
Computationally Complete Symbolic Attacker and Key
Exchange

Gergei Bana
INRIA, Paris, France

bana@math.upenn.edu

Koji Hasebe
Graduate School of Systems and Information Engineering, University of Tsukuba

Tsukuba, Japan
hasebe@iit.tsukuba.ac.jp

Mitsuhiro Okada
Department of Philosophy, Keio University, Tokyo, Japan

mitsu@abelard.flet.keio.ac.jp

ABSTRACT
Recently, Bana and Comon-Lundh [8] introduced the notion of
computationally complete symbolic attacker to deliver uncondi-
tional computational soundness to symbolic protocol verification.
First we explain the relationship between their technique and Fit-
ting’s embedding of classical logic into S4 [25]. Then, based on
predicates for “key usability”, we provide an axiomatic system in
their framework to handle secure encryption when keys are allowed
to be sent. We examine both IND-CCA2 and KDM-CCA2 encryp-
tions, both symmetric and asymmetric situations. We also consider
INT-CTXT ciphertext integrity. This technique does not require the
usual limitations of computational soundness such as the absence
of dynamic corruption, the absence of key-cycles or unambiguous
parsing of bit strings. In particular, if a key-cycle possibly corrupts
CCA2 encryption, our technique delivers an attack. If it does not
endanger security, the security proof goes through. We illustrate
how our notions can be applied in protocol proofs.

1. INTRODUCTION
Approaches to computationally sound automated verification of

security protocols can be divided into two groups. Works in one
[3, 22, 4, 18, 26, 21] define symbolic adversaries, and soundness
theorems state that under certain circumstances, if there is no suc-
cessful symbolic attack, then there is no successful computational
attack either. The other group aims to work directly in the compu-
tational model [23, 15, 10, 11, 9]. In this latter case, computational
soundness means that the properties on which symbolic manipula-
tions are conditioned hold computationally.

The first group, where a symbolic attacker is defined, gives hope
that already existing automated tools may be adopted for compu-
tationally sound verification, but these soundness theorems require
large sets of assumptions. A number of assumptions, as well as
reasons why they are not realistic are discussed in [19]. Such as-
sumptions are, for example, that bit strings can be unambiguously
parsed into symbolic terms, or, that no key cycles occur, or, that all
keys are honestly generated, or, that there is no dynamic corruption.
Recently, Backes et al. in [2] showed a way to avoid some of these
problems such as key-cycles and badly generated keys, but for the
computational implementation of the encryption, they needed to
require a very strong notion called PROG-KDM security. More-
over, they still used an entire page to list all the further necessary
conditions (such as unambiguous parsing) limiting the computa-

tional implementation that they needed for soundness. But PROG-
KDM security and the other conditions are necessary only to re-
ceive computational guarantees for their symbolic analysis even if
computational security of the analyzed protocol holds without these
requirements. Their strong conditions are imposed on the compu-
tational implementation not for the security of the protocol, but for
the soundness of the analysis.

Recently, Bana and Comon-Lundh (BC) presented in [8] a new
kind of symbolic attacker. They called it computationally com-
plete symbolic adversary, as it is capable of doing everything that
a computational adversary is capable of. They observed that the
discrepancy between symbolic and computational proofs emerges
from the following fact: While the usual computational security
assumptions on the primitives (such as IND-CCA2 security of the
encryption) define what the adversary cannot violate (and the secu-
rity of the protocol is derived from the security of the primitives),
symbolic adversaries are defined by listing all the adversarial ca-
pabilities (Dolev-Yao rules). Hence, to adjust the viewpoint of the
symbolic analysis to that of the computational, instead of listing ev-
ery kind of moves a symbolic adversary is allowed to do, Bana and
Comon-Lundh list a few rules (axioms) that the symbolic adversary
is not allowed to violate. Anything that does not contradict these
axioms is allowed for the adversary. Hence, a successful symbolic
attack in their case means that the violation of the security prop-
erty of the protocol is consistent with the axioms. The axioms that
are introduced must be computationally sound with respect to the
computational interpretation they defined. Their general soundness
result is the following: Suppose that the computational implemen-
tation satisfies a set of axioms. If there is a successful PPT attacker
for which the number of sessions it exploits does not increase in-
definitely as the security parameter increases (there is a bound, but
it can be arbitrarily high), then there is also a successful symbolic
adversary complying with the set of axioms.

The difference between the original Dolev-Yao (DY) technique
and that of BC can be best understood from the following pictures.
In the DY technique, as more and more rules are added, the sym-
bolic adversarial capabilities are increasing, the symbolic adversary
covers more and more of the computational capabilities. However,
no-one has been able to come up with rules that properly cover
all possible computational capabilities. As Figure 1 shows, there
are always some computational capabilities that are not covered by
the DY ones. All computational soundness results that use the DY

1

Add More
DY Rules

Computational
Assumptions
Are Adjusted
to Symbolic
Formulation

Computational Attacker Dolev-Yao Attacker

Figure 1: Soundness of the DY Adversary

symbolic adversaries in the end have to impose some significant
limitations on the computational implementation.

In the BC approach, without axioms, the symbolic adversary is
allowed to do anything. As axioms are added, the symbolic adver-
sary’s capabilities are decreasing. Their main theorem is that if the

Add
Computationally
Sound Axioms

Add More
Computationally
Sound Axioms

Computational Attacker Bana-Comon Attacker

Figure 2: Soundness of the BC Adversary

axioms are computationally sound, the symbolic adversarial capa-
bilities cover all of the computational adversarial capabilities that
use bounded number of sessions. This is illustrated in Figure 2.
Clearly, if the symbolic adversary is too strong, security of proto-
cols cannot be proven. Therefore, the aim is to create a library of
axioms that are sound and are sufficient to prove actual protocols.

In [6], Bana et al. introduced several modular, computation-
ally sound axioms, and verified secrecy and authentication of the
Needham-Schroeder-Lowe protocol to illustrate that the technique
can indeed be used to verify actual protocols. However, as Backes
et al. have pointed out in [2], the axioms in [6] were not suitable
when decryption keys were sent around in the course of the pro-
tocol (under encryptions for example, in a key distribution). The
current work aims to address this problem.

Before we describe this current work in detail, it is worth ask-
ing ourselves, does it really make sense to develop a new technique
when such tools as CryptoVerif and EasyCrypt exist? However,
EasyCrypt at its current stage is more for proving properties about
primitives, such as CCA2 security from hardness assumptions; it
is not suitable for more complex protocols. CryptoVerif is a very
powerful tool for protocol analysis, but if it fails to prove a proto-
col, other than its developer, it is difficult for a user to know what
to do. The aim of the BC technique is to construct a relatively sim-
ple, intuitive system. If we remove the explanations, the axioms
in this paper are just a few lines, perhaps half a page, and most of
them are trivial. The BC technique is still lightweight compared to
CryptoVerif or EasyCrypt. BC does not use explicit probabilities,
neither game reductions. Proofs are readable to human, convenient
for human interaction if automated. NSL and the and the symmet-
ric Needham-Schroeder protocols were proven by hand, without
any assumption on parsing unambiguity. Available other proofs of
the NSL protocol including the one with CryptoVerif all assume
unambiguous parsing. The NSL proof with this technique reduces
to 2-3 pages with unambiguous parsing. For an initial decidability
result, see Comon et al. [20].

1.1 Our Work
In this paper we tackle the problem of key exchange, but along

the way we also present various other improvements on the orig-
inal work of Bana and Comon-Lundh. In their original work [8],

the general soundness theorem worked only for certain kinds of
first-order formulas, and the non-negligible subsets of the compu-
tational execution had to satisfy a certain computability property.
Later, in the online version of their paper [7] they presented im-
proved computational semantics for the disjunction and existential
quantification, and with that they could make the general sound-
ness proof work for any first-order formula. But they still needed
the computability condition on the non-negligible subsets (not an
important limitation though, but not pretty). In this work, we re-
move this limitation with a trick in the soundness proof.

Bana and Comon-Lundh proved their general soundness theorem
directly from their definitions. This involved showing that although
computational semantics of their compound formulas are not de-
fined as usual in Tarskian semantics, first-order deduction rules and
axioms are valid with respect to their semantics too. As it turns
out, this actually follows from Fitting’s theorem of embedding first-
order logic into first-order S4 [25]. After introducing the basics, we
detail this relationship in the current work, and show how the BC
general soundness theorem follows from Fitting’s theorem.

In order to tackle key exchange, the necessary element to incor-
porate in the framework is key usability, an idea introduced in [24]
for a different framework. This notion is meant to express whether
a properly generated key, at a certain point of the protocol execu-
tion, is still usable for secure encryption or whether it has been
compromised. If a decryption key (or just a key in the symmetric
case) is sent in the clear, the encryption key associated to it cannot
be used for secure encryption any more. Or, a key that was sent in
a key cycle, may also have lost its capability to encrypt securely if
the encryption scheme is only IND-CCA2 secure. More generally,
keys can also be compromised in more subtle, non-trace fashion.

For overall consistency of notation, instead of key usability we
introduce the opposite, namely key compromise as a predicate. We
define key compromise predicates both for symmetric and asym-
metric encryptions, both for IND-CCA2 [13] and KDM-CCA2 [1,
16] cases, and also for INT-CTXT [14] ciphertext integrity. There
is an essential difference from the way key usability was defined
in [24], we explain that at our definition. (Furthermore, the ax-
ioms in [24] were introduced to work for the Diffie-Hellmann key
exchange, they are not helpful with other protocols.)

Further essential innovations of this paper are predicates repre-
senting adversarial derivability (computability) with oracle access.
This makes the axioms simpler than just using derivability as in
[6]. Depending on whether IND-CCA2 or KDM-CCA2 oracles are
used, and on whether the encryption is symmetric or asymmetric,
we define four such derivability with oracle access predicates.

We introduce axioms and show that they are computationally
sound. The axioms are suitable for (but not limited to) inductive
reasoning: if something is uncompromised up-to a point, then cer-
tain newly sent messages do not destroy this property. They are
also entirely modular: Introducing further primitives will not de-
stroy the soundness of these axioms, they do not have to be proved
again. If we want to prove a protocol that uses further primi-
tives such as signatures besides encryption, then we only have to
introduce new axioms for the new primitives. For encryption, the
current axioms can still be used unchanged. Hence, a library of ax-
ioms can be gradually developed by adding more and more axioms.

A nice feature of our new predicates for key usability and deriv-
ability with oracles is that we only have a single axiom requiring
CCA2 security of the encryption: the axiom stating that fresh keys
are uncompromised (with respect to CCA2 security). The rest of
the axioms, such as the one expressing that encryption with un-
compromised key hides the plaintext, or the one expressing non-
malleability are immediate consequences of the computational se-

2

mantics of the derivability and key-compromise predicates.
We emphasize that we introduce axioms for KDM-CCA2 secu-

rity to be able to analyze protocols for which KDM security is com-
putationally necessary: Unlike [2], in our case, for those protocols
that do not require KDM security for their computational sound-
ness, the use of our IND-CCA2 axioms is sufficient.

After presenting the axioms and their soundness proofs, we look
at three simple examples in Section 11 to illustrate how the axioms
work with special focus on comparing how the IND-CCA2 and the
KDM-CCA2 axioms are applied to key cycles. We show security
in a case when there are no key cycles, then we present a case when
there is a key cycle and the IND-CCA2 axioms provide an attack
while KDM-CCA2 axioms still prove security. Finally we show a
case when there is a key cycle, but as it is under another encryption
it does not danger security even in the IND-CCA2 case and the
security proof goes through. We also show that the axioms in [6]
without key compromise are not sufficient to treat these examples.

Finally, we present the result of our proof of the Amended Sym-
metric Needham-Schroeder Protocol. This protocol first distributes
a session key, and then uses the distributed key to share a secret.
Using the IND-CCA2 and INT-CTXT axioms, we proved that the
key is securely distributed, that the shared nonce remains secret,
and that agreement and authentication hold. It is posted online at
the first author’s homepage.

The technique of [8] and also this work allows to avoid all re-
strictions mentioned before on the computational world. Once a
protocol is proven secure in our symbolic model with respect to a
set of axioms, then all properties that the computational implemen-
tation has to satisfy for computational security are included in the
axioms. Any number of bad keys are allowed to be generated by the
adversary; any number of corrupted, uncorrupted, or dynamically
corrupted parties can be present. As for parsing of bit strings into
terms, previous soundness results relied on unambiguous parsing.
Within this framework, there is no need for such an assumption. We
do not even need the condition that encryptions, pairing are length
regular (i.e. encryption, pairing of inputs that have the same length
output bit strings of the same length).

As long as indistinguishability properties are not concerned, the
only significant restriction remains that the technique is not capable
to detect computational attacks for which the PPT attacker needs
the number of sessions to grow indefinitely as the security param-
eter increases. (It is the general soundness theorem that requires
bounded number of sessions, not the axioms.) However, the usual
Dolev-Yao technique is not capable of doing this either. (ProVerif
for example is unbounded only in the sense that it works for ar-
bitrary number of sessions, but still, if an attack is found, that,
and the corresponding computational attack uses a given number
of sessions independently of the security parameter.) Nevertheless,
it would still be nice to have conditions under which the absence of
successful symbolic BC adversaries means that there are no compu-
tational attacks even if unbounded number of sessions are allowed.
For example, if only CCA2 encryptions and pairings are used to
construct messages, we believe that this statement holds. Analysis
of this is left for future work.

The contributions of this paper include (i) relating the BC tech-
nique to Fitting’s embedding, (ii) syntax and computational seman-
tics of key compromise and derivability with oracle access, (iii) a
library of axioms for symmetric and asymmetric IND-CCA2 and
KDM-CCA2 encryptions and INT-CTXT encryptions as well, (iv)
soundness result of the axioms, (v) short examples to illustrate how
the axioms are used with an emphasis on key-cycles, (vi) summary
of the verification of the symmetric Needham-Schroeder protocol
with this tool as a proof of concept. (The NSL proof in [6] can also

be done with the current set of axioms the same way as it was done
there, with minor modifications only.)

The paper is organized as follows: In Section 2, we give the in-
tuitive description of our new predicates. In Section 3, we present
our first-order language, which is an extension of that of BC. We
then summarize in Sections 4 and 5 how Bana and Comon treated
the symbolic and computational executions in [8], define compu-
tational semantics, and present the general soundness theorem. In
Section 6, we show how the BC technique is related to Fitting’s em-
bedding of classical logic in S4, and show how the general sound-
ness result of Bana and Comon-Lundh follows from Fitting’s theo-
rem. Section 7 is devoted to the semantics of the new derivability
predicates with oracles and their axioms, and Section 8 is the same
for key usability. In Section 9 we discuss congruence of the equal-
ity predicate. In Section 10 we state and prove our soundness theo-
rem for the axioms. In Section 11, we show a few simple examples
of how inconsistency of certain formulas with the axioms can be
proven. Finally, in Section 14, we state the result of the verification
of the amended symmetric NS protocol with our tool.

We thank Pedro Adão, Bruno Blanchet, Rohit Chadha, Hubert
Comon and Guillaume Scerri for helpful suggestions and valuable
discussions.

2. DERIVABILITY, KEY COMPROMISE
The most important new aspect of the symbolic execution in [8]

was to replace the DY technique’s fixed definition of what the sym-
bolic adversary can deduce, x1, ..., xn ` y, with a derivability
predicate1 x1, ..., xn � y for which the symbolic semantics is not
fixed. Namely, while in the DY technique, x1, ..., xn ` y meant
that using only the DY rules y can be computed from x1, ..., xn, in
the BC case x1, ..., xn�y is given some unfixed symbolic interpre-
tation in an abstract modelM for which they only require to satisfy
some (computationally sound) axioms. That is, the axioms express
what the symbolic adversary cannot violate. They do imply that
from DY deducibility, satisfaction of the derivability predicate fol-
lows, for example, {y}K ,K � y. But in the BC system these rules
are not what the adversary can at most do, but what it can certainly
at least do (in other words, the adversary is not allowed to be unable
to do it). The idea is that symbolic interpretation of x1, ..., xn � y
should be at least as powerful as computability of y from x1, ..., xn
by some probabilistic polynomial time algorithm, and so the only
limitations that we want to put on symbolic satisfaction of � are
limitations that are derived from computational computability.

One of the major innovations we propose here is that axioms be-
come simpler if we allow the use of some oracles for the adversary.
For example, considering IND-CCA2 public key encryption, it is
better to introduce a new derivability predicate, x1, ..., xn �aic2 y
with the computational semantics meaning that the interpretation of
y can be derived from the interpretation of x1, ..., xn by a PPT ad-
versary with the help of decryption oracles that decrypt everything
that are not results of encryptions on the left hand side. Similarly,
for the symmetric case, we can introduce x1, ..., xn �sic2 y mean-
ing that y can be derived from x1, ..., xn with the help of decryp-
tion oracles and encryption oracles. That is, the algorithm trying
to compute y from the x1, ..., xn is allowed to submit strings to
the oracles for encryption and also for decryption. The decryption
oracle decrypts as long as the submitted string is not an encryp-
tion from x1, ..., xn or an encryption produced by the encryption
1Note that in [8] Bana and Comon-Lundh denoted this predicate
as x1, ..., xn ` y although ` is usually reserved for denoting de-
ducibility in a proof system. We find that somewhat confusing, so
we use the notation x1, ..., xn � y to emphasize that we do not
mean some specific deducibility by it, it is a predicate.

