
A Development of an XML-OLAP System

Chantola KIT†1

Extensible Markup Language (XML) has become an important factor for data ex-
change and representation on the web. In addition to conventional query processing, more
complex analysis on XML data is considered to become important in order to discover valu-
able information. Seeing that OLAP system is well known for its mature performance with
relational database systems, how to apply OLAP for XML data has become a popular topic
for many researchers. However, XML format is quite different from relational databases be-
cause of its semistructure and flexibility. To contribute to the need of XML data analysis,
in our previous work5), we proposed an XML-OLAP system which is a core operation in the
interactive analysis of XML data. Moreover, in 6), we proposed several efficient algorithms for
aggregation computation according to XML tree hierarchy or TOPOLOGICAL ROLLUP
which play a key role in XML structure-based grouping. Initially, we proposed two basic
algorithms: Top-Down and Bottom-Up, which are based on well known Structural Join
Algorithms1). We then proposed a modified Bottom-Up algorithm to improve applicability,
and the Single-Scan algorithms that make use of dedicated data structures. Our experiments
with synthetic XML data show the effectiveness of the proposed algorithms.

1. Introduction

Since the Extensible Markup Language
(XML) has become a de facto standard for data
exchange and representation on the web, XML
has been used in a wide spectrum of applica-
tion domains, such as Web documents, business
documents, and log data.

An example of XML data, which can be seen
in Figure 1, is coding the content of a book-
store, “Bookstore.xml”. The bookstore consists
of book, magazine, and DVD as its items. All
the items are stored in accordant to the classi-
fied categories and subcategories, such as math,
linear, cs (computer science), db (databases),
and web. Specifically, each item contents au-
thor’s name (shortly reprensented as a in the
figure), title (t), quantity (q), and text(txt).

In order to extract information from XML
data, generally, we can use existing XML query
languages, such as XPath and XQuery, or XML
information retrieval (XML-IR). These kind of
XML queryings are based on the basic functions
provided by the query languages or the pro-
vided keywords. However, the more complex
ways to make analysis of XML data are con-
sidered to be extremely important in order to
extract useful information from massive XML
data.

†1 Department of Computer Science, Graduated
School of Systems and Information Engineering

Several researchers have been working in this
area of research over the past few years; some
of their work is discussed in Section 2. Ac-
cording to those preceding research efforts, sev-
eral operations specific to XML-OLAP have
been proposed. Among those operations,
structure-based grouping or “TOPOLOGICAL
ROLLUP” is considered to play an important
role because XML structure is fundamentally
modeled as a tree.

For example, in the above bookstore exam-
ple, a user may want to compute total quantity
of the books by the subsidiary categories. To
do so, we group the quantity from the bottom
level, and sum it up to the root node. Since
the book nodes can be recursively grouped by
their categories in upper levels, we need to re-
peat grouping operations many times; this is
obviously time consuming.

Refferring to the underlying issues, in our pre-
vious work 5), we proposed XML-OLAP system
and recently6), we discussed various effective al-
gorithms for TOPOLOGICAL ROLLUP oper-
ation.

For the rest of this report, we discuss some re-
lated work in Section 2, then give an overview
of our XML-OLAP system in Section 3. In Sec-
tion 4, we discuss several proposed algorithms
starting from the trivial to efficient algorithms.
In order to show the effectiveness of the pro-
posed algorithms, we make experimental per-

book

books tor e

linear

csmath

db

D V DbookD V Dbookmagazine

web

magazine

book

20

t q

B

a

A1

tx t

…

60

t q

D

a

A1

tx t

… 30

t q

F

a

A3

tx t

… 40

t q

G

a

A1 50

t q

H

a

A4

tx t

…20

t q

E

a

A550

t q

C

a

A2 30

t q

J

a

A5

book

books tor e

linear

csmath

db

D V DbookD V Dbookmagazine

web

magazine

book

20

t q

B

a

A1

tx t

…20

t q

B

a

A1

tx t

…

60

t q

D

a

A1

tx t

…60

t q

D

a

A1

tx t

… 30

t q

F

a

A3

tx t

…30

t q

F

a

A3

tx t

… 40

t q

G

a

A1 40

t q

G

a

A1 50

t q

H

a

A4

tx t

…50

t q

H

a

A4

tx t

…20

t q

E

a

A5 20

t q

E

a

A550

t q

C

a

A2 50

t q

C

a

A2 30

t q

J

a

A5 30

t q

J

a

A5

Fig. 1 Bookstore.xml

formance and evaluation with synthetic data in
Section 5. Finally, we show our GUI for XML-
OLAP in Section 6 and give the conclusion in
Section 7.

2. Related Work

While diversification of data spreads rapidly,
interactive analysis on XML data is becoming
so curcial and popular for many researchers.

Bordawekar et al.2) investigate various issues
related to XML data analysis and propose a
logical model for XML analysis based on ab-
stract tree-structured XML representation. In
particular, they propose a categorization for the
XML data analysis system: 1) XML is used
simply to represent, externally, OLAP results,
2) Relational data is extracted from XML data
and then processed with existing OLAP sys-
tems, 3) XML is used for both data representa-
tion and analysis. To support complex analyt-
ical operations, they also propose new syntac-
tical extensions to XQuery, such as “GROUP
BY,” “TOPOLOGICAL ROLLUP,” “CUBE,”
and “TOPOLOGICAL CUBE.” Notice that
they focus on the modeling and syntactic as-
pects of XML-OLAP, and do not develop dis-
cussions about implementation, which our work
attempts to do.

Jensen et al.4) propose a scheme to specify
OLAP cubes on XML data. They integrate
XML and relational data at the conceptual level
based on UML, which is easy to understand by
system designers and users. In their scheme, a
UML model is built from XML data and rela-
tional data; the corresponding UML snowflake
diagram is then created from the UML model.
In particular, they consider how to handle di-

mensions with hierarchies and how to ensure
correct aggregation. They do not, however,
focus on structure-based grouping like the al-
gorithms we propose for TOPOLOGOGICAL
ROLLUP.

