|
データ解析特論
|
|
| 担当教員 |
馬場雪乃,津川翔,鈴木大三
|
| 電子メール | 馬場雪乃(baba@cs),津川翔(s-tugawa@cs),鈴木大三(taizo@cs) |
| URL | 資料などの配布にはmanabaを利用する. |
| オフィスアワー | 各担当教員に事前に連絡のこと. |
| 科目番号 | 01CH738 |
| 分野 | 共通科目 |
| 基礎/専門の別 | |
| 授業形態 | 講義+演習 |
| 開講学期 | 秋AB |
| 時限 | 木5,6 |
| 教室 | 3B405 |
| キーワード | データ解析,統計学 |
| Keyword | Data analysis, Statistics |
| 前提条件 | 学部(学類)レベルの確率論,統計学の知識. |
| 学位プログラム・コンピテンスとの関係 | 知の活用力,マネジメント能力,研究力,知識力 |
| 学習目標 | 多様なデータに対して,それらを解析,解釈するための基礎から発展に至る手法を理解する. 修士論文研究を行う上で研究成果をデータに基づき客観的に評価し,プレゼンテーションできるようになる. |
| 概要 | コンピュータサイエンス研究の様々な場面で遭遇する多様なデータを用いた分析,解釈,予測に関して,基礎的な知識の確認から開始し,従来より用いられてきた解析手法,近年開発されてきている手法に至るまで,それぞれの考え方と特徴について講述し,R言語を用いた演習を行う. |
| 授業計画 |
鈴木担当 第1週:導入 第2週:推定 第3週:主成分分析 第4週:相関解析と回帰 馬場担当 第5週:ベイズ統計モデリング 第6週:様々な確率分布 第7週:実用的なモデル 津川担当 第8週:ネットワーク分析 第9週:クラスタリングとその評価 第10週:データのランキングとその評価 |
| 教科書 | |
| 参考書 |
Rで学ぶデータサイエンスシリーズ(共立出版) Applied Predictive Modeling, Max Kuhn & Kjell Johnson,Springer,2013 StanとRでベイズ統計モデリング(共立出版) ベイズ統計モデリング: R,JAGS, Stanによるチュートリアル(共立出版) |
| 成績評価 | 3名の担当教員の課するレポートを総合して評価する. |
| TF・TA | |
| その他の情報 | 毎週2時限の授業のうち,前半を講義,後半をR言語を用いた演習にあてる.R言語の処理系を実行することができるノートパソコンを持参すること. |