3

oracle. The encryption oracles here are needed, because the adver-
sary cannot himself do encryptions (he does not know the key), and
for this reason the IND-CCA2 definition for symmetric encryption
allows the submission to the encryption oracle multiple times. In
fact, for uniformity, we allow it for the public case too, as IND-
CCA2 is equivalent for the case of multiple submissions to encryp-
tion oracles [12]. Similarly, we will also define derivation with
oracle accessibility for KDM-CCA2 encryptions, which is some-
what more tricky. But encryption oracles using which keys? The
answer is, keys honestly generated by the agents during the execu-
tion. We will use the notation �Ofor such derivability with O being
either aic2, sic2, akc2, skc2 or nothing, depending on whether we
want asymmetric or symmetric IND-CCA2 oracles, or asymmetric
or symmetric KDM-CCA2 oracles, or no oracles. (O is Fraktur O.)

Our next innovation is key compromise for the case when keys
are sent around. We use the notation x1, ..., xn IOK, where O
again indexes whether we are talking about IND-CCA2, KDM-
CCA2, symmetric or asymmetric encryption (there is always some
oracle here). The intuitive meaning is that K is compromised by
the messages x1, ..., xn with access to the given oracles. For ex-
ample, K,x2 IOK. Or, {K}K′ ,K′ IOK. Or, if x1, ..., xn �OK,
then x1, ..., xn IOK. But, presumably, if x1 is just the first half
of K, then x1 IOK may still hold, while x1 �OK does not. That
is, while x1, ..., xn�OK clearly implies x1, ..., xn IOK, the other
way is not necessarily true. Nevertheless the two properties, as we
will see, behave very similarly, so we chose similar notation for
them. We also consider key compromise for INT-CTXT ciphertext
integrity.

3. LANGUAGE
The core of the framework used in this paper was introduced by

Bana and Comon-Lundh in [8]. Along with our new innovations,
we present a brief summary of the original system of Bana and
Comon-Lundh as well.

3.1 Terms, Predicates, Formulas
Terms are built out of a set of function symbols F that contains

an unbounded set of names N and an unbounded set of handles
H. Names and handles are constants (zero-arity function symbols).
We use names to denote items honestly generated by agents, while
handles denote inputs of the adversary. Let X be an unbounded set
of variables. A ground term is without variables.

Let P be a set of predicate symbols over terms. We assume here
that P contains the binary predicate = and is used as t1 = t2 and
the following families of of (n+1)-ary predicates meaning various
sorts of derivability:

• t1, ..., tn�nt for derivability of the rhs from the lhs
• t1, ..., tn �aic2

n t for derivability of the rhs from the lhs with
access to IND-CCA2 oracles in asymmetric case
• t1, ..., tn �sic2

n t for derivability of the rhs from the lhs with
access to IND-CCA2 oracles in symmetric case
• t1, ..., tn �akc2

n t for derivability of the rhs from the lhs with
access to KDM-CCA2 oracles in asymmetric case
• t1, ..., tn �skc2

n t for derivability of the rhs from the lhs with
access to KDM-CCA2 oracles in symmetric case

and the following key compromise predicates:

• t1, ..., tn Iaic2
n K meaning the lhs compromises (with oracle

access) secure asymmetric IND-CCA2 encryption with K
• t1, ..., tn Isic2

n K meaning the lhs compromises (with oracle
access) secure symmetric IND-CCA2 encryption with K

• t1, ..., tn Iakc2
n K meaning the lhs compromises (with ora-

cle access) secure asymmetric KDM-CCA2 encryption with
K
• t1, ..., tn Iskc2

n K meaning the lhs compromises (with oracle
access) secure symmetric KDM-CCA2 encryption with K
• t1, ..., tn Iic

n K meaning the lhs compromises (with oracle
access) INT-CTXT ciphertext integrity of encryptions with
K.

We always drop the index n: t1, ..., tn �Ot and t1, ..., tn IOK.

4. SYMBOLIC EXECUTION
In case of the Dolev-Yao adversary, derivability predicates would

have fixed interpretations. For example, � holds in case of a DY
adversary, if the right-hand side can be computed from the left-hand
side with the DY rules. However, for the symbolic execution, the
BC technique allows any interpretation of the predicates (including
=) that does not contradict some axioms (introduced later).

Accordingly, letM be any first-order structure that interprets the
function and predicate symbols of the logic. We denote byDM the
domain of interpretation, and by �O

M, IO
M and =M the relations

on DM interpreting �O, IO, and = respectively. Given an assign-
ment σ of elements in DM to the free variables of term t, we write
[[t]]σM for the interpretation of tσ inM ([[_]]σM is the unique exten-
sion of σ into a homomorphism of F-algebras). For any first-order
formula θ, for any first-order structureM over the functions F and
predicates P , and any assignment σ of the free variables of θ in
the domain ofM, the satisfaction relationM, σ |= θ is defined as
usual in first-order logic from the satisfaction of predicates.

4.1 Protocols
Bana and Comon-Lundh set up their technique to be convenient

for constraint-solving methods as in [17].
Let Q be a set of control states (not necessarily finite). A proto-

col is a recursive set of tuples

((q, n), (q′, n, n′), 〈x1, ..., xm〉 , x, ψ, s)

where q, q′∈Q, x1, ..., xm, x are variables (into which agents read
messages from the adversary), n, n′ are disjoint finite sequences of
names (corresponding to honestly generated items such as keys,
nonces). ψ is some formula corresponding to agent checks on
incoming messages. For example, ψ can be a formula such as
dec(x, k) = n, checking whether the input decrypts to a previ-
ously generated nonce n. ψ is over the variables {x1, ..., xm, x},
the names n, the function symbols F without the rest of the names
and handles, and some subset of the predicate symbols P . Finally,
s is the output message, when the transition succeeds. s is built
from the variables {x1, ..., xm, x}, the names n, n′, and the func-
tion symbols F without the rest of the names and handles.

4.2 Execution of a Protocol and Attacks
In applied π-calculus, frames are sequences of terms with name

binders: a frame φ can be written νn. 〈p1 7→ t1, ..., pn 7→ tn〉
where p1, ...pn are place holders that do not occur in t1, ..., tn and
n is a sequence of names, but we think of a frame simply as a list
of terms 〈t1, ..., tn〉 representing the messages that agents have sent
over the network, that is, messages that the adversary has seen. The
names, variables of φ are the names, variables of t1, ..., tn.

A symbolic state of the network consists of:

• a control state q ∈ Q together with a sequence of names
(randomly) generated so far, n1, ..., nk
• a sequence of constants called handles h1, ..., hn (recording

the attacker’s inputs)

4

• a ground frame φ (the agents outputs)
• a set of closed formulas Θ (all conditions that must be satis-

fied in order to reach the state).

A symbolic transition sequence of a protocol Π is a sequence

((q0, n0), ∅, φ0, ∅)→ ...→ ((qm, nm), 〈h1, ..., hm〉 , φm,Θm)

if, for every m− 1 ≥ i ≥ 0, there is a transition rule
((qi, αi), (qi+1, αi+1), 〈x1, ..., xi〉 , x, ψ, s)

such that n = αi+1 \ αi, φi+1 = (φi, sσi+1), ni+1 = (ni, n),
Θi+1 = Θi ∪ {φi � hi+1, ψσi+1} where σi+1 = {x1 7→ h1, ...,
xi 7→ hi, x 7→ hi+1}. If necessary, some renaming of the sequence
αi+1 ensures the freshness of the names n: n ∩ ni = ∅.

Given an interpretationM, a transition sequence of Π

((q0, n0), ∅, φ0, ∅)→ ...→ ((qm, nm), 〈h1, ..., hm〉 , φm,Θm)

is valid w.r.t.M if, for every m− 1 ≥ i ≥ 0,M |= Θi+1.
Examples of symbolic executions can be found in [8] and [6].

4.3 Symbolic Satisfaction of Formulas
Mmodeled, among others, the predicate t1, ..., tn�t. In execu-

tions we also consider a predicate that we write as φ̂, t1, ..., tn � t.
This is also an n + 1-arity predicate. φ̂ is just a symbol, not an
argument, and it represents the frame containing the messages that
protocol agents sent out, that is, the information available from the
protocol to the adversary. We also use a number of different con-
straints: Handle(h) means h is a handle, RanGen(x) means that x
was honestly, randomly generated (i.e. appears in the n of the con-
trol state); x v φ̂means that x is a subterm of a message sent out by
an agent (i.e. listed in the frame φ), x v ~xmeans x is subterm of ~x.
dK vd φ̂ means dK occurs somewhere other than in a decryption
position dec(, dK) in φ, and dK vd ~x is analogous (dK may also
occur in a decryption position in ~x, but it has to occur elsewhere
too)2. Similarly, let K ved φ̂ mean that symmetric key K occurs
somewhere other than in an encryption or decryption position (as
{|_|}K or sdec(,K)) in φ, and K ved ~x is analogous (K may also
occur in encryption or decryption position in ~x, but it has to occur
elsewhere too). Let us introduce the following abbreviations:

• x v φ̂, ~x ≡ x v φ̂ ∨ x v ~x
• fresh(x; φ̂, ~x) ≡ RanGen(x) ∧ x 6v φ̂, ~x
• keyfresh(K; φ̂, ~x) for asymmetric key:

keyfresh(K; φ̂, ~x) ≡ RanGen(K) ∧ dK 6vd φ̂, ~x

• keyfresh(K; φ̂, ~x) for symmetric key:
keyfresh(K; φ̂, ~x) ≡ RanGen(K) ∧K 6ved φ̂, ~x

• x 4 φ̂, ~x ≡ ∀h(h v x ∧ Handle(h)→ φ̂, ~x� h)

~x 4 φ̂, ~y ≡
∨
p(xp1 4 φ̂, ~y ∧ xp2 4 φ̂, ~y, xp1 ∧ ...

∧ xpn 4 φ̂, ~y, xp1 , ..., xpn−1)

Where p runs through all permutations of 1, ..., n. Further, for sym-
metric encryption we also require for x 4 φ̂, ~x that if any R is a
random input of an encryption in φ̂, ~x, x then the only way it can
appear in x is within that same encryption.

If M is a first-order model, satisfaction of predicates and con-
straints in a symbolic execution (denoted by |s=) is defined recur-
sively: Let n = (n1, ..., nk) be a list of names and φ = 〈t1, ..., tm〉
a list of closed terms. Let σ be a substitution of free variables of
the rhs of |s= with elements in the domain ofM.
2In this paper, we will use the notation {x}ReK and dec(y, dK) for
both symmetric and asymmetric encryptions with random input R,
where in the symmetric case, eK = dK = K. We use {|x|}RK and
sdec(y,K) for symmetric encryption and decryption only.

• Satisfactions of predicates byM, σ, n, φ (depends onM):

– M, σ, n, φ |s= t = t′ ifM, σ |= t = t′

– M, σ, n, φ |s= φ̂, s1, ..., sn �Ot
ifM, σ |= t1, ..., tm, s1, ..., sn �Ot.

– M, σ, n, φ |s= φ̂, s1, ..., sn IOt
ifM, σ |= t1, ..., tm, s1, ..., sn IOt.

• Satisfactions of constraints byM, σ, n, φ are independent of
M and σ so we define them as satisfaction by n, φ:

– Handle(h) for h closed term:
n, φ |s= Handle(h) if h∈H.

– RanGen(s) for s closed term:
n, φ |s= RanGen(s) if s ∈ N
andM, σ |= s = n1 ∨ ... ∨ s = nk.

– t v φ̂, where t is closed term:
n, φ |s= t v φ̂ if t is a subterm of some ti

– t v s1, ..., sn, where s1, ..., sn, t are closed terms:
n, φ |s= tvs1, ..., sn if t is a subterm of some si

• Satisfaction of any FOL formula byM, σ, n, φ:

– θ1∧θ2, θ1∨θ2, and ¬θ are interpreted as usual in FOL.
– If x is not under a constraint in θ, interpretations of ∀xθ

and ∃xθ are defined as usual in FOL.
– If x occurs under a constraint in θ, then
∗ M, σ, n, φ |s= ∀xθ iff for every ground term t,
M, σ, n, φ |s= θ{x 7→ t}
∗ M, σ, n, φ |s= ∃xθ iff there is a ground term t,
M, σ, n, φ |s= θ{x 7→ t}

• Satisfaction at step m:
M, σ, ((q, n), 〈h1, ..., hm〉 , φm,Θ) |s= θ

iffM, σ, n, φm |
s
= θ.

We say there is a successful symbolic attack against the security
property θ (a first-order formula) of the protocol if there is a model
M and state of an execution ((q, n), 〈h1, ..., hm〉 , φm,Θ) such
thatM, ((q, n), 〈h1, ..., hm〉 , φm,Θ) |s= ¬θ holds, and moreover,
M, ((q, n), 〈h1, ..., hm〉 , φm,Θ) also satisfies the computation-
ally sound axioms that we introduce in the rest of the paper. This
is the same as saying that there is a successful symbolic attack if at
a certain point of some symbolic execution, the axioms, the agent
checks and the negation of the security property are all consistent.

EXAMPLE 4.1. We show the beginning of a possible branch in
the symbolic execution of a single session of the NSL protocol.

(q0, ∅, φ0, ∅) (q1, H1, φ1,Θ1) (q2, H2, φ2,Θ2) (q3, H3, φ3,Θ3)
• • • •- - -

where with qAj , qBj counting the states of the A and B, q0 =

(qA0 , q
B
0 , n0), and q1 = (qA1 , q

B
0 , n1), and q2 = (qA1 , q

B
1 , n2), and

q3 = (qA2 , q
B
1 , n3) and q4 = (qA2 , q

B
2 , n4). In other words, we

interleave the actions of A and B, as in an expected execution and
assume that the two processes were first activated. Let W denote
the unary predicate that tells if its argument is an agent name.

• n0 = (), φ0 = 〈〉, Θ0 = ∅
• n1 = (KA,KB), H1 = ∅,
φ1 = 〈A,B, eKA, eKB〉, Θ1 = ∅
• n2 = (KA,KB , N1, R1),
H2 = 〈h1〉,
φ2 extends φ1 with {〈N1, A〉}R1

eKB
,

Θ2 = {φ1 � h1}

5

• n3 = (KA,KB , N1, R1, N2, R2)
H3 = 〈h1, h2〉,
φ3 extends φ2 with
{〈π1 (dec(h2, dKB)) , 〈N2, B〉〉}R2

eKπ2(dec(h2,dKB))
,

Θ3 = Θ2 ∪ {φ2 � h2,W (π2 (dec(h2, dKB)))}
• n4 = (KA,KB , N1, R1, N2, R2, R3),
H4 = 〈h1, h2, h3〉,
φ4 extends φ3 with {π1 (π2 (dec(h3, dKA)))}R3

eKB
,

Θ4 = Θ3 ∪ {φ3 � h3, π1 (dec(h3, dKh)) = N1,
π2 (π2 (dec(h3, dKA))) = B},
• H5 = 〈h1, h2, h3, h4〉,
φ5 = φ4,
Θ5 = Θ4 ∪ {φ4 � h4, dec(h4, dKB) = N2},

LetM be a model such that π2 (dec(h2, dKB)) = A, and h2 =M
{〈N1, A〉}R1

eKB
, and h3 =M {〈N1, 〈N2, B〉〉}R2

eKA
, and h4 =M

{N}R3
eKB

, and �M is simply the classical Dolev-Yao deduction
relation. Then the execution sequence above is valid w.r.t. M,
and this corresponds to the correct execution of the NSL protocol
between A and B.

EXAMPLE 4.2. Consider again Example 4.1, and a model M
in which N0, {N1, N2, B}R2

eKA
�M {N1, N0, B}reKA for an hon-

estly generated nonce N0 that can be chosen by the attacker; the
transition sequence of the previous example is also valid w.r.t. this
model. This however yields an attack, using a malleability prop-
erty of the encryption scheme. Discarding such attacks requires
some properties of the encryption scheme (for instance IND-CCA).
It can be ruled out by the axioms that we will introduce. From this
example, we see that unexpected attacks can be found when some
assumption is not explicitly stated as an axiom to limit adversarial
capabilities.

5. COMPUTATIONAL EXECUTION
We now summarize the computational semantics. Short proofs

of Theorems 5.2 and 5.3 are in the Section 6 using Fitting’s embed-
ding of classical logic into S4 [25].

5.1 Computational Execution
Following Bana and Comon, we consider a family of computa-

tional algebras, parametrized by a security parameter η, in which
each function symbol is interpreted as a polynomially computable
function on bit strings (that may return an error message). Given
a sample τ of names, every ground term t can be interpreted as
a bit string [[t]]τ in such a way that [[_]]τ is a homomorphism of
F-algebras (a name n is interpreted as a bit string τ(n)). More
generally, if σ is an assignment of the variables of t to bit strings,
[[t]]στ is the (unique) extension of τ (on names) and σ (on variables)
as a homomorphism of F-algebras.

Given a set of transition rules, a computational state consists of

• a symbolic state s (that is itself a tuple ((q, n), h, φ,Θ))
• a sequence of bit strings 〈b1, ..., bm〉 (attacker outputs)
• a sequence 〈b′1, ..., b′m〉 of bit strings (agents’ outputs)
• the configuration γ of the attacker.