Pedersen et al.7) propose a federation of
OLAP and XML, which allows external XML
data to be presented along with dimensional
data in OLAP query results. It enables external
XML data to be used for selection and group-
ing. It is the same as the third approach in2).
They allow XML data to be used as so called
“virtual” dimensions, and present a data model
and multi-schema query language based on SQL
and XPath. Related to this research, our work
goes a step farther with efficient algorithms for
structural-based grouping coming after trivial
SQL and/or XPath.

Wiwatwattana et al.8) propose a straight-
forward way to extend the relational cube to
XML. They find that, in the XML warehouse,
both facts and dimensions can be hierarchical,
whereas the facts stored in a relational ware-
house are flat. Beyond that, XML is flexible:
(a) an element may have missing or repeated
sub-elements; and (b) different instances of the
same element type may have different struc-
tures. They identify the challenges introduced
by these features of XML for cube definition
and computation. They eventually propose the
definitions of cube and cube lattice adapted
for XML data warehouses. They also identify
several properties of the cube lattice that can
be leveraged for optimized computation. Their
purpose is similar to4), which we see our ad-
vanced work: OLAP extension for XML data
analysis.

Gokhale et al.3) investigate efficient algo-
rithms for the group-by operator on XML with
the goal of supporting a full spectrum of aggre-
gation operations. Their work includes holis-
tic operations, such as median() and com-
plex nested grouping and aggregations. Addi-
tionally, syntactical elements, such as having
clause and window aggregation, are also con-
sidered. They propose a framework to express
complex aggregation queries on XML data fea-
turing nested group-by, having clause, and mov-
ing windows. They also develop a disk-based al-
gorithm to efficiently evaluate queries involving
subsets of the above features. Their research

focuses on some possibilities of structure-based
aggregation while our research implements the
TOPOLOGICAL ROLLUP for XML-OLAP.

In conclusion to related work, we de-
velop concrete algorithms for “TOPOLOGI-
CAL ROLLUP,” a concept originally proposed
by Bordawekar et al.2). To the best of our
knowledge, there has been no preceding re-
search addressing the problem of how to effi-
ciently implement TOPOLOGICAL ROLLUP
operations.

3. XML-OLAP System Overview

This section describes an overview of our pro-
posed XML-OLAP system based on relational
databases5). In Figure 2 (left side), according
to the content of XML data, a user firstly gives
a fact path and some dimensioin paths in XPath
expression to denote his/her interest by which
the system produces an XML cube. Then, the
user can make analysis of XML data-cube using
XQuery with OLAP extensions. We are based
on relational databases because there are many
off-the-shelf systems and they provide good per-
formance.

In the right side of Figure 2, XML documents
are translated into relational tables: node ta-
ble and path table. Node table stores path ID,
preorder, postorder, node type, and value of ev-
ery XML nodes while path table stores path ID
and path expression of the node. Then, the
user given fact and dimension paths are trans-
lated to SQL query to extract all fact and di-
mensions from relational tables and form XML
data-cube. Finally, the given XQuery with
OLAP extension, specifically TOPOLOGICAL
ROLLUP, will also be converted into SQL query
in order to extract the user query result from
XML data-cube.

Since we had noticed that our TOPOLOGI-
CAL ROLLUP computation by SQL consumed
a lot of time, we proposed several efficient algo-
rithms for TOPOLOGICAL ROLLUP based on
well known algorithms, Structural Join1), which
will be shown in the following sectioins.

4. TOPOLOGICAL ROLLUP Opera-
tion

Before we go deeply to the proposed algo-
rithms, let us show the definition of TOPO-
LOGICAL ROLLUP. Originally, the idea is

from the OLAP extension to SQL, so we start
by briefly explaining ROLLUP operation in ex-
isting OLAP systems; we then explain TOPO-
LOGICAL ROLLUP for structure-based group-
ing in XML-OLAP, which is an OLAP exten-
sion to XQuery.

4.1 ROLLUP Operation in Existing
OLAP Systems

Aggregation is a fundamental part of data
warehousing; it comprises various operations,
such as data cube operations, complex aggrega-
tions (median, variance, etc.), binary aggrega-
tions (correlation, regression curves, etc.), and
ranking queries. To meet demand, SQL-99
OLAP extensions provide a variety of aggrega-
tion functions that allow users to specify their
information needs. It includes GROUP BY
and GROUPING SETS, ROLLUP and CUBE,
RANKING, and WINDOWING.

Let us look closely at the ROLLUP opera-
tion. In existing OLAP systems, ROLLUP en-
ables a SELECT statement to calculate mul-
tiple levels of aggregations across a specified
group of dimensions. Specifically, it firstly cal-
culates aggregations at the most detailed level;
it then calculates coarser levels of aggregations
up to the grand level according to the expres-
sion specified in the ROLLUP clause.

The ROLLUP clause is very helpful for calcu-
lating subtotals in such a dimension, which has
a deep hierarchical structure, e.g., time dimen-
sion (year, month, and day) and geographical
dimension (country, state, and city). In addi-
tion, for data warehouse administration tasks
using summary tables, ROLLUP can simplify
and speed up the maintenance of summary ta-
bles.

4.1.1 STJ for TOPOLOGICAL ROLLUP
Depending on Stack Tree Join, we attempt

to implement TOPOLOGICALROLLUP in the
following steps:
(1) As the preprocess, we extract a single

DList, which consists of XML nodes con-
taining values to be aggregated, and mul-
tiple ALists, each of which consists of
XML nodes in upper levels and corre-
sponds to a specific level of groupings.

