/2k are kept in p. Also, after the
split, the updated difference of stored data by
v2j/2k is saved in ρ physical nodes in Bcld.

Merge:When the virtual node v2j−1/2k on physical node
p′ ∈ Bcld is merged with v2j/2k in the parent block
Bprt, the data stored by v2j−1/2k are kept in p′.
Also, after the merge, the updated difference of
stored data by vj/k is saved in ρ physical nodes in
Bprt.

If the system has enough space in its storage disks, this
redundancy of data enables a reduction in data migration.
That is, when splitting virtual node vj/k, the data in v2j−1/2k

saved at the previous merge operation can be reused, and it
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Figure 6. Data replication (with ρ = 1)

is necessary to migrate only the updated difference from the
previous merge operation. Similarly, when merging virtual
node v2j−1/2k with v2j/2k, the data in the key space of
v2j−1/2k saved at the previous split operation can also be
reused.

Our proposed replication mechanism is also useful for
data recovery from disk failure. That is, for a given number
of replicas, ρ, any data in the system is accessible at any
time against ρ disk failures.

VI. SIMULATION RESULTS

To understand the effectiveness of our method for storage
systems consisting of hundreds of physical nodes, we evalu-
ated the average load (i.e., the ratio of workload to capacity)
of the active physical nodes and the impact of the long-term
optimization algorithm using simulations.

Parameters and settings. In the evaluation of this section,
we considered the following system. Each block consisted
of 100 physical nodes and the number of virtual nodes
in each physical node is 100, thus each block included
10,000 virtual nodes. In the intended usage environment, we
assumed that the system workload varies in a day. During the
course of a day (that is modeled by discrete time intervals
t = 0, . . . , 23), the workload of all virtual nodes was initially
at its lowest, and increased until the middle of the day then
decreased until the end, where the gap was sixfold. We
modeled workloads by natural numbers and assumed that
the capacity of every physical node was equal to 100. In
addition, due to the popularity of stored data, we considered
two groups of virtual nodes with different workloads: group
G1 of 2000 nodes (initially allocated in p

1/1
1 , . . . , p

1/1
20 ) were

the busier ones, while group G2 of 8000 (in p
1/1
21 , . . . , p

1/1
100)

were the normal nodes. In each group, the workloads of
all virtual nodes were the same. The ratio of workloads
of a node in G1 to a node in G2 was denoted by α, and
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we considered the cases that α = 1.2, 1.5, and 2. In each
case, we set the initial workload of the system to be 60%
of its capacity, i.e. for α = 1.2, 1.5, and 2, the initial
workloads of a node in G1 were respectively 0.69, 0.82, and
1, while in G2 were respectively 0.58, 0.55, and 0.5. In the
following simulations, we evaluated cases with the long-term
optimization (which totally improves the bias of workload
in each block) and without one. Due to space limitations,
we only present the results for the case of single replication
(i.e., ρ = 1).

Average load of active physical nodes. Fig 7 indicates
the change in the average load of active physical nodes
during a day. This figure shows that in the case of long-term
optimization, for the cases of α = 1.2, 1.5, and 2, the daily
average load is 74%, 71%, and 67%. On the other hand, in
the case of no long-term optimization, the daily average load
is 69%, 64%, and 57%. The results of this simulation show
that in our method the physical nodes run effectively, coping
with the daily variation of workload. Moreover, compared
with the case of no long-term optimization, this optimization
algorithm improves the average load as expected.

Impact of long-term optimization. Fig 8 indicates the
change in the number of active physical nodes during a
day. This figure shows that long-term optimization saves
on average 7%, 10%, and 14%, and up to 17%, 23%, and



39% in the cases that α = 1.2, 1.5, and 2, compared
with the case without long-term optimization. Moreover, this
optimization improves the power consumption consistently
and continually.

VII. EXPERIMENTS WITH IMPLEMENTATION

We conducted experiments with the current prototype
implementation of our proposed system to evaluate the
applicability of our method to real systems. In this paper, we
measured the average load of the active physical nodes, the
response time, the number of active nodes, and the number
of migrations of virtual nodes in an environment where the
system workload varies.