Given a PPT interactive Turing machine Mc and a sample τ , a
sequence of transitions

(s0, ∅, ~b′0, γ0)→ ...→ (sm, 〈b1, ..., bm〉 ,
〈
b′1, ..., b

′
m

〉
, γm)

is (computationally) valid with respect toMc and τ if

• s0 → · · · → sm is a transition sequence of the protocol

• for all i = 0, ...,m − 1, si = ((qi, ni), hi, φi,Θi), φi+1 =
(φi, ui), [[ui]]τ = b′i+1

• for every i = 0, ...,m − 1, there is a configuration γ′i of the
machine Mc such that γi `∗M γ′i `∗M γi+1 and γ′i is in a
sending state, the sending tape containing bi+1, γi+1 is in a
receiving state, the receiving tape containing b′i+1

• for all i=0, ...,m−1, the bit strings τ , {h1 7→b1, ..., hi+1 7→
bi+1} satisfy all agent checks listed in Θi+1.

Here `∗M means what the machine (in whatever model it is defined)
can compute via a sequence of computational steps.

5.2 Computational satisfaction of formulas
We recall the computational interpretation of the original predi-

cates, = and � here and the semantics of compound formulas. The
difference between our presentation here and that of [7] is that we
do not assume any computability condition on non-negligible sets
any more, as we apply a trick in the soundness proof that makes it
unnecessary. Interpretations of the new predicates are presented in
later sections.

Let (Ω0,Σ0,Prob0) be the probability space of infinite fair coin
tosses, Ω0 being the the set of infinite bit strings, Σ0 the measurable
sets generated by fixing finitely many outcomes, and Prob0 the
probability measure assigning the probabilities to the sets of Σ0.
For a finite bit string b ∈ {0, 1}∗ of length n, let b̄ ⊂ Ω0 denote
the set of infinite bit strings for which the initial n bits are exactly
b. Let Σf be the set generated by finite unions intersections, and
subtractions of sets of the form b̄ (including Ω). Σ0 is the σ-closure
of Σf .

Let Mc be an interactive PPT Turing machine with a special
challenge control state qch. We may regard this machine as an
attacker, who moves to the state qch when he thinks that he is
ready to break the security property. As usual, the machine takes
the security parameter 1η as an initial input. Mc interacts with
the protocol agents, which are also assumed to be interactive PPT
Turing machines, and they respond to the calls of the adversary.
Since once η is fixed, such an execution is probabilistic, and for
each security parameter η, we denote underlying probability space
by (Ωη,Ση,Probη), which is just a copy of the (Ω0,Σ0,Prob0)
above. We denote the elements of Ωη by ωη . (Actually, the ad-
versary’s random string and the agent random strings are separate,
but as there are finitely many of them, they can be thought to be
on a single string) Each ωη is one particular random string. Let
Ω = (Ωη)η∈N. Let τ(ωη) be the assignment of all fixed bit string
evaluations τ(n) of names given for ωη . For a given n name, we
just use simply n(ωη) for the bit string τ(ωη)(n).

By a non-negligible set of coins S, we mean S = (Sη)η∈N,
where for all η ∈ N, Sη ∈ Σηf , and Probη{Sη} is non-negligible
function of η. We use the notation S1 ⊆ S2 for S1 = (Sη1)η∈N
and S2 = (Sη2)η∈N non-negligible sets of coins if for all η ∈ N,
Sη1 ⊆ Sη2 . In what follows, S is any such non-negligible set of
coins. The domain of interpretation D(S) = D is the same for
all S: PPT algorithms that take as input η, read from the random
tape ωη , and output a bit string. (As ωη is infinite coin tosses, the
algorithms of course do not read it all, they terminate in polynomial
time.)

We recall the interpretations of = and � from [8]: Let σ be a
sequence of PPT machines (e.g. one for each free variable xi of θ):
Ax1 , ...,Axn ∈ D. For example, and Ax can be the evaluation of
any name (in which case Ax(η, ωη) = n(ωη), or any value for a
handle computed by the adversary, or some more complex object.
Let σ(ωη) denote the assignments x1 7→ Ax1(η, ωη), ..., xn 7→
Axn(η, ωη). If st(η, ωη) is a statement, then for any fixed S =
(Sη)η∈N, instead of “for all η ∈ N and all ωη ∈ Sη, st(η, ωη)”,

6

we simply write “for all ω ∈ S, st(ω)”.

• For the equality predicate, Mc,Π, S, σ |c= t1 = t2 iff there
is a subset S′ ⊆ S such that S \ S′ is negligible, and for all
ω ∈ S′, [[t1]]

σ(ω)

τ(ω) = [[t2]]
σ(ω)

τ(ω) .

• For the derivability predicate,Mc,Π, S, σ |c= φ̂, t1, ..., tn�t
if for all non-negligible S′ ⊆ S, there is a non-negligible
S′′ ⊆ S′ and a PPT Turing machine A such that for all ω ∈
S′′, A([[φm(ω)]]

σ(ω)

τ(ω) , [[t1]]
σ(ω)

τ(ω) , ..., [[tn]]
σ(ω)

τ(ω) , a(ω), r(ω)) =

[[t]]
σ(ω)

τ(ω) where m(ω) is the step at which Mc reached the
challenge state, a(ω) stands for the protocol adversary’s out-
put and r(ω) is some fresh input from the random tape.
• If P is a constraint, ~t are closed terms thenMc,Π, S, σ |=
P (~t) iff there is S′ ⊆ S such that, S\S′ is negligible, and for
all ω ∈ S′, the unique valid computation of Π with respect
toMc, τ(ω) yields a state (((q, n), h, φ,Θ), b, b′, γ) in the
control state qch such that n, φ |s= P (~t).

About the fresh r(ω), note we assumed for any non-negligible set
S that Sη ⊆ Σηf and not Sη ⊆ Ση0 , so there can always be fresh
random bits generated inside S.

Satisfaction of compound formulas are defined the following way.

• Mc,Π, S, σ |c= θ1 ∧ θ2
iffMc,Π, S, σ |c= θ1 andMc,Π, S, σ |c= θ2.
• Mc,Π, S, σ |c= θ1 ∨ θ2 iff for any S′ ⊆ S non-negligible,

there is a S′′ ⊆ S′ non-negligible such that
eitherMc,Π, S′′, σ |c= θ1 orMc,Π, S′′, σ |c= θ2.
• Mc,Π, S, σ |c= θ1 → θ2 iff for all S′ ⊆ S non-negligible,
Mc,Π, S′, σ |c= θ1 impliesMc,Π, S′, σ |c= θ2
• Mc,Π, S, σ |c= ¬θ iff for all S′ ⊆ S non-negligible,
Mc,Π, S′, σ |6 c= θ

• Mc,Π, S, σ |c= ∃x.θ iff for any S′ ⊆ S non-negligible, there
is a S′′ ⊆ S′ non-negligible and a PT machine Ax such that
Mc,Π, S′′, σ,Ax |

c
= θ

• Mc,Π, S, σ |c= ∀x.θ iff for any probabilistic polynomial time
machine Ax, Mc,Π, S, σ,Ax |

c
= θ

• If x is a constrained variable, the interpretation of ∃x.θ is
analogous to the symbolic case: M,Π, S, σ |c= ∃x.θ if and
only if for every non-negligible S′ ⊆ S there is a non-
negligible S′′ ⊆ S′ and a ground term t, such that the satis-
factionM,Π, S′′, σ |c= θ{x 7→ t} holds.
• If x is a constrained variable, the interpretation of ∀x.θ is

analogous to the symbolic case: M,Π, S, σ |c= ∀x.θ if and
only if for every ground term t, the satisfactionM,Π, S, σ |c=
θ{x 7→ t} holds.

Mc,Π |c= θ iffMc,Π,Ω |c= θ and Π |c= θ ifMc,Π |c= θ for every
Mc and qch.

Given a protocol Π, we say that there is a successful computa-
tional attack against the security property θ (a first-order formula)
of the protocol if there is a an attackerMc and a non-negligible set
of coins S such thatMc,Π, S |c= ¬θ (which is the same as Π |6 c= θ).

Despite that semantics of the compound formulas is not as usual
in first-order logic, we prove in Section 6 that as a consequence of
Fitting’s embedding [25] of classical logic into S4, the following
theorems hold.

THEOREM 5.1 (FITTING’S EMBEDDING). With the above se-
mantics, first-order deduction rules are sound.

THEOREM 5.2 (TRACE MAPPING). Let Π be a protocol, s1→
... → sm be a symbolic transition sequence of Π and Mc be a
probabilistic polynomial time interactive Turing machine. If there
is a non-negligible set of coins S such that, for any ω ∈ S, there is a
sequence of transitions (s0, ~b0, ~b′0, γ0)→ · · · → (sm, ~bm, ~b′m, γm)
that is computationally valid w.r.t.Mc, τ(ω) and γm is in the chal-
lenge state qch, then for any set of FOL formulas Φ,Mc,Π, S |c= Φ
implies there is a symbolic modelM such that s0 → · · · → sm is
a valid symbolic execution w.r.t.M andM, sm |

s
= Φ.

THEOREM 5.3 (GENERAL SOUNDNESS). If there is a suc-
cessful computational attack such that the number of sessions of
honest agents are bounded in the security parameter, then there is
also a successful symbolic attack.

5.3 Axioms for Equality and Derivability
We recall the core axioms presented in [6]. As usual, unquan-

tified variables are universally quantified. Unless noted otherwise,
they are always sound.

Equality is a Congruence:
• x = x, and the substitutability (congruence) property of

equal terms holds for = and �.
Core Axioms for the Derivability Predicate:
• Self derivability: φ̂, ~x, x� x

• Increasing capabilities: φ̂, ~x� y −→ φ̂, ~x, x� y
• Commutativity: If ~x′ is a permutation of ~x, then
φ̂, ~x� y −→ φ̂, ~x′ � y
• Transitivity of derivability:
φ̂, ~x� ~y ∧ φ̂, ~x, ~y � ~z −→ φ̂, ~x� ~z
• Functions are derivable: φ̂, ~x� f(~x)

This axiom is sound as long as functions are interpreted as
PT computable algorithms.

Axioms for Freshly Generated Items:
• No telepathy: fresh(x; φ̂) −→ φ̂ 6� x

This axiom is sound as long as RanGen() items are generated
so that they can only be guessed with negligible probability.
A more general version is also possible as
fresh(x; φ̂, ~x) ∧ ~x 4 φ̂ −→ φ̂, ~x 6� x
• Fresh items do not help to compute:

fresh(x; φ̂, ~x, y) ∧ ~x, y 4 φ̂ ∧ φ̂, ~x, x� y −→ φ̂, ~x� y
Equations for the fixed function symbols: For example, for

symmetric encryption sdec({|x|}RK ,K) = x, and for pairing,
π1 (〈x, y〉) = x; π2 (〈x, y〉) = y. Function of error is error
f(...,⊥, ...) = ⊥, etc.

6. THE FITTING CONNECTION
The trace mapping and the general soundness theorems for ar-

bitrary first-order formulas were proven directly from their defini-
tions by an elaborate argument in [7]. We have realized however,
that they are rather easy consequences of Fitting’s embedding of
first-order logic into first-order S4 [25]. The non-Tarskian compu-
tational semantics of first-order formulas that naturally arouse in
the BC technique turns out to be a special kind of Kripke seman-
tics of first-order S4 composed with Fitting’s embedding of FOL
into first-order S4. We detail this connection here, and show how
trace mapping and general soundness follow from Fitting’s theo-
rem. This section assumes basic familiarity with S4 modal logic
and its first-order extension as well as Kripke semantics.

For any first-order formula θ, consider the Fitting transformation
θ 7→ θ∗, where θ∗ is a formula of first-order S4, and is defined
recursively as follows:

7

• For any atomic formula θ, let θ∗ ≡ 23θ.
• (¬θ)∗ ≡ 2¬θ∗
• (θ1 → θ2)∗ ≡ 2(θ∗1 → θ∗2)
• (θ1 ∧ θ2)∗ ≡ (θ∗1 ∧ θ∗2)
• (θ1 ∨ θ2)∗ ≡ 23(θ∗1 ∨ θ∗2)
• (∀xθ)∗ ≡ ∀xθ∗
• (∃xθ)∗ ≡ 23∃xθ∗

Fitting in [25] put 23 everywhere and noted that it is redundant in
front of the conjunction. It is also easy to check that if the Barcan
formula and its converse (∀x2θ ↔ 2∀xθ) are assumed (that is,
when the domain does not change from possible world to possible
world in the Kripke structure), then 23 is also redundant in front of
the universal quantification (as θ∗ ↔ 23θ∗ holds in our definitions
for all θ). In our computational situation the domain is unchanged
as we show below. So in this paper we assume the Barcan formula
and its converse.

Fitting’s theorem says that any formula θ is derivable in first-
order logic if and only if θ∗ it is derivable in S4 with the Barcan
formulas. (Without the Barcan formulas, (∀xθ)∗ ≡ 23∀xθ∗ has
to be written above).

Observe that if we think of non-negligible sets as possible worlds,
and the subset relation as accessibility (that is, if S′ is accessible
from S iff S′ ⊆ S), then we can define a computational Kripke
semantics: For our predicates, consider the S4 satisfaction relation
Mc,Π, S, σ |s4= that we define almost the same way as the BC com-
putational satisfaction |c= of Section 5.2 is defined, except that we
drop the "for all non-negligible S′ ⊆ S, there is a non-negligible
S′′ ⊆ S′" phrase, and replace S′′ with S in the remaining of the
definition. For example, the satisfaction of derivability becomes:

• For the derivability predicate,Mc,Π, S, σ |s4= φ̂, t1, ..., tn�t
if there is a PPT Turing machine A such that for all ω ∈ S,
A([[φm(ω)]]

σ(ω)

τ(ω), [[t1]]
σ(ω)

τ(ω), ..., [[tn]]
σ(ω)

τ(ω), a(ω), r(ω))=[[t]]
σ(ω)

τ(ω)

where m(ω) is the step at whichMc reached the challenge
state, a(ω) stands for the protocol adversary’s output and
r(ω) is some fresh input from the random string.

For an arbitrary θ first-order S4 formula,Mc,Π, S, σ |s4= 2θ is de-
fined to hold if and only if Mc,Π, S′, σ |s4= θ holds for all non-
negligible S′ ⊆ S, andMc,Π, S, σ |s4= 3θ is defined to hold if and
only ifMc,Π, S′, σ |s4= θ holds for some non-negligible S′ ⊆ S.
Taking θ to be φ̂, t1, ..., tn� t, and applying 23 to the above defi-
nition of S4 satisfaction, we receive the computational satisfaction
of Bana and Comon-Lundh. That is,Mc,Π, S, σ |c= φ̂, t1, ..., tn�t

if and only ifMc,Π, S, σ |s4= 23φ̂, t1, ..., tn � t.
Note also that for the equality predicate and for the constraints,

"for all non-negligible S′ ⊆ S, there is a non-negligible S′′ ⊆ S′"
can be freely inserted in the definition, as the resulting definition is
equivalent with the original: for example, if for all non-negligible
S′ ⊆ S, there is a non-negligible S′′ ⊆ S′ such that [[t1]]

σ(ω)

τ(ω) =

[[t2]]
σ(ω)

τ(ω) holds on S′′, then it also holds up to negligible probabil-
ity on S, because if there were a non-negligible subset S′ ⊆ S on
which [[t1]]

σ(ω)

τ(ω) 6= [[t2]]
σ(ω)

τ(ω) were true, then this S′ would not have
some non-negligible subset S′′ on which they are equal, a contra-
diction. So BC could have defined satisfaction of equality as

• For the equality predicate, Mc,Π, S, σ |c= t1 = t2 iff for
all non-negligible S′ ⊆ S, there is a non-negligible subset
S′′ ⊆ S′ such that for all ω ∈ S′′, [[t1]]

σ(ω)

τ(ω) = [[t2]]
σ(ω)

τ(ω) .

That is, Mc,Π, S, σ |c= t1 = t2 iff Mc,Π, S, σ |s4= 23t1 = t2.
The same is true for constraints. Hence we have this for all atomic
formulas. |s4= for compound formulas is defined as usual in Kripke
semantics. For example, Mc,Π, S, σ |s4= θ1 ∨ θ2 if and only if
Mc,Π, S, σ |s4= θ1 orMc,Π, S, σ |s4= θ2.

Comparing the definition of |c= in Section 5.2 for compound
formulas with Fitting’s embedding, for any first-order formula θ,

Mc,Π, S, σ |c= θ ⇐⇒Mc,Π, S, σ |s4= θ∗.

For a set of first-order formulas Φ, let Φ∗ mean the set that we get
by applying the Fitting transformation to all formulas in Φ. Since
with |s4= , our computational semantics is a special kind of Kripke
semantics, Fitting’s theorem implies that ifMc,Π, S, σ |s4= Φ∗ holds
and if Φ `FOL θ, thenMc,Π, S, σ |s4= θ∗. So we also have that if
Mc,Π, S, σ |c= Φ holds and if Φ `FOL θ, then Mc,Π, S, σ |c= θ.
This is exactly Theorem 5.1.

The Barcan formula and its converse hold, as the domain D does
not depend on the non-negligible sets.