(2) For each list in ALists, we perform STJ
between AList and DList to obtain the
grouping at the particular level, followed
by computation of aggregation values.

nullc1.1.2440

…0

nullarea1.147101

Nullsales14691

nullb1.1.1.1.150131

nullbookinfo1010

nulltsukuba1.1.1.149121

mathCDATA1.1.1.1330

nullkanto1.1.148111

null@name1.1.1230

nullc1.1120

valuetnamennumnidpiddid

nullc1.1.2440

…0

nullarea1.147101

Nullsales14691

nullb1.1.1.1.150131

nullbookinfo1010

nulltsukuba1.1.1.149121

mathCDATA1.1.1.1330

nullkanto1.1.148111

null@name1.1.1230

nullc1.1120

valuetnamennumnidpiddid

6/bookinfo/c/c/@name4

6/bookinfo/c/c/b5

12/bookinfo/c/c/b/p7

1/sales/area/kanto/tsukuba1
1

12/bookinfo/c/c/b/t6

1/bookinfo1

3/bookinfo/c/c3

1/sales8

4/bookinfo/c/@name3

2/bookinfo/c2

poccuPexpp

6/bookinfo/c/c/@name4

6/bookinfo/c/c/b5

12/bookinfo/c/c/b/p7

1/sales/area/kanto/tsukuba1
1

12/bookinfo/c/c/b/t6

1/bookinfo1

3/bookinfo/c/c3

1/sales8

4/bookinfo/c/@name3

2/bookinfo/c2

poccuPexpp

SQLXPath

ImplementationSystem

�

�

� �

� � � �

�

�
�	�
�

�
�	�
�

���� � � � �������

����� �

� �

� � � � �

name
“linalgebra”

n
ame
“
web”

�

� � � � � � � �

name
“math”

name
“cs”

c

c

�

c

c

�

�

� �

�

� �

�

� �

�

� �

�

� �

na
me
“db”

c

�� � � � ! " # � � $ � $ � � �%&

'� � � � ! " # � � $ � $ � � �%&

(� � � � ! " # � � $ � $ � � �%&

)� � � � ! " # � � $ � $ � � �%&

*� � � � ! " # � � $ � $ � � �%&

+� � � � ! " # � � $ � $ � � �%&

, -.% - / %0 ! 0

�� � � � ! " # � � $ � $ � � �%&

'� � � � ! " # � � $ � $ � � �%&

(� � � � ! " # � � $ � $ � � �%&

)� � � � ! " # � � $ � $ � � �%&

*� � � � ! " # � � $ � $ � � �%&

+� � � � ! " # � � $ � $ � � �%&

, -.% - / %0 ! 0

Fact /Dimension Paths

SQL

Query Translation

Path
Approach

Query Translation

Node table Path table

�� � � � ! " # � � $ � $� � � %&

'� � � � ! " # � � $ � $� � � %&

(� � � � ! " # � � $ � $� � � %&

)� � � � ! " # � � $ � $� � � %&

*� � � � ! " # � � $ � $� � � %&

+� � � � ! " # � � $ � $� � � %&

, - .% - / %0 !0

�� � � � ! " # � � $ � $� � � %&

'� � � � ! " # � � $ � $� � � %&

(� � � � ! " # � � $ � $� � � %&

)� � � � ! " # � � $ � $� � � %&

*� � � � ! " # � � $ � $� � � %&

+� � � � ! " # � � $ � $� � � %&

, - .% - / %0 !0

&

&

&

&

&

&

0 ! 0

� � � � ! " # � � $ � $ � � � %

� � � � ! " # � � $ � $ � � � %

� � � � ! " # � � $ � $ � � � %

� � � � ! " # � � $ � $ � � � %

� � � � ! " # � � $ � $ � � � %

� � � � ! " # � � $ � $ � � � %

% - / %

�

'

(

)

*

+

, - .

�

'

(

)

*

+

, -.

� � � � ! " # � � $ �$ � � � %

� � � � ! " # � � $ �$ � � � %

� � � � ! " # � � $ �$ � � � %

� � � � ! " # � � $ �$ � � � %

� � � � ! " # � � $ �$ � � � %

� � � � ! " # � � $ �$ � � � %

% - / %

&

&

&

&

&

&

0!0

&

&

&

&

&

&

0 ! 0

� � � � ! " # � � $ � $ � � � %

� � � � ! " # � � $ � $ � � � %

� � � � ! " # � � $ � $ � � � %

� � � � ! " # � � $ � $ � � � %

� � � � ! " # � � $ � $ � � � %

� � � � ! " # � � $ � $ � � � %

% - / %

�

'

(

)

*

+

, - .

�

'

(

)

*

+

, -.

� � � � ! " # � � $ �$ � � � %

� � � � ! " # � � $ �$ � � � %

� � � � ! " # � � $ �$ � � � %

� � � � ! " # � � $ �$ � � � %

� � � � ! " # � � $ �$ � � � %

� � � � ! " # � � $ �$ � � � %

% - / %

&

&

&

&

&

&

0!0

Fact
table

Dimension
table

XML
Data-cube

XQuery
w/OLAP
Extension

1 2

total

1 3 1 4 � � 5 1 2

total

1 3 1 4 � � 5

xmlcube

6�7

name
“math”

c

1000

name
“linear algebra”

p1b1

D

6�7

8 9 9 : ; < = 9
name
“cs”

2000

name
“db”

p4b2

>

? @ A ?
: ? < B ? ;

B ? C A B

: D 9 6 9

6�7
8

6 E > C A

8 9 9 : ; < = 9
name
“cs”

c

c

8
name
“web”

p5b6
>

B ? C A B
? @ A ?
: ? < 6 9
6 B E : E 8 ?

8 9 9 : ; < = 9

6 E > C A 6 E > C A

B ? C A B
? @ A ?
: ? < 6 9
6 B E : E 8 ?

c

b

p

8 8

c

c

8

XQuery w/OLAP
Extension

������������

������������

������������

������������

������������

������������

������������� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � 	� � � � � 	� � � � � 	� � � � � 	

������������

������������

������������

������������

������������

������������

������������� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � 	� � � � � 	� � � � � 	� � � � � 	

c

c

Fig. 2 XML-OLAP System Overview

Finally, we get the multiple levels of aggre-
gations. The process can be implemented in
two distinct directions: Top-Down and Bottom-
Up. The following paragraphs describe the al-
gorithms in detail.

4.1.1.1 Top-Down Algorithm (TDA)
The first algorithm is the Top-Down Algo-

rithm (TDA). As the name implies, TDA uses
STJ to compute the grouping from the topmost
level to the more detailed levels.