Our prototype consisted of 40 PC servers housed in
five enclosures, each of which was equipped with Dual
Xeon 3.60GHZ CPUs, 1.2–1.8GB memory, and a single
36GB SCSI disk. Migrations of virtual nodes were managed
by the short-term optimization algorithms with the current
workload (i.e., the number of requests for data access per
unit time) monitored by each server. Here, the migration
speed was saved so as to avoid the increase of response
time. In our prototype, DHT for data management was not
implemented, thus data were accessed randomly so that the
data access frequency to each virtual node was the intended
value. In addition, due to the limitation of our experimental
environment, i.e. the bandwidth of different enclosures, we
evaluated response time of data access by measuring time
from sending a request until the data were loaded into
memory in the server.

Parameters and settings. Servers (i.e., physical nodes)
were logically grouped into four blocks, and each server
had initially 10 virtual nodes. Besides these 40 servers,
we used a single client of data access. Every virtual node
stored 600 files whose size was equal to 1MB. In our
experiments we did not consider data replication. As in
the simulations, we considered two gruops of virtual nodes
with different workloads: group G1 of 20 nodes were the
busier ones whose initial workloads were equal to 100
data access requests per minute, while group G2 of 80
nodes were the normal ones whose initial workloads were
equal to 50 requests per minute. The experiment duration
was 24 hours and the workload of all virtual nodes was
initially at its lowest, and increased until the middle then
decreased until the end at regular 1-hour intervals, where
the gap was sixfold. By some preliminary experiments, we
observed that the capacity of each physical node is 1000
requests per minute to keep an expected response time, and
in consideration of the migration cost, we set 90% and 60%
of this capacity as the thresholds of migration for extension
and reduction, respectively. In our experiments, we assumed
that the amount of daily difference of data from the previous
day is 10%, i.e. migration of virtual nodes was done by
moving only this updating part, and compared it to the case
that the whole data were migrated.
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Figure 10. Average and maximum response time

Average load and response time. Figs 9 and 10 indicate
the change in the average load of active physical nodes and
the response time. Fig 9 shows that the overall average
load is 67% of the capacity, although workloads of some
nodes exceed the capacity in the first half part of this
experiment. From another experiment, we observed that the
overall average load was 68% when the whole data were
migrated. Fig 10 shows that the overall average response
time is 80msec, which is mostly as intended, although some
responses are delayed. (Throughout this experiment, the
maximun response time is 534msec.) In the case that the
whole data were migrated, the overall average and maximum
response time was respectively 158msec and 1436msec.
The results of this experiment show that our optimization
algorithms effectively skew the workload while keeping the
intended response time in the real system.

Numbers of active physical nodes and migrations. Fig
11 indicates the change in the number of active physical
nodes and the number of migrations. This figure shows that
the migration is done on average 0.14 virtual nodes and up
to 20.0 virtual nodes. In the case that the whole data were
migrated, these values were 2.3 and 19.0, respectively. The
result of this experiment shows that our system adjusts the
number of physical nodes to the variation of workloads and
reduces power effectively.
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In closing this section, we would like to stress that the av-
erage response time can be reduced further by changing the
threshold of migration for extension to smaller in exchange
for the increase of power consumption.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a power-saving method for
large-scale distributed storage systems. To reduce power
consumption, we introduced two kinds of optimization al-
gorithms, thereby effectively skewing the workload towards
a small number of physical nodes. We also introduced
a method of data replication for both reducing migration
costs and improving the reliability. Finally, the performance
of our system was evaluated both by simulations and a
prototype implementation. The simulation results showed
that our method kept the workload of active physical nodes
in terms of total capacity, on average, 67–74% for the case
with single replication. The results of experiments with our
implementation showed that the overall average load was
67%. At the same time, we maintained a preferred response
time (whose overall average was 80msec) by setting a
suitable capacity for each physical node.

In future work, we will further investigate to refine our
prototype implementation. Especially, we will implement
our proposed replication mechanism to improve response
time, load balance, and reliability.
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