For Theorem 5.2, note that it is assumed in the theorem that for
all ω ∈ S the computational execution has the same length m and
the symbolic part of their traces, si agree. Remember that the sym-
bolic states have the transition conditions Θi in them. So at the
challenge state, we haveMc,Π, S |c= Θm ∧ Φ. Note that since on
the traces, si agree, the terms that are in the frame also agree for
all trace ω ∈ S. Therefore, φ̂ in the formulas of θm and Φ can be
replaced by the list of terms in the frames. Let θ′m and Φ′ denote
the formulas we receive this way. Then, Mc,Π, S |c= Θ′m ∧ Φ′.
This is the same asMc,Π, S |s4= (Θ′m∧Φ′)∗, that, by Fitting’s the-
orem means that Θ′m ∧Φ′ is first-order satisfiable (because (Θ′m ∧
Φ′)∗ is S4 satisfiable). Hence there is a symbolic modelM with
M|s= Θ′m∧Φ′. As Θ′m and Φ′ have no frames in them, it is easy to
see from the symbolic satisfaction thatM, sm |

s
= Θ′m ∧ Φ′ is also

satisfied as satisfaction does not depend on the state. Finally, as in
sm, the frames contain exactly the terms with which we replaced
φ̂, we can now write them back and receive M, sm |

s
= Θm ∧ Φ.

Which also means that Θm and Φ are first-order consistent.
Finally, for proving Theorem 5.3, consider the following. If there

is a computational attack, that is, if the negation of the security for-
mula θs is computationally satisfied by some Mc,Π, S, then, as
long as only bounded number (in the security parameter) of ses-
sions are allowed, the maximum number of different (with respect
to ω) symbolic transitions s1 → · · · → sm does not depend on
the security parameter. Therefore, S can be split (up to negligible
probability) into a fixed number of non-negligible subsets on each
of which s1 → · · · → sm is independent of ω. Pick one, call it S′.
ThenMc,Π, S′ computationally satisfies ¬θs as well as all com-
putationally sound axioms (denote the set by ΦA), and Θm also:
Mc,Π, S′ |c= Θm ∧ ΦA ∧ θs. Hence, By Theorem 5.2 there is
a symbolic modelM such thatM, sm |

s
= Θm ∧ ΦA ∧ θs, which

exactly means that there is a symbolic attack.
Note, although by Fitting’s theorem, the first-order deduction

rules are computationally sound, it is not possible in the current
formulation to deduce security properties from the axioms only by
first-order deduction rules and nothing else. The BC technique has
no formulas expressing the transition system, no formulas saying
the agents follow the protocol roles. Explicit time and some axiom
for induction would also be needed as in [9]. These are taken care
by the symbolic execution.

7. DERIVABILITY WITH ORACLES

8

Syntax of various types of derivability with oracles was intro-
duced in Section 3. Here we define their computational semantics
and list a number of axioms that are computational sound.

7.1 Computational Semantics of Derivability
with Oracles

Let Osic2 be the following oracle: It first takes a list of honestly
generated keysK and some additional list C of ciphertexts. The or-
acle can be called for encryption by submitting a string to encrypt
along with the encrypting key’s place number inK. The oracle hon-
estly generates the desired encryption, returns the result and adds it
to the list C. The oracle can also be called for a decryption again
with specifying the key and providing a ciphertext. If the ciphertext
is not one of those in C, the oracle outputs the decryption. LetOskc2

take K and C as above, but also τ(L) assignment of bit strings to
a finite set of name symbols L. The oracle accepts descriptions of
functions of the names L, the ciphers C and the keys K, into which
he substitutes the corresponding bit strings, computes the function
and then encrypts the result with the specified key and adds it to
C. Decryption works as forOsic2. LetOaic2 andOakc2 be the analo-
gous notions for public key encryption. PPT algorithms with oracle
access will be written as AO , BO

O

.
The meaning of the definition is that Mc,Π, S, σ |s4= φ̂, ~x �Ox

holds if there is a PPT algorithmAO that, for ω ∈ S, receiving the
bit strings [[φ̂, ~x]]

σ(ω)

τ(ω) , it outputs the bit string [[x]]
σ(ω)

τ(ω) . In the com-
putation AO can request encryption and decryption oracles corre-
sponding to the honest keys, but it will only receive a decryption if
the submitted bit string is not a bit string corresponding to an en-
cryption in φ̂, ~x or a bit string received from the encryption oracle.
Outside S, nothing is required.

DEFINITION 7.1. Semantics of Derivability with Oracles: Let
Mc,Π, S, σ be as before. Let a(ωη) denote the protocol adversary
output as it reaches the challenge state on the random input ωη ,
and let m(ωη) denote the number of moves till then. We write
Mc,Π, S, σ |s4= φ̂, ~x �Ox iff there is a PPT Turing machine AO
such that for all ω ∈ S,

AO
(
[[φm(ω)]]

σ(ω)

τ(ω) , [[~x]]
σ(ω)

τ(ω) , a(ω), r(ω)
)

= [[x]]
σ(ω)

τ(ω)

where r(ω) is some fresh (not used for the computation of φ̂, ~x, x)
random input from the random string. On each ω, if the tuple
(((q, n), h, φ,Θ), b, b′, γ) denotes the state yielded by the unique
valid computation of Π with respect toMc and τ(ω), then the or-
acles receive in K all keys (bit strings) corresponding to the keys
in n, and in C all strings of the form [[{z}ReK]]

σ(ω)

τ(ω) with R and K

names in n, and n, φ |s= {z}ReK v φ̂, ~x. In τ(L), the KDM oracles
receive all assignments of names in n̄ to bit strings, except (in the
symmetric case), for those that occur as random inputs R to the
encryptions in C.

We shorten this as

Mc,Π, S, σ ||= AO
O

(φ̂, ~x) = x,

implicitly assuming the algorithm has access to the protocol adver-
sary’s knowledge and to random bits. Let

Mc,Π, S, σ |c= φ̂, ~x�
Ox iff Mc,Π, S, σ |s4= 23(φ̂, ~x�

Ox).

Note that in the KDM case, the submitted functions may depend on
randomly generated items that differ from the secret keys but are
not accessible to the protocol adversary. For example, it is allowed

to depend on a secret nonce. This is necessary for receiving nice
axioms for the KDM case, and we explain the reason at the axioms.
Still, assuming the usual KDM security is enough to prove that an
unsent key is uncompromised with such oracle access. The reason
is that when a KDM attack is constructed from the protocol attack,
the KDM attacker has access to the items generated by the honest
agents except for the secret keys and for the random inputs to the
encryptions.

7.2 Axioms for Derivability with Oracles
The following axioms (except for the second and last entry of

the core axioms for derivability predicates) are very similar to the
ones in Section 5.3, and are just as trivial. The second entry of the
core axioms for derivability predicates with oracles is also trivially
computationally sound.

Core Axioms for the Derivability Predicate with Oracles.
• Let SameEnc(~x; ~y) be the constraint that there is a one-to-

one correspondence between the honest encryption terms of
~x and ~y such that the corresponding encryption terms are
equal (with respect to the equality predicate). Then
SameEnc(~x; ~y) ∧ ~x, x = ~y, y −→ (φ̂, ~x�Ox↔ φ̂, ~y�Oy).
• More oracles help more: If the oracles of O are more power-

ful than the oracles of O′, then φ̂, ~x�O′ x −→ φ̂, ~x�Ox.
In particular, φ̂, ~x� x −→ φ̂, ~x�Ox and
φ̂, ~x�aic2 x→ φ̂, ~x�akc2 x and φ̂, ~x�sic2 x→ φ̂, ~x�skc2 x
• Increasing capabilities: φ̂, ~x�Oy −→ φ̂, ~x, x�Oy
• Commutativity: If ~x′ is a permutation of ~x, then
φ̂, ~x�Oy −→ φ̂, ~x′ �Oy
• Transitivity: φ̂, ~x�O~y ∧ φ̂, ~x, ~y �O~z −→ φ̂, ~x�O~z
• Decryption Oracles help:

RanGen(K) ∧ φ̂, ~x�
Oy

∧ ∀xR(y = {x}ReK → {x}ReK 6v φ̂, ~x)

−→ φ̂, ~x�
Odec(y, dK).

This expresses that if y is computable and is not an encryp-
tion in φ̂, ~x, then dec(y, dK) is also computable from the
same items as the decryption oracle can be called. We do not
have to require that y is none of the encryptions done by the
oracles, because if they were, then the decryption is known
to the submitter. Again, this follows purely from the defini-
tion of �O, CCA2 security of the encryption is not required.
This axiom together with the transitivity axiom easily imply

RanGen(K) ∧ φ̂, ~x�
Oy ∧ φ̂, ~x, dec(y, dK) �Oz

∧ ∀xR(y = {x}ReK → {x}ReK 6v φ̂, ~x) −→ φ̂, ~x�
Oz.

This replaces the non-malleability axiom of [6] for the deriv-
ability predicate. With tiny modifications, it is possible to
rewrite the NSL proof presented in [6] for using the �Opred-
icate and this simpler axiom instead of the � predicate with
the non-malleability axiom there.

Axioms for Freshly Generated Items. These axioms are sound
for the same reason as the corresponding ones for � were:
• No telepathy: fresh(x; φ̂, ~x) ∧ ~x 4 φ̂ −→ φ̂, ~x 6�Ox

(implies no-telepathy axiom without oracles). This is sound
as long as RanGen() means generation with negligible guess-
ing probability only.
• Fresh items do not help to compute: fresh(x; φ̂, ~x, y) ∧
~x, y 4 φ̂ ∧ φ̂, ~x, x�Oy −→ φ̂, ~x�Oy

φ̂, ~x, x�Ox is implied by the more oracles help more axiom and the
self-derivability axiom of derivability predicate. Also, φ̂, ~x�Of(~x).

9

8. KEY USABILITY
Syntax of various types of key usability was introduced in Sec-

tion 3. Here we define their computational semantics and list a
number of axioms that are computational sound.

8.1 IND-CCA2 and KDM-CCA2 cases

8.1.1 Semantics of IND-CCA2 Key Compromise
The idea of key usability is that a key has been uncompromised,

that is, it can be used for safe encryption. To match the computabil-
ity predicate, we define the negation of it, that is, key compromise.
The intuitive meaning of φ̂, ~x IOK is that φ̂, ~x compromises the
key (with oracles) and it cannot be used for safe encryption any
more.

The first thought here would be to define the compromise so that
from φ̂, ~x, an x can be computed such that the encryption of x and
of 0|x| are computationally distinguishable. However, the major
difficulty here (and the major difference from [24]) is that we have
to define our notion for any S. Computational distinguishability on
an arbitrary set has no meaning: even in the usual CCA2 game with
CCA2 secure encryption, there can be non-negligible sets of coins
defined on which the CCA2 attacker returns 1 if the real bit string
is encrypted, while 1 with probability 1/2 if the 0’s are encrypted;
it is very easy to find sets like this.

What we came up with is a notion of observational inequiva-
lence: encryptions of x and 0|x| have to be observationally inequiv-
alent on S, where PPT algorithms with oracle access provide the
contexts and equality on S provides the equivalence.

DEFINITION 8.1 (KEY COMPROMISE). The define the rela-
tionMc,Π, S, σ |s4= φ̂, ~x IOK to hold if eitherMc,Π, S, σ |s4= ~x 64
φ̂ ∨ ¬RanGen(K), or there are R, PPT algorithmsAO21, AO22, and
AO1 (in the IND case) or x (in the KDM case) such that:

In the the IND case

• R is generated honestly, statistically independently of the in-
terpretations of φ̂, ~x, AO

O

1 (φ̂, ~x) and
• EitherMc,Π, S, σ ||=

AO21(ϕ, ~x, {AO1 (ϕ, ~x)}ReK) = AO22(ϕ, ~x, {AO1 (ϕ, ~x)}ReK)

and for some (hence for all)R′ fresh random input generated
inside S, Mc,Π, S, σ ||=

AO21(ϕ, ~x, {0|A
O
1 (ϕ,~x)|}R

′
eK) 6= AO22(ϕ, ~x, {0|A

O
1 (ϕ,~x)|}R

′
eK)

• OrMc,Π, S, σ ||=

AO21(φ̂, ~x, {AO1 (φ̂, ~x)}ReK) 6= AO22(φ̂, ~x, {AO1 (φ̂, ~x)}ReK)

and for some (hence for all)R′ fresh random input generated
inside S, Mc,Π, S, σ ||=

AO21(φ̂, ~x, {0|A
O
1 (φ̂,~x)|}R

′
eK) = AO22(φ̂, ~x, {0|A

O
1 (φ̂,~x)|}R

′
eK)

In the KDM case

• R is generated honestly, statistically independently of the in-
terpretations of φ̂, ~x, x, andMc,Π, S, σ |c= x 4 φ̂, ~x and
• EitherMc,Π, S, σ ||=

AO21(φ̂, ~x, {x}ReK) = AO22(φ̂, ~x, {x}ReK)

and for some (hence for all)R′ fresh random input generated
inside S, Mc,Π, S, σ ||=

AO21(φ̂, ~x, {0|x|}R
′

eK) 6= AO22(φ̂, ~x, {0|x|}R
′

eK)

• OrMc,Π, S, σ ||=

AO21(φ̂, ~x, {x}ReK) 6= AO22(φ̂, ~x, {x}ReK)

and for some (hence for all)R′ fresh random input generated
inside S, Mc,Π, S, σ ||=

AO21(φ̂, ~x, {0|x|}R
′

eK) = AO22(φ̂, ~x, {0|x|}R
′

eK)

LetMc,Π, S, σ |c= φ̂, ~x IOx iffMc,Π, S, σ |s4= 23(φ̂, ~x IOx).

Recall from Section 6 that 23 means "there is a non-negligible
S′ ⊆ S such that for all S′′..." Also note that as we required our
non-negligible sets to be in Σf , it is always possible to toss fresh
coins inside the non-negligible sets.

Note that while R does not have to be generated inside S, R′

does. In particular, S may actually depend on R, which is essential
for the usability of the axioms, because the non-negligible sets on
which we need to apply the axioms may depend on values of an
encryption, and hence values of R. On the other hand, S is not al-
lowed to depend onR′, which is essential for proving that a freshly
generated key is not compromised.

Note, in the KDM case, x does not have to be computed from
φ̂, ~x, it could be a secret nonce. This corresponds to the fact that in
the semantics of �Oin the KDM case (as we noted after the defini-
tion) we allowed the functions submitted to the oracles to depend
on such items not known to the protocol adversary.

8.1.2 Axioms for CCA2 Key Compromise
We now present the axioms for key compromise. First the core

axioms for which soundness does not need CCA2 security.

Core Axioms for the Key Compromise Predicate.
• Let SameEnc(~x; ~y) be the constraint as before. Then

SameEnc(~x; ~y)∧ ~x, x = ~y, y −→ (φ̂, ~x IOx↔ φ̂, ~y IOy).
• Derivability implies compromise: φ̂,~x�OK−→ φ̂,~x IOK

IfK is computable for the adversary, then it is compromised.
Note, this axiom and the self derivability axiom (from 7.2)
imply that φ̂, ~x,K IOK
• Increasing capabilities for key compromise:
φ̂, ~x IOK −→ φ̂, ~x, x IOK
• Commutativity: If ~x′ is a permutation of ~x, then
φ̂, ~x IOK −→ φ̂, ~x′ IOK
• Transitivity: φ̂, ~x�O~y ∧ φ̂, ~x, ~y IOK −→ φ̂, ~x IOK

The intuitive reason is very clear: ~y just contains extra infor-
mation, that can be computed from φ̂, ~x, so it is not actually
needed in the compromise. This, and the functions are deriv-
able axiom imply φ̂, ~x, f(~x) IOK −→ φ̂, ~x IOK. With
the increasing capabilities axiom, we get φ̂, f(~x) IOK −→
φ̂, ~x IOK. We refer to these as function application.
• Uncompromised keys securely encrypt:

– If O is either aic2 or sic2, then

RanGen(K) ∧ fresh(R; φ̂, ~x, x, y,K)

∧ ~x, x, y 4 φ̂ ∧ φ̂, ~x, {x}ReK �
Oy

−→ φ̂, ~x, x IOK ∨ φ̂, ~x�
Oy

This formula means that if the key is uncompromised,
that is, φ̂, ~x, x 6IOK, then {x}ReK cannot help in de-
riving y. In other words, if it is possible to derive y
with {x}ReK , then it is also possible to derive it without
{x}ReK . The freshness and random generation condi-
tions ensure that {x}ReK is indeed a good encryption

10

(e.g. {N}NeK or {N}eKeK are not good), and also that
y cannot depend on {x}ReK (e.g. y = {x}ReK is not
good). Moreover, ~x, x, y 4 φ̂ ensures that handles in
these terms are given values the adversary can compute
(otherwise e.g. taken x = h, the handle h cannot be
dK if dK was never sent, and it cannot be R either).
This formula is completely analogous to the secrecy ax-
iom in [6] but dK v φ̂, ~x, x there is replaced now with
φ̂, ~x, x Iaic2 K as we can now allow dK to appear
inside a secure encryption for example.