Let us look back to the previous example in
Bookstore.xml that a user would like to cal-
culate the quantity of the books by categories.
(Figure 3, left side) dipicts our algorithm pro-
cess. We construct three ALists according to
the levels of groupings, and also construct a sin-
gle DList, which contains all book nodes. No-
tice that the topmost bookstore node is omit-
ted from structural join process because there
is no need for TDA to compute aggregations
starting from the top level, AList1, by joining
it with DList. Thus, we obtain the aggregations
from the second level (AList2) and continue this
process down to AList3. Finally, we get all lev-
els of aggregations.

DList

AList3

AList2

AList1

STJA

book

books t or e

linear

csmath

db

bookbook

webbook

20

q

60

q

30

q

50

q

AList1

60 30 50

8080

160

DList3

AList3

AList2

AList1

STJA DList2

STJA
DList1

TDA BUA

STJA

DList

AList3

AList2

AList1

STJASTJA

book

books t or e

linear

csmath

db

bookbook

webbook

20

q

20

q

20

q

60

q

60

q

60

q

30

q

30

q

30

q

50

q

50

q

50

q

AList1

60 30 50

8080

160

DList3

AList3

AList2

AList1

STJASTJA DList2

STJASTJA
DList1

TDA BUA

STJASTJA

Fig. 3 Top-Down and Bottom-Up Algorithms.

4.1.1.2 Bottom-Up Algorithm (BUA)
You may notice that TDA is too straight-

forward and not at all efficient because we
need multiple full-scans over DList. A possible
workaround is to process in the opposite direc-
tion, starting with the lowermost grouping level
and going up to the topmost level. The major
advantage is that we can use the output of the
previous grouping, whose size should be smaller
because of grouping, as the input of the current
grouping. Consequently, less processing time is
gained than with TDA.

Look at the example on the right side of Fig-

ure 3, which illustrates the same query as the
previous TDA example. This time, we start
by joining AList3 with DList3, and obtain the
aggregations as well as DList2. Notice that
DList2 is the same size as AList3. We move
ahead by performing STJ for joining AList2
with DList2, and so on. Using the result from
the lower level instead of repeating DList1, we
can obtain all groupings at all levels without
performing a full scan over DList1 many times.

Having described TDA and BUA, we can ob-
serve their advantages and disadvantages:
• TDA is able to compute exact aggregation

values, but it is relatively inefficient.
• BUA appears to be faster than TDA be-

cause it reduces full scans over DList; how-
ever, it may compute inaccurate aggrega-
tion values if grouping nodes and nodes
to be aggregated are both residing at the
same level. For instance, DList2, which
is the result of STJ between DList1 and
AList4, contains word counts of term “B”
in section(37,44) and section(45,52).
After that, when we join DList2 with AL-
ist3, we eventually notice that text(17)
and text(25) are not taken into account.

4.1.1.3 Bottom-Up Algorithm for Mixed
Structure (BUA-Mix)

To cope with the above problem, we pro-
pose an improved version of BUA, which is
called Bottom-Up Algorithm for Mixed Struc-
ture (BUA-Mix). Our idea is to keep descen-
dant nodes, which are out of ancestors’ scopes,
in the output list. We do this because they may
be joined with ancestors in upper levels. Conse-
quently, even if BUA-Mix cascades the output
of the current level to the upper level, it does
not miss descendants that are at the same level
as the aggregation nodes (ALists).

Figure 4 shows the algorithm for BUA-Mix,
which has been modified from STJ. It contains
three major conditions, and their intuitive ex-
planations are as follows:
• The first condition (a.pre < d.pre and

d.post < a.post) states that the current
a node is an ancestor of descendant d node.
If so, we update the aggregation value of a,
and proceed to the next descendant.

• The second condition (d.post < a.pre)
states that the descendant d precedes the
current ancestor a. This means that d can-

Algorithm BUA-M ix (AL ist, D L ist)
/*Assu me that all nodes in AL ist and D L ist hav e the same did*/
/*AL ist is the list of potential ancestors in sorted order of pre*/
/*D L ist is the list of potential descendants in sorted order of pre*/
a = AL ist � firstN ode;
d = D L ist � firstN ode;
ou tpu t = N u ll;
w hile (AL ist and D L ist are not end of list) {

if (a. pre < d. pre and d. post < a. post) {
a. v alu e = aggregate(a. v alu e, d. v alu e);
d = d -> nex t;

}
else if (d. post < a. pre) {

append d to ou tpu t;
d = d -> nex t;

}
E lse {

append a to ou tpu t;
a = a -> nex t;

}
}

Fig. 4 Bottom-Up Algorithm for Mixed Structure
(BUA-Mix).

not be taken into account as a part of a,
but may be used for future ancestors at up-
per levels. We therefore append it to the
output for future usage instead of throwing
it away.

• In other cases, we append the current an-
cestor a to the output, and move to the next
ancestor.

Notice that aggregate() denotes a general-
ized aggregation function to compute aggrega-
tion, and should be replaced with specific ag-
gregation functions, such as sum, average, min,
and max.

4.2 Single-Scan Algorithms for TOPO-
LOGICAL ROLLUP Operation

In addition to the above algorithms, we pro-
pose more efficient algorithms for TOPOLOG-
ICAL ROLLUP operation, Single-Scan by Pre-
order Number (SSC-Pre) and Single-Scan by
Postorder Number (SSC-Post), by which we can
compute whole aggregations with a single scan
over an AList and DList pair. Note that, in
contrast to the above algorithms, a single AL-
ist, containing all ancestor nodes corresponding
to aggregation levels, is being considered.

To make it possible to compute the whole ag-
gregation within a single scan, we try to use a
stack or a list as the data structure to main-
tain intermediate results. When we find a new
matching pair of an ancestor and a descen-
dant, we not only calculate current aggregation,
but also propagate the result up to ancestors,
thereby avoiding multiple scans over a number
of ALists.

Note also that we propose two variations ac-

cording to the way AList and DList is ordered.
Specifically, we care about two cases where the
lists are sorted by preorder or postorder num-
bers. This is another difference between the
above algorithms with which all lists are as-
sumed to be ordered by a preorder number.
One good reason to have algorithms for both
orderings is that some XML database systems
employ a postorder number as the order to or-
ganize their storage scheme while most systems
use a preorder number. By choosing an appro-
priate algorithm depending on how underlying
storage is organized, we can achieve better per-
formance in implementing XML-OLAP.

The following subsections describe Single-
Scan by Preorder Number, followed by Single-
Scan by Postorder Number.

4.2.1 Single-Scan by Preorder Number
(SSC-Pre)

SSC-Pre takes as its inputs a single AList,
containing all ancestor nodes as grouping nodes
sorted by preorder number, and a single DList,
containing all descendant nodes to be aggre-
gated and also sorted by their preorder num-
bers. It computes all aggregations while scan-
ning AList and DList from heads to tails. To
maintain intermediate aggregation results, we
use a stack as temporary storage while scan-
ning the inputs.

To see how SSC-Pre works, look at Figure 5.
We have an AList consisting of bookstore and
categories: math, linear, cs, db, and web
nodes, and a DList of all book nodes. Each
node of both lists contains document ID, pre-
order number, post order number and value.
Both AList and DList are sorted by preorder
number. The arrows in the figure show the
process order among ancestor nodes. By refer-
ring to the ascending order of preorder number,
SSC-Pre starts from the least preorder num-
ber ancestor node, bookstore(1,113), and
checks the following node in AList to determine
whether or not it is subsumed. If it is, put
the bookstore(1,113) node on the stack as in
stack-output pair#1, and move to the second
node math(2,56). The same for bookstore
node, math(2,56) node is also pushed onto the
stack (see stack-output pair#1) and move to
linear(17,55). Here, we know that the next
ancestor is beyond the region of math; we then
check the DList. We try to find the first match-

3,16

book

books t or e

linear

csmath

db

bookbook

webbook

1,113

2,56

17,55 58,84 85,111

57,112

30,43 59,72 86,99

AList

DList

60

q

30

q

50

q
20

q

160

80

60 30 50

STJ80

Stack Output
1,113,0
2,56,20

1,113,0
2,56,80

17,55,60

1,113,80
57,112,0
58,84,30

17,15,60
2,56,80

1,113,80
57,112,0

17,15,60
2,56,80

1,113,80
57,112,30

17,55,60
2,56,80
58,84,30

17,55,60
2,56,80
58,84,30
45,11,50
57,112,80
1,113,160

… …

#2

#3

#4

#5

last

#1

3,16

book

books t or e

linear

csmath

db

bookbook

webbook

1,113

2,56

17,55 58,84 85,111

57,112

30,43 59,72 86,99

AList

DList

60

q

60

q

30

q

30

q

50

q

50

q
20

q

20

q

160

80

60 30 50

STJSTJ80

Stack Output
1,113,0
2,56,20

1,113,0
2,56,80

17,55,60

1,113,80
57,112,0
58,84,30

17,15,60
2,56,80

1,113,80
57,112,0

17,15,60
2,56,80

1,113,80
57,112,30

17,55,60
2,56,80
58,84,30

17,55,60
2,56,80
58,84,30
45,11,50
57,112,80
1,113,160

… …

#2

#3

#4

#5

last

#1

Fig. 5 Example of SSC-Pre in Book.xml Tree.

ing descendant by scanning DList. When we
find a matching node, we compute the aggrega-
tion between the current ancestor and descen-
dant. Also, we propagate the aggregation up to
the ancestors in upper levels as in stack-output
pair#2. They are actually stored before out-
put, and thus we manipulate the stack to do
so.

Figure 6 shows the algorithm of SSC-Pre. A
rough sketch of this algorithm is as follows:
(1) The first condition (stack.top.pos < a.

pre and stack.top.pos < d.pre states
that both the current a and d nodes are
not the descendant of the top node of the
stack. This means that the top node of
the stack reaches its last descendant node.
We then move the top node of stack onto
the output and also update the aggrega-
tion value of the new top node of the stack
with the stack pop node value.

(2) The second condition (a.pre < d.pre)
states that the current a node is an ances-
tor of d node. Here, we suspect that the
next ancestor may also be the ancestor
of the current d, so we keep the current
a on the stack and proceed to the next
ancestor.

(3) In other cases, we update the aggregation
value of stack’s top node with the current
d value and move to the next descendant
node.

4.3 Single-Scan by Postorder Number
(SSC-Post)

SSC-Post outputs the result in the same order
of SSC-Pre and BUA, and contains only one in-
put AList and one input DList as in SSC-pre.
By the way, SSC-Post differs from SSC-Pre in

Algorithm SSC-P re (AL is t, D L is t)
/ * As s u me tha t a ll n od e s in AL is t a n d D L is t ha v e the s a me d id * /
/ * AL is t is the lis t of p ote n tia l a n c e s tors in s orte d ord e r of p re * /
/ * D L is t is the lis t of p ote n tia l d e s c e n d a n ts in s orte d ord e r of p re * /
a = AL is t � f irs tN od e ;
d = D L is t � f irs tN od e ;
ou tp u t = N u ll;
w hile (AL is t a n d D L is t a re n ot e n d of lis t) {

if (s ta c k . top . p os t < a . p re a n d s ta c k . top . p os t < d . p re) {
tu p le = s ta c k . p op ();
a p p e n d tu p le to ou tp u t;
s ta c k . top . v a lu e = a ggre ga te (s ta c k . top . v a lu e , tu p le . v a lu e);

}
e ls e if (a . p re < d . p re) {
s ta c k . p u s h(a);
a = a -> n e x t;

}
e ls e {
s ta c k . top . v a lu e = a ggre ga te (s ta c k . top . v a lu e , d . v a lu e);
d = d -> n e x t;

}
}

Fig. 6 SSC-Pre Algorithm.

that both the AList and DList nodes are in the
order of postorder number whereas SSC-Pre’s
input lists are in the order of preorder num-
ber. SSC-Post makes the grouping by scanning
the XML tree starting from the lowest level hi-
erarchy until it reaches the top level. Doing
so, SSC-Post can reduce the cost of traversing
the XML tree, circled process of SSC-Pre (top-
bottom-top), to a half circle, starting from the
bottom and ending at the top (bottom-top).
Moreover, SSC-Post also enables us to partition
XML data when the data size is very large.