– If O is either akc2 or skc2, then

RanGen(K) ∧ fresh(R; φ̂, ~x, x, y,K)

∧ ~x, x, y 4 φ̂ ∧ φ̂, ~x, {x}ReK �
Oy

−→ φ̂, ~x IOK ∨ φ̂, ~x�
Oy

The difference here from the axiom for IND-CCA2 se-
curity is that in φ̂, ~x IO K now there is no x. This
corresponds to the fact that the encrypted message x is
allowed to contain the decryption key, or it may leak it
somehow together with φ̂, ~x. For more, see Section 11.

It may be surprising however that these core axioms do not
require any security of the encryption. It is purely a conse-
quence of the definition of key compromise and derivability
predicates. (The axiom that requires CCA2 security is the
fresh keys are uncompromised axiom later.)
Here we want to allow x to be any secret thing, such as a
nonce, so only x 4 φ̂ was assumed. That is why in the KDM
definition of key compromise we needed to allow functions
depending on such secret items to be submitted to the en-
cryption oracles in the semantics of �Oand IO.
• Encryptions with uncompromised keys do not compromise:

– IND-CCA2 case. If O is either aic2 or sic2, then

RanGen(K) ∧ RanGen(K′) ∧ fresh(R; φ̂, ~x, x,K,K′)

∧ ~x, x 4 φ̂ ∧ φ̂, ~x, {x}ReK′ IOK

−→ φ̂, ~x, x IOK′ ∨ φ̂, ~x IOK

That is, if φ̂, ~x, {x}ReK′ compromisedK, then eitherK
is already compromised without {x}ReK′ , orK′ was al-
ready compromised by φ̂, ~x, x. Note that this includes
x, the encrypted term. This means that x itself (with
φ̂, ~x) should not compromise K′ if we want {x}ReK′ to
be safe. This is the generalization of that key cycles
may compromise CCA2 encryption. In Section 11 we
will see how this axiom deals with key cycles.

– KDM-CCA2 case. If O is akc2 or skc2, then

RanGen(K) ∧ RanGen(K′) ∧ fresh(R; φ̂, ~x, x,K,K′)

∧ ~x, x 4 φ̂ ∧ φ̂, ~x, {x}ReK′ IOK

−→ φ̂, ~x IOK′ ∨ φ̂, ~x IOK

This is basically the same as the previous one, except
again that φ̂, ~x I K′ does not contain x.

Again, soundness of these axioms follow directly from the
definition of key usability, and it does not depend on what
encryption is used.
In the above formulas,K andK′ could be allowed to encrypt
different kinds of encryptions, not necessarily the same, we
just did not want to overload our formulas.

• Axioms for Freshly Generated Items.
– Fresh keys are not compromised: The intuition of this

axiom is that ifK is fresh, then it can be used for secure
encryption: keyfresh(K; φ̂, ~x)∧ ~x 4 φ̂ −→ φ̂, ~x 6IOK
This axiom is sound if the encryption for which K is
generated (correctly) is CCA2 secure. Depending on
which O is in the axiom, the encryption needs to have
the corresponding level of security. This is the only ax-
iom where the security of the encryption is necessary.
The reader may wonder that proving the KDM case,
what happens to the variables not known to the proto-
col adversary in the submitted functions as the standard
KDM encryption oracle only fills in the gaps of keys,
not other unknown items. However, in a KDM attack
created by the failure of the axiom, the attacker simu-
lates the protocol, and all honestly generated items ex-
cept for the keys and random inputs to the encryptions
in question are available to him.

– Fresh items do not compromise: they were generated
independently and as they have not been sent out, they
have not had a chance to compromise other items:
fresh(x; φ̂, ~x, y)∧~x, y 4 φ̂∧ φ̂, ~x, x IOy → φ̂, ~x IOy

8.2 Ciphertext Integrity

8.2.1 Semantics of Ciphertext Integrity

DEFINITION 8.2. We define INT-CTXT compromise as: We say
thatMc,Π, S, σ |s4= φ̂, ~x Iic K, if and only ifMc,Π, S, σ |s4= ~x 64
φ̂ ∨ ¬RanGen(K), or there is a PPT algorithm AO

sic2
, with

Mc,Π, S, σ ||= sdec(AO
sic2

(φ̂, ~x),K) 6= ⊥

And on S, the output ofAO
sic2

(φ̂, ~x) is not equal any of the outputs
of the encryption oracles, and it is not any of the bit strings corre-
sponding to the honest encryptions in φ̂, ~x. Let
Mc,Π, S, σ |c= φ̂, ~x Iic x iffMc,Π, S, σ |s4= 23(φ̂, ~x Iic x).

The reason for using oracleOsic2 is that the definition of INT-CTXT
security [14] allows the use of encryption and decryption oracles.

8.2.2 Axioms for Ciphertext Integrity Key Compro-
mise

• Let SameEnc(~x; ~y) be the constraint as before. Then
SameEnc(~x; ~y) ∧ ~x,x=~y,y−→(φ̂, ~x Iic x↔ φ̂, ~y Iic y).
• Derivability implies compromise: φ̂, ~x�K −→ φ̂, ~x Iic K
• Increasing capabilities for key compromise:
φ̂, ~x Iic K −→ φ̂, ~x, x Iic K
• Commutativity: If ~x′ is a permutation of ~x, then
φ̂, ~x Iic K −→ φ̂, ~x′ Iic K.
• Transitivity: φ̂, ~x� ~y ∧ φ̂, ~x, ~y Iic K −→ φ̂, ~x Iic K
• Uncompromised key’s encryption cannot be faked:

RanGen(K) ∧ φ̂, ~x� y ∧ dec(y, dK) 6= ⊥

∧ ∀xR(y = {x}ReK → {x}ReK 6v φ̂, ~x) −→ φ̂, ~x Iic K

This means the adversary cannot compute a y which decrypts
to something meaningful. This is exactly what we need from
the INT-CTXT property, namely, that the encryption cannot
be faked. Again, soundness of this axiom does not need INT-
CTXT encryption, it is immediate from our semantics.

11

• Encryptions with uncompromised keys do not compromise:

– For the IND case, we have

RanGen(K) ∧ RanGen(K′) ∧ fresh(R; φ̂, ~x, x,K,K′)

∧ ~x, x 4 φ̂ ∧ φ̂, ~x, {|x|}RK′ I
ic K

−→ φ̂, ~x, x Isic2 K′ ∨ φ̂, ~x Iic K

– For the KDM case, we have

RanGen(K) ∧ RanGen(K′) ∧ fresh(R; φ̂, ~x, x,K,K′)

∧ ~x, x 4 φ̂ ∧ φ̂, ~x, {|x|}RK′ I
ic K

−→ φ̂, ~x Iskc2 K′ ∨ φ̂, ~x Iic K

Soundness of these follow from the compromise definitions.
• Fresh keys are not INT-CTXT compromised if encryption is

INT-CTXT secure:

– keyfresh(K; φ̂) −→ φ̂ 6Iic K. The intuition of this ax-
iom is that if the encryption is INT-CTXT secure and if
K is fresh, then the adversary cannot fake encryptions
with this key.

• Fresh items do not compromise: fresh(x; φ̂, ~x,K) ∧ ~x 4
φ̂ ∧ φ̂, ~x, x Iic K −→ φ̂, ~x Iic K

9. ON CONGRUENCE OF EQUALITY
Note that the semantics of the equality predicate = is not de-

fined as identity in the domain. In fact, on the left-hand sides of the
predicates �Oand IO, equal terms cannot be freely substituted. This
might cause problems with decidability, the result in [20] heavily
builds on the fact that � is invariant under substitution with re-
spect to equal terms. There is, however a solution if we observe
that CCA2 security implies that encryptions cannot be faked: for
CCA2 secure encryption schemes, we can define the semantics of
φ̂, ~x �Ox such that only those ciphers are not decrypted by the de-
cryption oracles that are necessary for the computation of [[φ̂, ~x]].
Here, when we say an encryption is necessary, we mean the encryp-
tion cannot be omitted and the number of encryptions reduced by
this in the process computing [[φ̂, ~x]]. The reason we did not define
our predicates this way is that we did not want the well-definedness
of our predicates depend on whether the encryption satisfies CCA2
security. But if the encryption does satisfy CCA2 security, then �O

and IOcan be defined in the above way and all axioms that we have
listed are also valid for those new definitions, and on the top of it,
= would be a congruence relation.

The symmetric Needham-Schroeder protocol proof as well as
the NSL proof work either way, and we believe this issue does not
make a big difference in protocol proofs in general. But for au-
tomation, the two definitions might make a big difference.

10. SOUNDNESS OF AXIOMS

THEOREM 10.1 (SOUNDNESS). With the computational in-
terpretations of derivability and key compromise predicates, the ax-
ioms are computationally sound. For the "fresh keys are not com-
promised", it is necessary that the implementation of the encryp-
tion satisfies the corresponding (symmetric or asymmetric, IND or
KDM-CCA2 security, or INT-CTXT ciphertext integrity). Sound-
ness of the other axioms do not require that. Furthermore, the no-
telepathy axiom requires that freshly generated items are guessable
only with negligible probability.

Note, unlike for general soundness (Theorem 5.3), here the num-
ber of sessions in the computational execution does not have to be
bounded in the security parameter.

We detail the proofs in the IND case, the KDM case is sketched,
details will be included in the long version.

PROOF. As the soundness proofs of the axioms for derivability
with oracles are essentially the same as the soundness proofs for
key compromise below, we skip that and focus on key compromise.

• Substitutability of equal terms: The reason is that according
to the definition of key compromise, compromise of the item
on the right hand side of IOonly depends on the bit string that
is associated to the term there, and not on the structure of the
term. This is in contrast with the left hand side. The notion
that anything can be submitted to the decryption oracle that
is not an encryption on the left clearly depends on the term
structure on the left, so we have to make sure that in ~x and ~y
the same encryption values occur.
• Derivability implies compromise: Soundness of this axiom

is rather trivial, but we write it out for clarity. In order to
show that in any protocol execution and n.n. set S, we have
Mc,Π, S |c= ∀~xK(φ̂, ~x�OK −→ φ̂, ~x IOK), by the com-
putational semantics we have to show that for any evaluation
σ of the variables, and for any S′ ⊆ S non-negligible set,
Mc,Π, S′, σ |c= φ̂, ~x�OK impliesMc,Π, S′, σ |c= φ̂, ~x IO

K. So supposeMc,Π, S′, σ |c= φ̂, ~x �OK holds. To show
Mc,Π, S′, σ |c= φ̂, ~x IOK, let us take any n.n. S′′ ⊆ S′. By
Mc,Π, S′, σ |c= φ̂, ~x �OK, there is a n.n. S′′′ ⊆ S′′ and an
algorithm BO

O

such that Mc,Π, S′′′, σ ||= BO
O

(φ̂, ~x) =
K. We can chose AO1 in the IND definition of key compro-
mise, and x in the KDM definition, simply to be a random
bit string r(ω) of length η. AO21 can take the key and decrypt
its third input. AO22 can be chosen to be identically 0η . If the
third input is the encryption of r(ω) then r(ω) is received af-
ter the decryption, so the output of AO21 and AO22 differ over-
whelmingly. On the other hand, if it is the encryption 0|r(ω)|,
then the outputs ofAO21 andAO22 always agree. So by the def-
inition of key compromise,Mc,Π, S′, σ |c= φ̂, ~x IOK holds
as there is such an S′′′ for all S′′.
• Increasing capabilities for key compromise: If φ̂, ~x IO K

holds, there are AO1 , R, etc in the definition of key compro-
mise. The same items are good for φ̂, ~x, x′ IOK, ignoring
x′.
• Commutativity: Trivial, the definition of key compromise is

invariant under the change of the order of the list ~x.
• Transitivity: For any S, assuming Mc,Π, S, σ |c= φ̂, ~x �O

~y and Mc,Π, S, σ |c= φ̂, ~x, ~y IO K, we have to show that
Mc,Π, S, σ |c= φ̂, ~x IOK. Take an arbitrary S′ ⊆ S. By
Mc,Π, S, σ |c= φ̂, ~x �O~y, there is a S′′ ⊆ S′ and an AO

algorithm such that Mc,Π, S′′, σ ||= AO(φ̂, ~x) = ~y. By
Mc,Π, S, σ |c= φ̂, ~x, ~y IOK, there is a S′′′ ⊆ S′′ such that
for this S′′′, the conditions in the definition of key compro-
mise (in place of S′′) hold. Also, we haveMc,Π, S′′′, σ ||=
AO(φ̂, ~x) = ~y. So in the key compromise definition applied
to the satisfaction Mc,Π, S, σ |c= φ̂, ~x, ~y IO K, the algo-
rithmsAO1 ,AO21 andAO22 can runAO as a subroutine to com-
pute ~y, so they do not need it as an input. Since there is such a
S′′′ ⊆ S′ for all S′ ⊆ S, we haveMc,Π, S, σ |c= φ̂, ~x IOK.

12

• Secrecy of CCA2 encryption: For the IND case, we have

RanGen(K) ∧ fresh(R; φ̂, ~x, x, y,K)

∧ ~x, x, y 4 φ̂ ∧ φ̂, ~x, {x}ReK �
Oy

−→ φ̂, ~x, x IOK ∨ φ̂, ~x�
Oy

where O is either aic2 or sic2. Soundness of this follows
easily from our definition of key compromise and derivabil-
ity with oracle access. Note that CCA2 security of the en-
cryption is not needed in the following argument: We move
φ̂, ~x�Oy to the premise, it becomes φ̂, ~x 6�Oy. Let us denote
by θ the premise received this way:

θ ≡ RanGen(K) ∧ fresh(R; φ̂, ~x, x, y,K)

∧ ~x, x, y 4 φ̂ ∧ φ̂, ~x, {x}ReK �
Oy ∧ φ̂, ~x�

Oy

We have to show that for any σ evaluation of free variables
and S non-negligible set, if Mc,Π, S, σ |c= θ holds, then
Mc,Π, S, σ |c= φ̂, ~x, x IO K is also satisfied. So suppose
Mc,Π, S, σ |c= θ. For Mc,Π, S, σ |c= φ̂, ~x, x IO K, take
any non-negligible set S′ ⊆ S. AsMc,Π, S, σ |c= θ implies
thatMc,Π, S′, σ |c= φ̂, ~x, {x}ReK �Oy by the semantics of
compound formulas (one conjunct in θ is φ̂, ~x, {x}ReK �O

y, and the property is preserved under taking subsets), for
such an S′, by the definition of derivability, there is a non-
negligible subset S′′ ⊆ S′ and an algorithm AO such that
Mc,Π, S′′, σ ||= AO(φ̂, ~x, {x}ReK) = y. Let BO

O

be the
algorithm that takes φ̂, ~x, x as input, submits x to its en-
cryption oracle to receive {x}R

′
eK , and then applies AO on

(φ̂, ~x, {x}R
′

eK). As this was y with non-negligible proba-
bility for R, it is also y with non-negligible probability for
R′, because y does not depend on either of them, and be-
cause the random inputs of the algorithms are required to be
fresh. Hence R′ is just as good an independent item as R
was. So there is a S′′′ ⊆ S′′ such that Mc,Π, S′′′, σ ||=
AO(φ̂, ~x, {x}R

′
eK) = y, and by the definition of BO

O

, we
also haveMc,Π, S′′′, σ ||= BO

O

(φ̂, ~x, x) = y. Therefore,
Mc,Π, S′′′, σ ||= AO(φ̂, ~x, {x}R

′
eK) = BO

O

(φ̂, ~x, x) =
y. Now observe that since x was PPT generated, for any
non-negligible S, there must be a length function `(η) such
that the probability that |x| = `(η) is non-negligible on S.
This, means that AO(φ̂, ~x, {0|x|}R

′′
eK) = BO

O

(φ̂, ~x, x) = y
cannot hold on any non-negligible subset of S′′′, because if
it did, then AO(φ̂, ~x, {0`}R

′′
eK) = y would also hold non-

negligible in S′′′ contradictingMc,Π, S, σ |c= φ̂, ~x 6�Oy. So,

Mc,Π, S′′′, σ ||= AO(φ̂, ~x, {x}ReK) = BO
O

(φ̂, ~x, x),

but

Mc,Π, S′′′, σ ||= AO(φ̂, ~x, {0|x|}R
′′

eK) 6= BO
O

(φ̂, ~x, x),

which meansMc,Π, S, σ |c= φ̂, ~x, x IOK.
The argument for the KDM case is completely analogous, ex-
cept that from the satisfaction of the sameMc,Π, S′′, σ |c= θ,
we have to derive Mc,Π, S′′, σ |c= φ̂, ~x IOK there. This
means that the analogous BO

O

in the KDM case is not al-
lowed to use x as an input, so it cannot submit x to the en-
cryption oracle. Instead, in the definition of key compromise
for the KDM case we allowed the algorithms to use the en-
cryptions functions of items depending on the names gener-
ated that far. Hence x 4 φ̂ can be submitted to the oracle

in the form of such a function. The only items in x that are
neither function symbols nor names generated thus far are
new names and handles. But new names can be generated
by the submitter, and handles were computed by the adver-
sary from sent messages earlier, the handles of which were
again computed earlier from earlier messages. So ultimately,
all handles were computed by earlier names and functions,
so they can be submitted to the oracle as functions of earlier
names. The rest of the proof is exactly the same.
• Next, we have to show that encryptions with uncompromised

keys do not compromise. Note again in the proof below that
we do not need CCA2 security of the encryption, we only
need the definition of key compromise. Instead of the origi-
nal formula, we show the following in the IND-CCA2 case:

RanGen(K) ∧ RanGen(K′) ∧ fresh(R; φ̂, ~x, x,K,K′)

∧ ~x, x 4 φ̂ ∧ φ̂, ~x, {x}ReK′ IOK ∧ φ̂, ~x, x 6IOK′

−→ φ̂, ~x IOK.