Let us look at the example in Figure 7.
Illustrated by the arrows, SSC-Post starts
from the first ancestor node, which is at
the bottom level (linear (17,55)). There,
the algorithm checks for the descendant node
of linear(17,55) and updates its aggregate
value, which we can see in the list-output
pair#1 of the figure, and move the next an-
cestor node math(2,56). Notice that since
node book(3,16) is not the current ancesstor
node linear, we push this node into list as
in #1. Doing so, we will not miss this value
when we go up to compute the aggregation of
node math(2,56) which is the ancesstore of
book(3,16). At math(2,56) as well as the
rest of ancestor nodes, SSC-Post repeats check-
ing for all descendant nodes of this math(2,56)
and store it in the list and output. The idea is
that, for each ancestor node, SSC-Pre aggre-
gates all of its descendant nodes’ values and re-
leases this ancestor node with its completed ag-
gregate value to the output before it goes on to
its sibling or its parent node. By repeating the

3,16

book

books t or e

linear

csmath

db

bookbook

webbook

1,113

2,56

17,55 58,84 85,111

57,112

30,43 59,72 86,99

AList

DList

60

q

30

q

50

q
20

q

STJ

160

80

60 30 50

80

#2

#3

#4

#5

last

#1
List Output
3,16,20
17,55,60
3,16,20
2,56,60

17,55,60

2,56,80
58,84,30
85,111,50

17,55,60
2,56,80
58,84,30

2,56,80
58,84,30

17,55,60
2,56,80

2,56,80
57,112,80

17,55,60
2,56,80
58,84,30
85,111,50

1,113,160 17,55,60
2,56,80
58,84,30
85,111,50
57,112,80
1,113,160

… …

3,16

book

books t or e

linear

csmath

db

bookbook

webbook

1,113

2,56

17,55 58,84 85,111

57,112

30,43 59,72 86,99

AList

DList

60

q

60

q

30

q

30

q

50

q

50

q
20

q

20

q

STJSTJ

160

80

60 30 50

80

#2

#3

#4

#5

last

#1
List Output
3,16,20
17,55,60
3,16,20
2,56,60

17,55,60

2,56,80
58,84,30
85,111,50

17,55,60
2,56,80
58,84,30

2,56,80
58,84,30

17,55,60
2,56,80

2,56,80
57,112,80

17,55,60
2,56,80
58,84,30
85,111,50

1,113,160 17,55,60
2,56,80
58,84,30
85,111,50
57,112,80
1,113,160

… …

Fig. 7 Example of SSC-Post in Book.xml Tree.

process, which we can see in the arrow direc-
tion, SSC-Post finally provides an output list
that contains all aggregate values grouped by
category hierarchies.

4.3.1 SSC-Post Algorithm
More precisely, let us look at the algorithm of

SSC-Post in Figure 8, which has four conditions
and uses the list to keep intermediate aggregate
values.
(1) The first condition (a.pre < list.last.

pre and list.last.post < a.post)
states that the current a is an ancestor of
the last node of the list. If so, we update
the aggregate value of a and remove the
last node from the list.

(2) The second condition (a.pre < d.pre
and d.post < a.post) states that the
current a is an ancestor of d. We update
the aggregate value of a and proceed to
next descendant.

(3) The third condition (d.post < a.pre)
states that d is the pre-sibling of a, in case
of mixed structured XML data. Thus, we
keep d into the list and move to next de-
scendant node.

(4) In other cases, the current d is not the
descendant of the current ancestor node
(a is completed), but may be the descen-
dant of the next ancestor node. Hence,
we output ancestor node a and also keep
it in the list before we move to the next
ancestor node.

In the real world, some existing XML
databases are in the order of preorder number
and others are in the order of postorder num-
ber. That means our proposed SSC-Pre and

Algorithm SSC-P os t (AL is t, D L is t)
/ * As s u me tha t a ll n od e s in AL is t a n d D L is t ha v e the s a me d id * /
/ * AL is t is the lis t of p ote n tia l a n c e s tors in s orte d ord e r of p re * /
/ * D L is t is the lis t of p ote n tia l d e s c e n d a n ts in s orte d ord e r of p os t* /
a = AL is t � f irs tN od e ;
d = D L is t � f irs tN od e ;
ou tp u t = N u ll;
w hile (AL is t a n d D L is t a re n ot e n d of lis t) {

if (a . p re < lis t. la s t. p re a n d lis t. la s t. p os t < a . p os t) {
a . v a lu e = a ggre ga te (a . v a lu e , lis t. la s t. v a lu e);
re mov e lis t. la s t;

}
e ls e if (a . p re < d . p re a n d d . p os t < a . p os t) {
a . v a lu e = a ggre ga te (a . v a lu e , d . v a lu e);
d = d -> n e x t;

}
e ls e if (d . p os t < a . p re){
a p p e n d d to lis t;
d = d -> n e x t;

}
e ls e {
a p p e n d a to ou tp u t;
a p p e n d a to lis t;
a = a -> n e x t;

}
}

Fig. 8 SSC-Post Algorithm.

payment payment payment

s amer i c aas i a au s tr al i a eu r o pe namer i c aaf r i c a

regions

sit e

i tem

q u anti ty

i tem

q u anti ty

i tem

q u anti ty

regions

payment payment payment

s amer i c aas i a au s tr al i a eu r o pe namer i c aaf r i c a

regions

sit e

i tem

q u anti ty

i tem

q u anti ty

i tem

q u anti ty

regions

Fig. 9 XMark Tree.

SSC-Post is useful for all cases.

5. Performance Study

We have conducted a series of experiments to
perform comparative analysis on the proposed
algorithms. However, as mentioned in related
work, our proposed algorithms are state of the
art; there are no comparable algorithms from
other research.