We have to show that for all S non-negligible sets and σ
evaluations of variables, ifMc,Π, S, σ satisfies the premise,
then it satisfies the conclusion as well. So let us suppose it
satisfies the premise. We want to concludeMc,Π, S, σ |c=
φ̂, ~x IO K. Following the definition of key compromise,
take any subset S′ ⊆ S. By the definition of key compro-
mise applied to Mc,Π, S, σ |c= φ̂, ~x, {x}ReK′ IO K, there
are S′′ ⊆ S′, R′, R1 AO1 ,AO21 andAO22 such that, taking the
first possibility,

Mc,Π, S′′, σ ||=

AO21(φ̂, ~x, {x}ReK′ , {AO1 (φ̂, ~x, {x}ReK′)}R1
eK)) (1)

= AO22(φ̂, ~x, {x}ReK′ , {AO1 (φ̂, ~x, {x}ReK′)}R1
eK)).

but

Mc,Π, S′′, σ ||=

AO21(φ̂, ~x, {x}ReK′ , {0|A
O
1 (φ̂,~x,{x}R

eK′)|}R
′
1

eK)) (2)

6= AO22(φ̂, ~x, {x}ReK′ , {0|A
O
1 (φ̂,~x,{x}R

eK′)|}R
′
1

eK)).

ByMc,Π, S′′, σ |c= φ̂, ~x, x 6IOK′, from Equation 5, we have
that there is anR′, and a subset (by restrictingR′) S′′′ ⊆ S′′
such that

Mc,Π, S′′′, σ ||=

AO21(φ̂, ~x, {0|x|}R
′

eK′ , {AO1 (φ̂, ~x, {0|x|}R
′

eK′)}R1
eK)) (3)

= AO22(φ̂, ~x, {0|x|}R
′

eK′ , {AO1 (φ̂, ~x, {0|x|}R
′

eK′)}R1
eK)).

Equation 6 still holds on S′′′ and for all R′1, as R′1 and R′

are independent. By Mc,Π, S′′′, σ |c= φ̂, ~x, x 6IOK′, from
Equation 6, we get that there is an R′′, a subset S′′′′ ⊆ S′′′

just by restricting R′′, such that

Mc,Π, S′′′′, σ ||=

AO21(φ̂, ~x, {0|x|}R
′′

eK′ , {0|A
O
1 (φ̂,~x,{0|x|}R

′′
eK′)|}R

′
eK)) (4)

6= AO22(φ̂, ~x, {0|x|}R
′′

eK′ , {0|A
O
1 (φ̂,~x,{0|x|}R

′′
eK′)|}R

′
eK)),

still for all R′. Again, there is a length function `(η) such
that the probability that |x| = `(η) is non-negligible on S′′′′.
Let the subset of S′′′′ on which they are equal be S′′′′′. Since
0` is easily computable, we get that there are algorithmsAO3 ,

13

AO41 and AO42 such that

Mc,Π, S′′′′′, σ ||=

AO41(φ̂, ~x, {AO3 (φ̂, ~x)}R1
eK)=AO42(φ̂, ~x, {AO3 (φ̂, ~x)}R1

eK))

but

Mc,Π, S′′′′′, σ ||=

AO41(φ̂, ~x, {0|A
O
3 (φ̂,~x)|}R

′
1

eK) 6=AO42(φ̂, ~x, {0|A
O
3 (φ̂,~x)|}R

′
1

eK)).

This exactly means that Mc,Π, S, σ |c= φ̂, ~x IO K. If we
switch = and 6=, we receive the proof of the other case of
key compromise.
Here too, the KDM case is proven entirely analogously, but
we write the details out for more clarity: We have to show

RanGen(K) ∧ RanGen(K′) ∧ fresh(R; φ̂, ~x, x,K,K′)

∧ ~x, x 4 φ̂ ∧ φ̂, ~x, {x}ReK′ IOK ∧ φ̂, ~x 6IOK′

−→ φ̂, ~x IOK.

We have to show that for all S non-negligible sets and σ
evaluations of variables, ifMc,Π, S, σ satisfies the premise,
then it satisfies the conclusion as well. So let us suppose it
satisfies the premise. We want to concludeMc,Π, S, σ |c=
φ̂, ~x IO K. Following the definition of key compromise,
take any subset S′ ⊆ S. By the definition of key compro-
mise applied to Mc,Π, S, σ |c= φ̂, ~x, {x}ReK′ IO K, there
are S′′ ⊆ S′, R′, R1 x

′, AO21 and AO22 such that, taking the
first possibility,

Mc,Π, S′′, σ ||=

AO21(φ̂, ~x, {x}ReK′ , {x′}R1
eK)) (5)

= AO22(φ̂, ~x, {x}ReK′ , {x′}R1
eK)).

but

Mc,Π, S′′, σ ||=

AO21(φ̂, ~x, {x}ReK′ , {0|x
′|}R

′
1

eK)) (6)

6= AO22(φ̂, ~x, {x}ReK′ , {0|x
′|}R

′
1

eK)).

By Mc,Π, S′′, σ |c= φ̂, ~x 6IOK′, from Equation 5, we have
that there is anR′, and a subset (by restrictingR′) S′′′ ⊆ S′′
such that

Mc,Π, S′′′, σ ||=

AO21(φ̂, ~x, {0|x|}R
′

eK′ , {x′′}R1
eK)) (7)

= AO22(φ̂, ~x, {0|x|}R
′

eK′ , {x′′}R1
eK))

where x′′ 4 φ̂, ~x, {0|x|}R
′

eK′ is received from x by com-
puting the handles in it using {0|x|}R

′
eK′ instead of {x}ReK′ .

Equation 6 still holds on S′′′ and for allR′1, asR′1 andR′ are
independent. By Mc,Π, S′′′, σ |c= φ̂, ~x 6IOK′, from Equa-
tion 6, we get that there is an R′′, a subset S′′′′ ⊆ S′′′ just
by restricting R′′, such that

Mc,Π, S′′′′, σ ||=

AO21(φ̂, ~x, {0|x|}R
′′

eK′ , {0|x
′′|}R

′
eK)) (8)

6= AO22(φ̂, ~x, {0|x|}R
′′

eK′ , {0|x
′′|}R

′
eK)),

still for all R′. Again, there is a length function `(η) such
that the probability that |x| = `(η) is non-negligible on S′′′′.

Let the subset of S′′′′ on which they are equal be S′′′′′. Since
0` is easily computable, we get that there are x′′′ 4 φ̂, ~x and
algorithms AO41 and AO42 such that

Mc,Π, S′′′′′, σ ||=

AO41(φ̂, ~x, {x′′′}R1
eK) = AO42(φ̂, ~x, {x′′′}R1

eK))

but

Mc,Π, S′′′′′, σ ||=

AO41(φ̂, ~x, {0|x
′′′|}R

′
1

eK) 6= AO42(φ̂, ~x, {0|x
′′′|}R

′
1

eK)).

This exactly means that Mc,Π, S, σ |c= φ̂, ~x IO K. If we
switch = and 6=, we receive the proof of the other case of
key compromise.
• Fresh keys are not compromised: It is here where IND-CCA2

or KDM-CCA2 security of the encryption is used. Let us first
consider the IND-CCA2 case. We define our CCA2 attacker
against the CCA2 oracle that allows multiple submissions for
encryptions, which is equivalent with the original definition
[12]. Let us consider the IND-CCA2 case. What we have
to prove is that ifMc,Π, S, σ satisfies freshness of key K,
thenMc,Π, S, σ |c= φ̂, ~x IOK leads to a CCA2 attack to the
encryption. LetMc,Π, S, σ |c= φ̂, ~x IOK hold. That is, for
every S′ ⊆ S, there are S′′ ⊆ S′, etc. such that (consider
the first case),

Mc,Π, S′′, σ ||= AO21(φ̂, ~x, {AO1 (φ̂, ~x)}ReK) (9)

= AO22(φ̂, ~x, {AO1 (φ̂, ~x)}ReK)

and

Mc,Π, S′′, σ ||= AO21(φ̂, ~x, {0|A
O
1 (φ̂,~x)|}R

′
eK) (10)

6= AO22(φ̂, ~x, {0|A
O
1 (φ̂,~x)|}R

′
eK)

for all fresh R′. Note that here we continue the convention
that for easier readability, we drop notating the computa-
tional interpretations of φ̂, ~x, R, etc. Of course, the algo-
rithms act on the computational interpretations and not on the
symbolic terms. Note further that keyfresh(K; φ̂, ~x)∧~x 4 φ̂
means the decryption key or any function of it was never used
in φ̂, ~x (except for decrypting, and in case of symmetric keys
encrypting). What the CCA2 attacker has to do is to simulate
the protocol execution such that

– except for K, the CCA2 attacker generates all other
keys

– encryptions (except for that of AO1 (φ̂, ~x)) with K are
done by requesting the encryption oracle (in case of
asymmetric encryptions, the adversary can also com-
pute them himself)

– the attacker keeps a table recording which encryption
belongs to which plaintext

– decryptions of ciphertexts provided by the encryption
oracle are done by looking it up in the table

– decryptions of strings not provided by the oracle are
done by submitting to the decryption oracle

– when the challenge state is reached, the interpretations
of ~x and AO1 (φ̂, ~x) are computed

– AO1 (φ̂, ~x) is submitted to the encryption oracle along
with a string of 0’s of the same length. Let c0 denote the
encryption that is received from the oracle. Note that
the adversary does not know if this is the encryption of
AO1 (φ̂, ~x) or of the 0’s.

14

– apply AO21 and AO22 to φ̂, ~x, c0.
– because of (9) and (10) on S′′, if the correct bit string

was encrypted, the two computations are equal, and if
the 0’s were encrypted, the two are different.

However, the attacker does not necessarily know when he is
inside S′′ and when outside. Outside S′′ the attacker can-
not be sure that equality means the correct encryption was
encrypted. To overcome this problem, we finish the above
CCA2 attack the following way. Let µ(η) be a function (in
the security parameter) of natural numbers.

– the adversary submits pairs of 0|A
O
1 (φ̂,~x)| for encryp-

tion µ times. Let ci denote (i = 1, ..., µ) the encryp-
tions received back from the oracle. Note that these
encryptions are known to be encryptions of 0|A

O
1 (φ̂,~x)|

– applies AO21 and AO22 on all of φ̂, ~x, ci
– CASE 1: if AO21(φ̂, ~x, c0) = AO22(φ̂, ~x, c0) but
AO21(φ̂, ~x, ci) 6= AO22(φ̂, ~x, ci) for all i = 1, ..., µ, then
the CCA2 attacker outputs 1, meaning that his guess is
that the oracle encrypted the correct bit string.

– CASE 2: otherwise, the adversary tosses a coin and
outputs the result.

We can think of the probability space of the CCA2 attack as
{0, 1} × Ωη , where {0, 1} represents the internal bit of the
oracles. Even if the internal bit is 0, the simulation of the
protocol execution can be done according to the above rules.
If b denotes the internal bit of the oracles and b′ denotes the
output of the CCA2 adversary, the following holds.

Adv(ACCA2) = Prob{b = b′} −
1

2

=
1

2
· Prob{b = b′|b = 1}+

1

2
· Prob{b = b′|b = 0} −

1

2

=
1

2
·
(

Prob{b = b′|b = 1}+ Prob{b = b′|b = 0} − 1
)

=
1

2
·
(

Prob{b = b′|b = 1} −
1

2
+ Prob{b = b′|b = 0} −

1

2

)

Let S1
µ ⊆ Ω be the set where

Mc,Π, S1
µ, σ ||=

AO21(φ̂, ~x,{AO1 (φ̂, ~x)}ReK)= AO22(φ̂, ~x, {AO1 (φ̂, ~x)}ReK)

but where

Mc,Π, S1
µ, σ ||= AO21(φ̂, ~x, ci) 6= AO22(φ̂, ~x, ci)

for all i = 1, ..., µ, (that is, CASE 1 happens when the real
plaintext is encrypted in the CCA2 attack). Note that S1

µ de-
pends on the function µ, but still, S′′ ⊆ S1

µ, so S1
µ is also

non-negligible. Suppose, the internal bit of the oracle is 1.
Then, on {1} × S1

µ, according to our setup of the CCA2
attacker, he outputs 1, giving the correct guess. That is, de-
noting by ACCA2 the CCA2 attacker as described above, the
output ofACCA2 is 1 on {1}×S1

µ. On {1}×(Ω\S1
µ),ACCA2

tosses a coin, so the probabilities there balance out.
Let S0

µ ⊆ Ω be the set where

Mc,Π, S0
µ, σ ||=

AO21(φ̂, ~x,{0|A
O
1 (φ̂,~x)|}ReK)= AO22(φ̂, ~x, {0|A

O
1 (φ̂,~x)|}ReK)

but where

Mc,Π, S0
µ, σ ||= AO21(φ̂, ~x, ci) 6= AO22(φ̂, ~x, ci)

for all i = 1, ..., µ, (that is, CASE 1 happens when the 0’s
are encrypted in the CCA2 attack). Suppose now the internal
bit is 0. Then, on {0} × S0

µ, according to our setup of the
CCA2 attacker, he outputs 1, giving the wrong guess. That
is, the output ofACCA2 is 1 on {0}×S0

µ. On {0}× (Ω\S0
µ),

ACCA2 tosses a coin, so the probabilities there balance out.
The advantage of the attacker is essentially the difference of
the probabilities of S1

µ and S0
µ:

Adv(ACCA2) =

=
1

2
·
(

Prob{b = b′|b = 1} −
1

2
+ Prob{b = b′|b = 0} −

1

2

)
=

1

2
·
(

Prob{S1
µ} ·

(
Prob{b = b′|b = 1 ∧ S1

µ} −
1

2

)
+ Prob{Ω \ S1

µ} ·
(
Prob{b = b′|b = 1 ∧ Ω \ S1

µ} −
1

2

)
+ Prob{S0

µ} ·
(
Prob{b = b′|b = 1 ∧ S0

µ} −
1

2

)
+ Prob{Ω \ S0

µ} ·
(
Prob{b = b′|b = 1 ∧ Ω \ S0

µ} −
1

2

))
=

1

2
·
(

Prob{S1
µ} ·

(
1−

1

2

)
+ Prob{Ω \ S1

µ} ·
(1

2
−

1

2

)
+ Prob{S0

µ} ·
(
0−

1

2

)
+ Prob{Ω \ S0

µ} ·
(1

2
−

1

2

))
=

1

4
·
(

Prob{S1
µ} − Prob{S0

µ}
)

We did not write it out, but of course each step holds for all
fixed values η of the security parameter:

Advη(ACCA2) =
1

4
·
(

Probη{S1
µ
η} − Probη{S0

µ
η}
)
.

It is clear from the definitions that for all η, we have S′′η ⊆
S1
µ
η , and Probη{S′′η} ≤ Probη{S1

µ
η}. Let us observe that

the probability that AO21(φ̂, ~x, ci) 6= AO22(φ̂, ~x, ci) holds for
a fixed i is:∑

w

Probη{φ̂, x,AO1 (φ̂, x) = w}·

· Probη{AO21(φ̂, ~x, ci) 6= AO22(φ̂, ~x, ci) |φ̂, x,AO1 (φ̂, x) = w}

Where w runs through all possible outcomes values of the
interpretation of the triple φ̂, x,AO1 (φ̂, x). If w is fixed, the
rest of the randomness for AO21(φ̂, ~x, ci) 6= AO22(φ̂, ~x, ci)
with differing i’s are independent. Hence for any finite index
set I ,

Probη{
∧
i∈I
AO21(φ̂, ~x, ci) 6= AO22(φ̂, ~x, ci) |φ̂, x,AO1 (φ̂, x) = w}

=∏
i∈I

Probη{AO21(φ̂, ~x, ci) 6= AO22(φ̂, ~x, ci) |φ̂, x,AO1 (φ̂, x) = w}

Further note that since the only difference between the ci’s
is that they have independent random inputs (and this holds
also for c0 when the internal bit is 0), these probabilities are
actually all the same:

Probη{AO21(φ̂, ~x, ci) 6= AO22(φ̂, ~x, ci) |φ̂, x,AO1 (φ̂, x) = w}
=

Probη{AO21(φ̂, ~x, cj) 6= AO22(φ̂, ~x, cj) |φ̂, x,AO1 (φ̂, x) = w}

15

Let’s call this probability pηw
′, while let

pηw = Probη{φ̂, x,AO1 (φ̂, x) = w}.

Note also that when the internal bit is 0,

Probη{AO21(φ̂, ~x, c0) = AO22(φ̂, ~x, c0) |φ̂, x,AO1 (φ̂, x) = w}
= 1− pηw ′.

With all the above notation, we have that

Probη{S0
µ
η} =

∑
w

(1− pηw ′) · (pηw ′)µ(η) · pηw

where (pηw
′)µ is the µ(η)’th power of pηw

′. Remember, we
assumed that Prob{S′′} was non-negligible. This means
that there is an a ∈ N, and a strictly increasing sequence
of naturals η 7→ n(η), such for all η,

Probη{S1
µ
n(η)} ≥ Probη{S′′n(η)} > 1

n(η)a
. (11)

In the rest of the proof, we show that there is an η 7→ µ(η)
polynomial function such that

Probη{S0
µ
η} ≤ 1

2 · ηa + fnegl(η)

where fnegl is some negligible function. This will mean that
because of Equation (11), Probη{S1

µ
η} − Probη{S0

µ
η} is

not negligible for this µ, and we will be done. To this end,
consider the set

Ŝη:=
⋃
w :

1
2ηa
≤pηw

′≤1− 1
2ηa

{
ω ∈ Ωη

∣∣∣Mc,Π, {ω}, σ||= φ̂, x,AO1(φ̂, x) = w
}

Clearly,

Probη{S0
µ
η}

= Probη{S0
µ
η ∩ Ŝη}+ Probη{S0

µ
η ∩ (Ωη \ Ŝη)}.

But

Probη{S0
µ
η ∩ (Ωη \ Ŝη)} =

∑
w :

p
η
w
′ < 1

2ηa

p
η
w
′ > 1 − 1

2ηa

(1− pηw ′) · (pηw ′)µ(η) · pηw

≤
∑
w

1 · 1

2ηa
· pηw

≤ 1

2ηa
·
∑
w

pηw =
1

2ηa
.

Hence, if we can prove that Probη{S0
µ
η ∩ Ŝη} is negligible,

then we are done. For this, we have

Probη{S0
µ
η ∩ Ŝη} =

∑
w :

1
2ηa

≤ pηw
′ ≤ 1 − 1

2ηa

(1− pηw ′) · (pηw ′)µ(η) · pηw

≤
∑
w :

1
2ηa

≤ pηw
′ ≤ 1 − 1

2ηa

(pηw
′)µ(η) · pηw

Let us chose µ(η) := ηa+1. Then, on the set in question,

(pηw
′)µ(η) ≤ (1− 1

2ηa
)η
a+1

= ((1− 1

2ηa
)η
a

)η

Now, we know that (1− 1
2η

)η and hence (1− 1
2ηa

)η
a

go to
e−1/2 from below as η goes to infinity, so we have

(pηw
′)µ(η) ≤ e−

1
2
η,

and

Probη{S0
η2
η ∩ Ŝη} ≤ e−

1
2
η,

which is a negligible function. This means that it is enough
for the adversary to encrypt 0’s himself µ(η) = ηa+1 many
times, so the adversary is still polynomial.
The proof for KDM-CCA2 is exactly analogous. The only
difference is that instead of AO1 (φ̂, ~x), there is an x there,
and the oracles accept the functions to be submitted. When it
comes to computing the encryptions of x, the KDM encryp-
tion oracle is requested. It is not directly x that is submitted,
but a description of a function of the keys instead. Since the
KDM adversary is simulating the protocol, all items except
for the secret keys and the random inputs to the encryptions
in the symmetric case are available to him.
• Fresh items do not compromise: The idea is exactly the same

as in case of the derivability predicate. A fresh item can just
as well be created by the adversary, it cannot help him.

We now turn to the case of INT-CTXT key compromise.
Proofs of the first six axioms and the last one are entirely identi-

cal to the proofs for CCA2 key compromise. The soundness of the
“encryptions with uncompromised keys do not compromise" axiom
is also analogous: We again show the following:

RanGen(K) ∧ RanGen(K′) ∧ fresh(R; φ̂, ~x, x,K,K′)

∧ ~x, x 4 φ̂ ∧ φ̂, ~x, {|x|}RK′ I
ic K ∧ φ̂, ~x, x 6Isic2K′

−→ φ̂, ~x Iic K
Again, we have to show that for all S non-negligible sets and σ
evaluations of variables, ifMc,Π, S, σ satisfies the premise, then
it satisfies the conclusion as well. So let us suppose it satisfies the
premise. We want to showMc,Π, S, σ |c= φ̂, ~x Iic K. Following
the definition of key compromise, take any subset S′ ⊆ S. By the
definition of key compromise,Mc,Π, S, σ |c= φ̂, ~x, {|x|}RK′ I

ic K

implies there is a S′′ ⊆ S, and a PT algorithm AO
sic2

, such that

Mc,Π, S′′, σ ||= sdec(AO
sic2

(φ̂, ~x, {|x|}RK′),K) 6= ⊥

∧ ∀zR′(AO
sic2

(φ̂, ~x, {|x|}RK′) = {|z|}R
′

K → {|z|}
R′

K 6v φ̂, ~x, {|x|}
R
K′)

and on S′′,AO
sic2

(φ̂, ~x, , {|x|}RK′) is not equal any of the outputs
of the encryption oracles. Now, we also have thatMc,Π, S′′, σ |c=
φ̂, ~x, x 6Isic2K′ from the satisfaction of the premise. This gives us
that there is some S′′′ non-negligible subset of S′′ such that

Mc,Π, S′′′, σ ||= sdec(AO
sic2

(φ̂, ~x, {|0|x||}RK′),K) 6= ⊥ ∧

∀zR′(AO
sic2

(φ̂, ~x, {|0|x||}RK′) = {|z|}R
′

K → {|z|}
R′

K 6v φ̂, ~x, {|0
|x||}RK′)

and on S′′,AO
sic2

(φ̂, ~x, , {|0|x||}RK′) is not equal any of the outputs
of the encryption oracles. Again, as the length of x can be guessed,
there is a non-negligible S′′′′ ⊆ S′′′ and a BO

sic2
such that

Mc,Π, S′′′′, σ ||= sdec(BO
sic2

(φ̂, ~x),K) 6= ⊥

∧ ∀zR′(BO
sic2

(φ̂, ~x) = {|z|}R
′

K → {|z|}
R′

K 6v φ̂, ~x)

and on S′′′′, BO
sic2

(φ̂, ~x) is not equal any of the outputs of the en-
cryption oracles. And that exactly meansMc,Π, S, σ |c= φ̂, ~x Iic

K. Again, the KDM case is entirely analogous.

16

Proof of the uncompromised key’s encryption cannot be faked
axiom is immediate from the semantics of Iic. If

Mc,Π, S, σ |c= RanGen(K) ∧ φ̂, ~x� y ∧ dec(y, dK) 6= ⊥

∧ ∀xR(y = {x}ReK → {x}ReK 6v φ̂, ~x)

Then for all S′ ⊆ S, there is a S′′ ⊆ S′ and an algorithm A such
thatMc,Π, S′′, σ ||= A(φ̂, ~x) = y. Furthermore, the last conjunct
means that the output of the algorithm is not any of the encryptions
in φ̂, ~x, and the third conjunct means the decryption does not fail.
This is exactly means thatMc,Π, S, σ |c= φ̂, ~x Iic K.

The only remaining axiom is the fresh keys are not compromised
axiom for the INT-CTXT case. But that is rather easy. Suppose, the
encryption is INT-CTXT secure. Mc,Π, S, σ |c= φ̂ Iic K means
there is a S′′ ⊆ S, and a PT algorithm AO

sic2
, such that

Mc,Π, S′′, σ ||= sdec(AO
sic2

(φ̂),K) 6= ⊥

∧ ∀zR′(AO
sic2

(φ̂) = {|z|}R
′

K → {|z|}
R′

K 6v φ̂)

and on S′′,AO
sic2

(φ̂) is not equal any of the outputs of the encryp-
tion oracles. But that exactly means that there is a non-negligible
set (namely S′′), on whichAO

sic2
can produce a ciphertext, contra-

dicting the INT-CTXT property.

11. SIMPLE EXAMPLES
Now let us see on a few simple examples how inconsistency can

be shown with the above axioms. In [6], the authors presented some
of the most basic examples, therefore the ones we analyze here are
a little more complex, all are related to sending keys around. We
use symmetric encryption in these examples.

EXAMPLE 11.1. Suppose the first messages in a frame are

φ3 ≡ 〈(A,B), {|K|}R1
KAB

, {|h2, N |}R2
K 〉,

with names KKABNR1R2, and where the symmetric encryption
is IND- (or KDM-) CCA2 secure. We want to show that φ3 �N is
inconsistent with the axioms, that is, N remains secret. Let now O
denote either sic2 or skc2. Suppose φ3 � N holds. Then we have
φ3 �ON by the more oracles help more axiom. That is the same
as φ2, {|h2, N |}R2

K �ON . By the no-telepathy axiom, φ2 6�ON as
fresh(N ;φ2) holds (which follows directly from the definition of
the freshness constraint, not from axioms). By the ‘uncompro-
mised key securely encrypts’ axiom for CCA2 symmetric case,
with the roles ~x ≡ 〈〉, x ≡ 〈h2, N〉, y ≡ N , since we assumed
φ2, {|h2, N |}R2

K �ON , we also have that either φ2 �ON (already
ruled out) or (depending on O) φ2, h2, N Isic2 K or φ2 Iskc2 K .
In the IND-CCA2 case, by the ‘fresh items do not compromise’
axiom, we then have φ2, h2 Isic2 K as N does not appear in
φ2. Since the handle is always derived from the frame, φ2 � h2

holds, hence φ2 �sic2 h2 and by the transitivity axiom applied for
φ2, h2 Isic2 K and φ2 �sic2 h2, we have φ2 Isic2 K, just as we
had in the KDM case earlier. But that is the same as (now for both
IND and KDM cases) φ1, {|K|}R1

KAB
IO K. By the ‘encryptions

with uncompromised keys do not compromise’ axiom, with roles
K′ ≡ KAB , ~x ≡ 〈〉 and x ≡ K, we have that either φ1 IOK,
or φ1,K Isic2 KAB or φ1 Iskc2 KAB . However, φ1 6IOK be-
cause of the ‘fresh keys are not compromised’ axiom, and the same
is true for φ1 6IOKAB . So for the KDM case we have a contra-
diction and we are done. For the IND case, again by the ‘fresh
items do not compromise’ axiom, φ1,K Isic2 KAB together with
fresh(K;φ1,KAB) implies φ1 Isic2 KAB , hence again we arrived
at a contradiction.

It may seem to the reader that the axioms provided in [6] (that
is, without key compromise) could also be sufficient to prove that
φ3 � N is inconsistent with the axioms there by removing items
from φ3 in a different order from what we just did in Example 11.1.
Namely, the idea would be to proceed the following way: given
φ3 �N , first remove the first encryption (by the secrecy axiom as
KAB was never sent out), and receive 〈(A,B), {|h2, N |}R2

K 〉�N .
Then remove the second encryption (by secrecy as K is not in
the frame any more after removing the first encryption) receiving
(A,B) � N contradicting the no-telepathy axiom. However, ap-
plication of the secrecy axiom in [6] (and also in this paper) to
〈(A,B), {|h2, N |}R2

K 〉 � N requires h2 4 (A,B), which means
(A,B)�h2, but that does not hold, because h2 was computed from
〈(A,B), {|K|}R1

KAB
〉. Secrecy axiom can only be used if the frame

contains all necessary information for the computation of handles
in the plaintext. It is in fact possible to show that φ3 �N is consis-
tent with the axioms of [6]. Although those axioms are inconsistent
with h2�K, they do allow h2 to carry partial information aboutK
sufficient to compromise the second encryption. Without the han-
dle h2 in the second encryption, the axioms of [6] are sufficient to
prove inconsistency, but except for initial ones, protocol messages
are normally responses to agent inputs and contain handles.

EXAMPLE 11.2. Now suppose

φ3 ≡ 〈(A,B), {|K|}R1
KAB

, {|KAB , h2, N |}R2
K 〉

and let us try to show that φ3�
ON contradicts the axioms. Note that

there is a key cycle in this example,K andKAB encrypt each other.
So assume φ3�

ON . For IND-CCA2 security, from the ‘uncompro-
mised key securely encrypts’ axiom we get φ2,KAB , h2, N Isic2

K if we follow the same steps as we did in Example 11.1. Then
the same way as before, we can remove h2 and N , and since φ2 ≡
φ1, {|K|}R1

KAB
, receive φ1, {|K|}R1

KAB
,KAB Isic2 K. But this does

not lead to a contradiction! According to the equational theory,
K = sdec({|K|}R1

KAB
,KAB), and by the ‘functions are computable’

axiom, we get φ1, {|K|}R1
KAB

,KAB �sic2 K. So we always have
φ1, {|K|}R1

KAB
,KAB Isic2 K too by the ‘derivability implies com-

promise’ axiom, there is no contradiction. However, if we have
KDM security, then just as in the previous example, using the ‘un-
compromised key securely encrypts’ axiom, φ3 �skc2 N immedi-
ately leads to φ2 Iskc2 K, and the rest of the derivation is the same
as in the previous example. So in this case, while φ3 �sic2 N is
consistent with the axioms, φ3 �

skc2 N is inconsistent.

EXAMPLE 11.3. Now consider

φ3 ≡ 〈(A,B), {|K|}R1
KAB

, {|{|KAB |}R2
K′ , h2, N |}R3

K 〉

with namesKK′KABNR1R2, R3 Strictly speaking,K andKAB

are still in cycles, but they do not disturb each other because of
K′. Again, assuming IND-CCA2 security, from φ3 �sic2 N first
φ2, {|KAB |}R2

K′ , h2, N Isic2 K is derived using the ‘uncompro-
mised key securely encrypts’ axiom as in Example 11.1. As in Ex-
ample 11.1, h2 and N are removed: φ2, {|KAB |}R2

K′ I
sic2 K. At

this point, the ‘encryptions with uncompromised keys do not com-
promise’ axiom implies that either φ2 Isic2 K or φ2,KAB Isic2

K′. In the former case, we are back at the situation of Example
11.1 and we arrive at a contradiction. In the latter case, by func-
tion (encryption) application on φ1, {|K|}R1

KAB
,KAB Isic2 K′, we

receive that φ1,K,KAB , R1 Isic2 K′, but by ‘the fresh items do
not compromise’ axiom all of K,KAB , R1 can be removed, and
receive that φ1 Isic2 K′ contradicting the ‘fresh keys are uncom-
promised’ axiom.

17

12. AN NEW ATTACK ON NSL
Using our technique, we found an attack on the NSL protocol,

that, to our knowledge had not been found by others. It was pub-
lished in [6], but for the sake of a complete presentation, we include
in this long version as well.

With the notations of Example 4.1, if we assume that RanGen(N)
∧ W (π2 (N)) is computationally satisfiable (where W (π2 (N))
means π2 (N) is an agent name), then we have the following com-
putational attack on the NSL protocol. RanGen(N) ∧W (π2 (N))
is the same as saying that with non-negligible probability, it is pos-
sible to choose a name (bit string) Q for an agent such that for the
output N of some honest nonce generation, there is a bit string n
such that 〈n,Q〉 = N . To show that this is not at all unrealistic,
suppose that the pairing 〈·, ·〉 is concatenation, and the length of
agent names does not depend on the security parameter, say always
8 bits. Then for any name Q, n can be chosen with 〈n,Q〉 = N
as long as the last four digits of N equals Q, which, if N is evenly
generated, is of just 1/28, i.e. non-negligible probability. So this
situation is realistic. Now, the attack is the following, it needs two
sessions:

1. The adversary choses a name Q as above.

2. The adversary catches the last message {N2}eKB in a ses-
sion between A and B, two honest agents.

3. The adversary, acting as agent Q initiates a new session with
B, sending {N2}eKB to him.

4. Since B believes this is a new session with Q, it will parse
{N2}eKB according to its role, namely as {N ′1, Q}eKB . This
will succeed as long as there is an n with 〈n,Q〉 = N2, that
is, it will succeed with non-negligible probability 1/28.

5. B then generates a new nonce,N ′2, and sends {n,N ′2, B}eKQ
to Q.

6. The adversaryQ decrypts {n,N ′2, B}eKQ , reads n, and com-
putes N2 = 〈n,Q〉. The secrecy of N2 is hence broken.

This attack is shown graphically in Figure 3.

3. A
{N2}eKB−→ B

attacker catches {N2}eKB , starts new session with B
through corrupted agent Q

1. Q
{N2}eKB={n,Q}eKB−→ B

↓
B

confirmsQ = π2 (N2)
computesn = π1 (N2)

generatesN′2

2. Q
{n,N′2,B}eKQ←− B

Q computes n and N2 = 〈n,Q〉 and gives it to the attacker

Figure 3: An Attack on the NSL Protocol

So, we can conclude that if 〈n,Q〉 = N is possible computa-
tionally with non-negligible probability, then the protocol fails. In
such case, trace-lifting soundness proofs fail as a bit string can be
understood both as 〈n,Q〉 and as N .

Clearly, if the implementation of the protocol is such that B al-
ways checks the length of n, then this attack is not possible. It just
has to be made sure somehow that the implementation satisfies the
RanGen(N)→ ¬W (π2 (N)) property.