5.1 Experimental Setup
All experiments were performed on a Sun Mi-

crosystems Sun Fire X4200 server with a 2-
way Dual Core AMD Opteron (tm) processor
(2.4GHz). The machine has 16GBs of RAM
and runs on Sun OS 5.10. We used Java version
1.5.0 to implement the algorithm. As underly-
ing data storage, we used PostgreSQL 8.2.6 to
store XML data. Specifically, we used the path-
approach9) to convert XML data to a relational

table. When performing a TOPOLOGICAL
ROLLUP operation, we first formed AList(s)
and DList by issuing respective SQL queries,
and applied the algorithm over the lists.

5.2 Experimental Data
To show the effectiveness of our proposed al-

gorithms, we used two kinds of synthetic XML
data. One is XMark and the other is synthe-
sized XML data by our data generator.

XMark is a comprehensive distributed system
benchmarking and optimization suite. Figure 9
depicts the structure of the XMark data. We
chose the regions element for our target. Each
region node contains child nodes representing
world continents, like Africa, Asia, Australia,
Europe, North America, and South America,
as well as other child nodes. Each continent
node contains several item elements and others,
and each item node contains numerical mea-
sures, such as quantity and payment. We tried
to compute aggregation of quantity according
to the region hierarchy. We tested the follow-
ing sizes of XML data:10MB, 100MB, 200MB,
300MB, 400MB, 500MB, and 1GB.

One major drawback of XMark is that it is
not hierarchically deep enough as can be seen
in the figure. Thus, we implemented a dedi-
cated XML generator. It randomly generates
XML data according to the predefined statisti-
cal values, such as the number of children, av-
erage depth, and number of text nodes. For our
experiments, we generated the following sets of
XML data.
(1) Without Mixed Structure: We generated

XML data that did not have any text
node being aggregated at the same level
to aggregation nodes. This was done to
evaluate BUA.

(2) Varying Hierarchical Levels: We gener-
ated XML data by changing the maxi-
mum depth.

(3) Varying Descendant Nodes: We gener-
ated XML data by changing the number
of children for each node, thereby varying
the width of XML data.

5.3 Experimental Results
Table 1 and Figure 10 show the experimental

result of the TOPOLOGICAL ROLLUP opera-
tion with XMark data of depth 2. We compared
TDA, BUA-Mix, SSC-Pre, and SSC-Post. Ad-
ditionally, as the baseline, we computed the

Table 1 Rollup XMark With Two Hierarchical Levels

Size 10MB 100MB 200MB 300MB 400MB 500MB 1GB
AList 7 7 7 7 7 7 7
DList 2,175 21,750 43,500 65,250 87,000 108,750 222,720
SQL 62 4,128 8,065 12,289 16,735 23,421 49,142
TDA 223 2,613 5,089 7,386 9,924 12,314 32,120
BUA-Mix 229 2,685 5,087 7,410 10,038 12,655 40,690
SSC-Pre 216 2,334 4,468 6,642 8,887 10,730 27,473
SSC-Post 214 2,646 5,065 7,719 10,176 12,538 31,059

��

���

�� ���

��� ���

���� ���

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
	
�

� � � � � 	
� �

�
��
�
��
�
�
�

� �

� � �

� � � �� � �

����

������

Fig. 10 Rollup XMark With Two Hierarchical Levels.

��

���

�� ���

��� ���

���� ���

�� ���� ���

��� ���� ���

���� ���� ���

� � � � �

	
 � � � � �
 � � � � � � � � �

�
��
�
��
�
�
�

�� �

� � �

� � � ��
 �

���� � �

���� !�"

Fig. 11 Rollup Generated XML Data by Hierarchical
Levels.

���

�� ���

��� ���

���� ���

�� ���� ���

�� � � � � � � � �

� 	
 � � � �� � �� � � � � � �� � �� � � � � � � � � �� � � �� � �� �

�
��
�
��
�
�
� � � �

 ! � "# � $

%%�"� �

%%�"����

Fig. 12 Rollup Generated XML Data by Number of
Child Nodes.

���

�� ���

��� ���

���� ���

�� ���� ���

� � � �

� 	
 � � � � 	 � � � �
 �
 � �

�
��
�
��
�
�
� � � �

� � � �� 	 �

������

�������

Fig. 13 Rollup Generated XML Data Without
Mixed Structure.

same aggregations by SQL alone. The second
and third rows of Table 1 show the length of AL-
ist and DList, respectively. For AList, it shows
the total length of all ALists rather than the
length of each level-AList in the cases of TDA
and BUA-Mix. According to XMark data, the
total number of ancestors is fixed (7 nodes),
while the number of descendants increased. As
a result, once the size of DList grows, SQL per-
forms poorly compared with our proposed al-
gorithms. Ultimately, among the algorithms,
SSC-Pre and SSC-Post, because of their nature,
showed similar performance but better trends
compared to BUA-Mix and TDA. Note that we
omit BUA because it cannot provide accurate
aggregate values with a mixed structure.

Figure 11 is another experiment that shows
the performance of our proposed algorithms
with our generated XML data by varying the
number of hierarchies. The result shows that
TDA performance tendency is similar to BUA-
Mix, and SSC-Pre and SSC-Post are about
twice as fast as TDA and BUA. However, SSC-
Post had the best performance.

Figure 12 shows the performance results from
varying the number of child nodes from 10 to
50. Similar to the previous experiment, TDA
and BUA showed similar trends whereas SSC-

Pre and SSC-Pos performed better than TDA
and BUA. Still, SSC-Post slightly outperformed
SSC-Pre.

Figure 13 shows the result for data without
mixed structure, where BUA can be applied.
Similar to the experiment with XMark data, we
varied the number of hierarchies. Subsequently,
as expected, BUA performs better than TDA.
And again, SSC performed better than BUA
and SSC-Post had the best performance.