Notice that this attack is not a usual type-flaw attack, because
even if type-flaw attacks are allowed, honestly generated nonces
are normally considered atomic. For example, the reader may sug-
gest that this attack is in fact very similar to the one shown in [27]
(as we both wrote it as N = 〈n,Q〉). However, there is a fun-
damental difference. The attack in [27] is based on the fact that
an honest agent sends a pair with a nonce and an agent name, and
the receiving honest agent understands this as a single nonce. In
other words, in [27] the honest receiver reads the pair of a nonce
and a name into an input variable meant for a nonce. There, n is
the honest nonce and N is the input variable. In our attack, it is an
actual nonce that is understood by the receiver as a pair of a nonce
and a name. In our case, an actual nonce is read into the pair of two
input variables: one for a nonce and another for a name. Here N is
the honest nonce and n corresponds to the input variable. This is a
fundamental difference as in our case there are no atomic objects at
all. Even an honest nonce is allowed to be split. To our knowledge,
this is the first such attack on the NSL protocol.

13. CORRECTNESS PROOF OF NSL
In this long version of our paper we also recite the verification

result of the NSL protocol published in [6]. The reason is that
now with the derivation with oracles the syntax and the axioms
are somewhat different, but we want to emphasize that the proof is
basically the same with the new set of axioms as well.

The correctness of the NSL protocol was done for any (bounded)
number of sessions. It was shown that violation of secrecy or au-
thentication is inconsistent with the axioms. In this proof, it was
assumed that agent A only executed the initiator role, and agent
B only executed the responder role (proof in the case when we al-
low them to run both roles is also doable, but it is much longer).
But both A and B were allowed to have other sessions running
with possibly corrupted agents. First it was shown that nonces that
were generated by honest initiator A and sent to honest respon-
der B, or vice-versa, remained secret. This was done by picking
any step m of the execution tree, and listing all possible messages
sent by A and B, and then showing that φm 6�aic2N together with
the axioms and agent checks imply φm+1 6�aic2N for each possi-
ble sent message. Hence, φm 6�aic2N , the axioms and the agent
checks, and φm+1 �

aic2 N are inconsistent. Since φ0 6�aic2N ini-
tially holds by no-telepathy, by induction we have φm 6�aic2N (and
hence φm 6�N) after any finite number of steps m. The reader can
see below that the induction hypothesis is a little more complex,
but essentially this is what was done.

Once secrecy is proven, authentication and agreement are shown.
We pick the point on the execution tree when the responder finished
his task, and using that nonces remain secret, together with non-
malleability, it is shown that the initiator also finished his task and
the corresponding values seen by the two parties match. In other
words, B finished, A not finished or values don’t match, and the
axioms and the agent checks are inconsistent.

13.1 Secrecy
The aim of the secrecy proof is to show that nonces N sent be-

tween A and B remain secret. The fact that N is a nonce sent by
A to B in the NSL protocol can be expressed as

∃R
(
{N,A}ReKB v φ̂

)
.

If B sent it to A, that means

∃hR
(
{π1 (dec(h, dKB)) , N,B}ReKA v φ̂

)
.

18

So, such nonces can be characterized by the condition

C[N] ≡ RanGen(N) ∧
(
∃R.{N,A}ReKB v φ̂

∨ ∃hR.{π1 (dec(h, dKB)) , N,B}ReKA v φ̂
)
.

Then the secrecy property we want to show is that

∀N
(
C[N] −→ φ̂ 6�aic2N

)
,

meaning that such nonces cannot be computed by the adversary. It
is equivalent to show that its negation, ∃N

(
C[N] ∧ φ̂�aic2 N

)
, is

inconsistent with the axioms and the agent checks on every possible
symbolic trace.

Suppose the total length of the symbolic trace in question is n.
At the end of the trace the frame φ contains n terms. Let us de-
note the frames at each node of this trace by φ0, φ1, φ2, etc. Each
frame contains one more term than the previous one. Satisfaction
of C[N] by this trace means that one of the terms {N,A}ReKB
or {π1 (dec(h, dKB)) , N,B}ReKA appears in frame φn for some
h,R. Let us fix such N . If ~x is a list of a finite number of nonces
~x ≡ N1, ..., Nl that were all generated by either A or B (pos-
sibly intended to each other, possibly intended for other possibly
malicious agents), and they are all different from N , then we say
condition C′[~x,N] is satisfied:

C′[N1, ..., Nl, N] ≡
l∧
i=1

(
RanGen(Ni) ∧ N 6= Ni ∧

(
∃QR.{Ni, A}ReKQ v φ̂ ∨

∃QhR.{π1 (dec(h, dKB)) , Ni, B}ReKQ v φ̂
))

Then an inductive proof is carried out on the length of φn. As it
turns out, in order to avoid loops in the proof, instead of ∃N

(
C[N]∧

φ̂�aic2 N
)
, it is better to prove that

∃N∃~x
(
C[N] ∧ C′[~x,N] ∧ φ̂, ~x�

aic2 N
)

(12)

is inconsistent with the axioms and agent checks. On the symbolic
trace, this means that for all n,

∃N∃~x
(
C[N] ∧ C′[~x,N] ∧ φn, ~x�

aic2 N
)

is inconsistent with the axioms and agent checks. We do this by
fixing an arbitrary N satisfying C[N], and by showing that if for
some m < n, ∃~x

(
C′[~x,N] ∧ φm, ~x�aic2 N

)
is inconsistent with

the axioms and agent checks, then ∃~x
(
C′[~x,N]∧φm+1, ~x�

aic2N
)

is also inconsistent with the axioms and agent checks. As atm = 0
the statement follows from no telepathy, we are done. This is what
the following theorem says. Again, note that within C and C′, φ̂ is
always φn and not φm.

PROPOSITION 13.1. In the above execution of NSL protocol,
let N be such that C[N] is satisfied, and let m < n. If for all
~x such that C′[~x,N] holds, the axioms and agent checks imply
(by FOL deduction rules) that φm, ~x 6�aic2N , then for all ~x such
that C′[~x,N] holds, the axioms and agent checks imply (by FOL
deduction rules) that φm+1, ~x 6�aic2N holds.

Once this is shown, we still have to prove that the property ini-
tially holds, that is, ∃N∃~x

(
C[N] ∧ C′[~x,N] ∧ φ0, ~x �aic2 N

)
is

inconsistent with the axioms. Let C[N] and C′[~x,N] hold for N
and ~x ≡ N1, ..., Nl. At step 0, N , N1, ..., Nl are still fresh (re-
member, we assumed for simplicity that everything was generated
upfront, and clearly, these nonces have not been sent), so by the
no telepathy axiom, φ0 6�aic2N , and then by the independence of
fresh items, φ0, N1 6�aic2N . Then again by the independence of
fresh items, φ0, N1, N2 6�aic2N , etc. So φ0, N1, ..., Nl 6�aic2N
holds, meaning that ∃N∃~x

(
C[N] ∧ C′[~x,N] ∧ φ0, ~x �aic2 N

)
is

indeed inconsistent with the axioms. Therefore, together with the
induction step of Proposition 13.1, we have:

THEOREM 13.2 (SECRECY). Consider a symbolic execution
of the NSL protocol, with an arbitrary number of possible dishonest
participants and two honest participants A, B that follow the ini-
tiator and responder roles correspondingly, and that only execute
these roles in each of their bounded number of sessions. Further,
consider the convention 〈x, y, z〉 ≡ 〈x, 〈y, z〉〉.

Our axioms together with the agent checks and RanGen(N) →
¬W (π2 (N)) imply that for any n ∈ N and for any nonce N that
was either generated byA and sent toB, or vice versa, φn 6�aic2N .

The above Theorem states that secrecy of nonces satisfying C[N]
is never broken. That is, nonces that were generated byA or B and
intended to be sent between each other, remain secret. In particular,
requiring ~x to be the empty list, the formula ∃N

(
C[N]∧φ̂�aic2N

)
,

together with the axioms and the agent checks, and RanGen(N)
→ ¬W (π2 (N)) are inconsistent on any symbolic trace.

13.2 Agreement and Authentication
The agreement from the responder’s viewpoint is the following:

RespBNSL[B, i′, N2, h2, h4, R2]
AND

π2 (dec(h2, dKB)) = A

⇓

EXIST i,N1, h1, h3, R1, R3 SUCH THAT
InitANSL[A, i, B,N1, h1, h3, R1, R3]

AND
dec(h2, dKB) = 〈N1, A〉

AND
dec(h3, dKA) = 〈N1, N2, B〉

AND
dec(h4, dKB) = N2

where by the implication sign we mean that the agent checks and
the axioms imply this. We can also write this within our syntax:
cr(A,B,N1, N2) v φ̂
∧ A = π2 (dec(h2, dKB)) ∧ N1 = π1 (dec(h2, dKB))

−→ ∃h3.

(
ci(A,B,N1, N2) v φ̂ ∧
N2 = π1 (π2 (dec(h3, dKA)))

)
What we have to prove is that the negation of this is inconsistent
with the axioms and agent checks. But for that it is sufficient to
show that the agent checks and axioms, and the premise of the for-
mula imply the conclusion of this formula, as the following theo-
rem states with the proof available in [5] without oracles, but it is
straightforward to rewrite it with oracles.

THEOREM 13.3 (AGREEMENT AND AUTHENTICATION). We
consider a symbolic execution of the NSL protocol, with an ar-
bitrary number of possible dishonest participants and two honest
participants A, B that follow the initiator and responder roles cor-
respondingly, and that only execute these roles in each of their
bounded number of sessions. Furthermore, consider the conven-
tion 〈x, y, z〉 ≡ 〈x, 〈y, z〉〉.

Our axioms together with the agent checks and RanGen(N) →
¬W (π2 (N)) are inconsistent with the negation of the formula

cr(π2 (dec(h2, dKB)) ,B, π1 (dec(h2, dKB)) ,N2) v φ̂
∧ A = π2 (dec(h2, dKB))

−→ ∃N1h3.

 ci(A,B,N1, π1 (π2 (dec(h3, dKA)))) v φ̂
∧ N2 = π1 (π2 (dec(h3, dKA)))
∧ N1 = π1 (dec(h2, dKB))

19

14. THE SYMMETRIC
NEEDHAM-SCHROEDER PROTOCOL

With the axioms that we presented, we have proven the amended
symmetric Needham-Schroeder protocol:

1. A→ B : A
2. B → A : {A,N1}KBT
3. A→ T : 〈A,B,N2, {A,N1}KBT 〉
4. T → A : {N2, B,K, {K,N1, A}KBT }KAT
5. A→ B : {K,N1, A}KBT
6. B → A : {N3}K
7. A→ B : {N3 − 1}K

This protocol first has a key distribution part, and then the dis-
tributed key is used to securely encrypt a nonce. We showed that
no symbolic (hence computational) attacker succeeds the follow-
ing way (motivated by [28]). Using IND-CCA2 and INT-CTXT
axioms, we first showed by an inductive technique (similar to the
NSL proof) that the key K from the trusted party meant for hon-
est A and B are never compromised (compromise is inconsistent
with the axioms and agent checks). Then, again with an inductive
technique we showed that N3 is never leaked. Finally, agreement
and authentication were shown. Besides the presented axioms, we
also needed that adding 1 and subtracting 1 are inverses of each
other, and x − 1 6= x. We needed an additional property, namely,
that applying the first projection of a pairing on an honestly gener-
ated nonce cannot result the nonce itself with more than negligible
probability. Triples, quadruples were constructed out of pairs. The
detailed proof is available online at the first author’s homepage. We
assumed that A is running the initiator role in all his sessions, and
B is running the responder’s role. There is only one trusted party.
They all are allowed to run any number of multiple parallel sessions
with honest and corrupted agents.

On a note about dynamic corruption, the proof works even if the
protocol allows the release of the key K at a later time. Secrecy
can still be proven until that point, authentication that was carried
out earlier can still be verified.

15. CONCLUSIONS
In this paper we further expanded the framework proposed by

Bana and Comon-Lundh [8] for computationally complete sym-
bolic adversary. We have shown how key exchange can be han-
dled. Proofs with this technique are computationally sound with-
out the need of any further assumptions such as no bad keys, etc.
that are assumed in other literature. We presented a modular set of
axioms that are computationally sound for implementations using
IND-CCA2, KDM-CCA2 and INT-CTXT secure encryptions re-
spectively. We illustrated their power via simple examples and the
verification entire protocols.

We are investigating extensions of the general soundness theo-
rem in order to account for unbounded number of sessions and also
to be able to handle indistinguishability properties. More impor-
tantly, we are also researching automation.

16. REFERENCES
[1] P. Adão, G. Bana, J. Herzog, and A. Scedrov. Soundness and

completeness of formal encryption: the cases of key-cycles
and partial information leakage. Journal of Computer
Security, 17(5):737–797, 2009.

[2] M. Backes, A. Malik, and D. Unruh. Computational
soundness without protocol restrictions. In CCS’12, pages
699–711. ACM, 2012.

[3] M. Backes, B. Pfitzmann, and M. Waidner. A composable
cryptographic library with nested operations. In CCS’03,
pages 220–230. ACM, 2003.

[4] M. Backes, B. Pfitzmann, and M. Waidner. The reactive
simulatability (rsim) framework for asynchronous systems.
Information and Computation, 205(12):1685–1720, 2007.

[5] G. Bana, P. Adão, and H. Sakurada. Computationally
complete symbolic attacker in action—Long version.
Available at IACR ePrint Archive, Report 2012/316.

[6] G. Bana, P. Adão, and H. Sakurada. Computationally
Comlete Symbolic Attacker in Action. In FSTTCS’12,
LIPIcs, pages 546–560. Schloss Dagstuhl, 2012.

[7] G. Bana and H. Comon-Lundh. Towards unconditional
soundness: Computationally complete symbolic attacker.
Available at IACR ePrint Archive, Report 2012/019.

[8] G. Bana and H. Comon-Lundh. Towards unconditional
soundness: Computationally complete symbolic attacker. In
POST’12, LNCS, pages 189–208. Springer, 2012.

[9] G. Bana, K. Hasebe, and M. Okada. Computational
semantics for first-order logical analysis of cryptographic
protocols. In Formal to Practical Security, volume 5458 of
LNCS, pages 33–58. Springer, 2009.

[10] G. Barthe, B. Grégoire, and S. Zanella Béguelin. Formal
certification of code-based cryptographic proofs. In
POPL’09, pages 90–101. ACM, 2009.

[11] G. Barthe, B. Grégoire, and S. Zanella Béguelin. Formal
certification of code-based cryptographic proofs. In POPL,
pages 90–101. ACM, 2009.

[12] M. Bellare, A. Boldyreva, and S. Micali. Public-key
encryption in a multi-user setting. In EUROCRYPT’00,
pages 258–274. Springer, 2000.

[13] M. Bellare, A. Desai, D. Pointcheval, and Ph. Rogaway.
Relations among notions of security for public-key
encryption schemes. In CRYPTO’98, LNCS. Springer, 1998.

[14] M. Bellare and Ch. Namprempre. Authenticated encryption:
Relations among notions and analysis of the generic
composition paradigm. J. Cryptology, 21(4):469–491, 2008.

[15] B. Blanchet. A computationally sound mechanized prover
for security protocols. IEEE Transactions on Dependable
and Secure Computing, 5(4):193–207, 2008.

[16] J. Camenisch, N. Chandran, and V. Shoup. A public key
encryption scheme secure against key dependent chosen
plaintext and adaptive chosen ciphertext attacks. In
EUROCRYPT’09, LNCS, pages 351–368. Springer, 2009.

[17] H. Comon, C. Marché, and R. Treinen, editors. Constraints
in Computational Logics: Theory and Applications,
International Summer School, CCS’99, LNCS, 2001.

[18] H. Comon-Lundh and V. Cortier. Computational soundness
of observational equivalence. In CCS’08, pages 109–118.
ACM, 2008.

[19] H. Comon-Lundh and V. Cortier. How to prove security of
communication protocols? A discussion on the soundness of
formal models w.r.t. computational ones. In STACS’11,
LIPIcs, pages 29–44. Schloss Dagstuhl, March 2011.

[20] H. Comon-Lundh, V. Cortier, and G. Scerri. Tractable
inference systems: an extension with a deducibility
predicate. In CADE’13, LNAI. Springer, 2013.

[21] Hubert Comon-Lundh, Masami Hagiya, Yusuke Kawamoto,
and Hideki Sakurada. Computational soundness of
indistinguishability properties without computable parsing.
In ISPEC’12, pages 63–79. Springer, 2012.

20

[22] V. Cortier and B. Warinschi. Computationally sound,
automated proofs for security protocols. In ESOP’05, LNCS,
pages 157–171, 2005.

[23] A. Datta, A. Derek, J. C. Mitchell, V. Shmatikov, and
M. Turuani. Probabilistic polynomial-time semantics for a
protocol security logic. In ICALP’05, LNCS, pages 16–29.
Springer, 2005.

[24] A. Datta, A. Derek, J. C. Mitchell, and B. Warinschi.
Computationally sound compositional logic for key exchange
protocols. In CSFW ’06, pages 321–334. IEEE, 2006.

[25] Melvin Fitting. An embedding of classical logic in s4. The
Journal of Symbolic Logic, 35(4):529–534, 1970.

[26] R. Küsters and M. Tuengerthal. Computational soundness for
key exchange protocols with symmetric encryption. In
CCS’09, pages 91–100. ACM, 2009.

[27] Jonathan K. Millen and Vitaly Shmatikov. Constraint solving
for bounded-process cryptographic protocol analysis. In
Michael K. Reiter and Pierangela Samarati, editors, ACM
Conference on Computer and Communications Security,
pages 166–175. ACM, 2001.

[28] F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces:
Proving security protocols correct. Journal of Computer
Security, 7(1):191–230, 1999.

21