In summary, the experimental results sug-
gest that: 1) the proposed algorithms perform
much better than the baseline implementation
by SQL, 2) TDA and BUA have similar per-
formance trends, but BUA performs slightly
better than TDA because of its nature, and
3) the proposed algorithms SSC-Pre and espe-
cially SSC-Post perform better than TDA and
BUA for all cases; specifically, SSC-Post has
the best performance. As a consequence, we
have the freedom to choose an appropriate algo-
rithm from SSC-Pre and SSC-Post, taking into
account how the underlying data storage of the
XML database is organized.

6. GUI for XML-OLAP

This section demonstrates our XML-OLAP
system with TOPOLOGICAL ROLLUP op-
eration. The demonstrated program is pro-
duced by Java graphical user interface. As
in Figure 14, the GUI shows the demonstra-
tion with three kinds of data: “Bookstore.xml”,
”XMark.xml”, and our generated XML data.
Each tab contents the demonstration with each
XML data respectively. For the following de-
tail, we will only explain our demonstration
with “Bookstore.xml” since it is easier to un-
derstand.

6.1 XML Tree Viewer
XML Tree button enables the user to view

“Bookstore.xml” as in Figure 15. The viewer
shows the contain of “Bookstore.xml” as a tree
hierarchy. The user can click on each node of
the tree to see its subtree and node value. Here,
the user can see what is inside XML data, such
as hierarchy, property (books, magazine, au-
thor, etc.).

6.2 XQuery for “Bookstore.xml” TOPO-
LOGICAL ROLLUP

When the user looked at the content in-
side XML data, the user may think of mak-

Fig. 14 XML-OLAP System Demonstration.

ing TOPOLOGICAL ROLLUP operation on
“Bookstore.xml” by prviding XQuery with
TOPOLOGICAL ROLLUP statement. Our
application enables the user to input his/her
XQuery by clicking on XQuery button. There,
the user can write XQuery with TOPOLOGI-
CAL ROLLUP extension as the input to our
system.

Figure 16 shows an example of user query
which the user tries to compute the quantity
of the books by categories. We can see that
the user uses “Group by TOPOLOGICAL
ROLLUP(“$x)” statement to specifies to our
system that he/she wants to rollup the aggrega-
tion by the proposional portion of “$x” path,
and the portions are the subsidiary categories
of the books.

6.3 TOPOLOGICAL ROLLUP Out-
put

After the user compled his/her XQuery in-
put, he/she can process the query by clicking on
Output. As the result, our XML-OLAP sys-
tem, by referring to the given XQuery, extracts
AList and DList and runs SSC-Post join. Fi-
nally, the system produces the output which is
viewed as XML tree in Figure ??. The figure
shows the quanitity of the books grouped by
each category, and the last node is the quantity
of the books in the whole bookstore.

7. Conclusions

This report discussed XML-LAP system fol-
lowed by grouping and ROLLUP operations
for XML Data, with the focus on structure-
based grouping, TOPOLOGICAL ROLLUP
operation. We first proposed two naive al-
gorithms (TDA and BUA) for TOPOLOGI-
CAL ROLLUP using the Stack Tree Join al-
gorithm. We then showed the disadvantages
in our proposed algorithms and proposed more

Fig. 15 “Bookstore.xml” Tree Viewer.

Fig. 16 XQuery of “Bookstore.xml”
TOPOLOGICAL ROLLUP.

Fig. 17 Output of ”Bookstore.xml”
TOPOLOGICAL ROLLUP.

effective algorithms, BUC-Mix, SSC-Pre, and
SSC-Post. Our experiment with a large collec-
tion of XMark data and our generated XML
data showed the effectiveness of our proposed
algorithms, especially SSC-Pre/Post, which en-
able us to effectively analyze any existing data
storage of XML databases. Finally we show
our GUI for XML-OLAP system where the user
can process to Xquery with TOPOLOGICAL
ROLLUP extension.

In the future, we plan to adopt our proposed
algorithms for the remaining OLAP extension
features (CUBE, WINDOWING, RANKING,
...). Furthermore, by using SSC algorithms,
we can apply partitioning techniques to our al-
gorithm to cope with very large XML data.
We also plan to improve the algorithms perfor-
mance by considering on multithreading with
XML data partitioning. Another possibility
is applying information retrieval on XML data
based on our proposed algorithms.

References

1) S. Al-Khalifa, H. Jagadish, N. Koudas, J. M.
Patel, D. Srivastava, and Y. Wu. Structural
joins: A primitive for efficient xml query pat-
tern matching. In Proc. of ICDE 2002, pages
141–152, March 2002.

2) R. Bordawekar and C. A. Lang. Analytical
processing of xml documents: Opportunities
and challenges. SIGMOD Record, 34(2):27–32,
June 2005.

3) C. Gokhale, N. Gupta, P. Kumar, L.
Lakshmanan, R.Ng, and B.Prakash. Complex
group-by queries for xml. In Proc. of ICDE
2007, pages 646–655, April 2007.

4) M.R. Jensen, T.H. Møller, and T.B. Pedersen.
Specifying olap cubes on xml data. In Pro-
ceedings of SSDBM 2001, pages 101–112, July
2001.

5) C.Kit, T.Amagasa, and H.Kitagawa. Olap
query processing for xml data in rdbms. In
IEEE International Workshop on Database for
Next Generation Researchers (SWOD), pages
7–12, April 2007.

6) C.Kit, T.Amagasa, and H.Kitagawa. Algo-
rithms for efficient structure-based grouping in
xml-olap. In Proc. 10th International Confer-
ence on Information Integration and Web-based
Applications and Services (iiWAS 2008), pages
170–177, November 2008.

7) D.Pedersen, K.Riis, and T.B. Pedersen. Xml-
extended olap querying. In Proceedings of SS-
DBM 2002, pages 195–206, May 2002.

8) N. Wiwatwattana, H. Jagadish, L. V. Laksh-
manan, and D.Srivastava. X3: A cube operator
for xlm olap. In Proc. of ICDE 2007, pages
916–925, April 2007.

9) M. Yoshikawa, T. Amagasa, T. Shimura, and
S. Uemura. Xrel: A path-based approach to
storage and retrieval of xml documents us-
ing relational databases. ACM Trans. Internet
Techn., 1(1):110–141, August 2001.

