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SUMMARY In this study we develop a parallel XML query
processing system on a shared-nothing cluster system to process
query twig patterns on XML data based on a holistic twig joins
algorithm. The study focuses on finding new novel schemes of
XML data partition, which is one of the main technical aspects
for good system performance in the parallel processing context,
for both static and dynamic XML data distribution. For static
XML data distribution, we propose a partitioning scheme called
Grid Metadata Model for XML (GMX) that provides an abstrac-
tion of performing XML data partition. This partitioning scheme
outlines a set of partition methods that provide different levels of
partition granularities such as document cluster, query cluster,
document, query and query-path partitioning methods. During
static XML data distribution onto cluster nodes, different parti-
tion granularities from the coarsest to the finest partitions are uti-
lized to balance workloads among the cluster nodes. In addition,
for dynamic XML data distribution, we propose a streams-based
partitioning method that provides much finer partition granular-
ity than the former methods. When queries being executed in the
system introduces workload imbalance, the method is executed
on-the-fly.

Keywords: XML data partition, parallel holistic twig joins

1. Introduction

With the growing popularity of the World Wide Web,
many applications have adopted XML as a de facto
standard format for representing various kinds of infor-
mation. Greater volume of XML data, increasing num-
ber of concurrent users and more complex queries are
challenges toward the performance capability of such a
query processing system.

Many research activities have devised XML query
processing algorithms to deal with these challenges.
Among other XML query processing algorithms intro-
duced by [1], [7], [17], and [18], the family of holistic
twig joins algorithms introduced in [4], [5], and [10] has
distinguished features. The underlying structure of the
holistic twig joins is typically in the form of streams,
which are sequences of XML nodes represented in a
3-tuple representation [18] that is able to specify struc-
tural relationships among stream nodes. In addition,
the holistic twig joins have capabilities of performing
multiple scans over stream inputs simultaneously, re-
ducing redundant query root-to-leaf path solutions op-
timally and skipping stream nodes that do not con-
tribute solutions. These distinguished features lead to
better query processing performance [6]. Due to this
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Fig. 1 E-Market application.

performance advantage, they are notoriously regarded
as important XML query processing algorithms.

While a single processing PC suffers from limita-
tions of storage space, main-memory and processing
power that prevent from processing such large XML
data, parallel query processing continues to be impor-
tant to give timely response. In a shared-nothing PC
cluster system, multiple PCs communicate via a high-
speed interconnect network and each PC has its own
private memory and disk(s). XML data to be queried
are partitioned and distributed across cluster PCs in
advance. When a query is incoming, one cluster PC act-
ing as a coordinator analyzes it and generates a query
plan consisting of several sub-queries. The coordina-
tor, then, forward the sub-queries to respective cluster
PCs for processing. The results of processing are, then,
returned back to the coordinator.

As an illustrative example in Figure 1, an e-Market
application typically manages heterogeneous XML doc-
uments and numerous queries. The XML documents
vary in their sizes from several KBs to hundreds of MBs.
Also, they describe various information related to prod-
ucts, services and business entities such as customers,
distributors, suppliers and partners. Users from differ-
ent business entities submit queries to the application
system to inquire specific information for their own in-
terests. The submitted queries may have different com-
plexities and different processing time. To optimize
the query processing performance on a parallel cluster
system, the entire XML data needs to be partitioned
and distributed onto cluster nodes such that the overall
workloads are about balanced among the cluster nodes.
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In fact, due to the nature of semi-structured XML
data, traditional partitioning techniques cannot serve
well for XML data; therefore, it becomes a major tech-
nical challenge. Many studies have proposed several
techniques of XML data partition mainly based on
XML structure. Our prior works [2], [8] have pro-
posed schema graph decomposition by utilizing XPath
approach for mapping XML data to relational tables.
Similarly, Bremer and Gertz [3] use a tree-structured
schema to represent an XML document and to extract
its rooted node paths. The paths are, then, indexed
and stored in a RepositoryGuide. WIN [16] proposes
a partitioning technique based on XML sub-trees where
upper nodes of the tree are duplicated to all processing
nodes and the remaining sub-trees are partitioned to
different processing nodes. Similar to WIN the work
of Kurita et al. [9] introduces their XML data parti-
tioning technique based on XML subtree structure by
specifying a permissible size range for subtree-fragment
sizes.

In this study we propose new XML partition-
ing schemes for parallel holistic twig joins processing
in the context of large-scale XML repositories that
manage heterogeneous XML documents and numerous
queries. The main objective of our partitioning scheme
is to partition and distribute streams of XML nodes
through an abstraction of the grid metadata model
for XML (GMX) and streams-based partition model
for static data distribution and dynamic data distri-
bution, respectively. GMX describes relationships be-
tween streams of XML nodes and queries, facilitates a
partitioning scheme comprising XML document clus-
tering, query clustering and partition refinement. To
measure workload balance in the system, we adopt a
cost model to calculate query processing costs asso-
ciated with each partition. The results of distribut-
ing GMX partitions lead to inter-query parallelism as
well as intra-query parallelism at some extents. Al-
though XML data partitions are distributed statically
in advance for the overall workload balance, executing
some queries may lead to workload imbalance indicated
by less processing time or even idle on certain cluster
nodes. To overcome this situation, the streams-based
partition method is utilized for XML data redistribu-
tion. This method leads to improving intra-query par-
allelism.

2. Preliminary

In this section, we present a brief introduction of some
concepts related to holistic twig joins in [4].

2.1 XML Data Model and XML Database

An XML document is a rooted, ordered, labeled tree,
where each node corresponds to an element and the
edges representing (direct) element-subelement rela-
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Fig. 2 (a) XML tree representation, (b) a query twig pattern
and (c) query root-to-leaf paths.

tionships. Node labels consist of a set of (attribute,
value) pairs, which suffices to model tags, PCDATA
contents, etc. Figure 2 (a) shows the tree representa-
tion of a sample XML document. Every node occur-
rence in an XML document is labeled with a 3- tuple
representation. The position of every string occurrence
is represented as (DocId, LeftPos, Level). Similarly,
the position of every element occurrence is as (DocId,
LeftPos : RightPos, Level), where (i) DocId is the
identifier of the document; (ii) LeftPos and RightPos
can be generated by counting word numbers from the
beginning of the document until the start and the end
of the node, respectively; and (iii) Level is the nesting
depth of a node in the XML document. By having this
node representation, structural relationships between
nodes describing ancestor-descendant and parent-child
relationships can be determined easily.

An XML database stores all nodes of the entire
XML documents where each node is represented as a
3-tuple. Associated with each node in a query twig pat-
tern, there is a stream, which is a sequence of nodes re-
trieved from the XML database and ordered by (DocId,
LeftPos).

2.2 Query Twig Patterns

A query twig pattern or a query for short is a node-
labeled tree pattern with elements and string values
as node labels and its edges represent parent-child or
ancestor-descendant relationships as shown in Figure 2
(b). In this work, a query has statistics that includes
α as a probability of query occurrences, β as estimated
root-to-leaf output sizes, and γ as estimated final out-
put sizes. We assume that query statistics can be ob-
tained by monitoring the system.

A query can be decomposed into a set of root-to-
leaf path patterns or query paths. Each query path is a
simple query twig pattern and it inherits query statis-
tics from its associated query. Illustration of query
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paths is shown in Figure 2 (c).

2.3 Twig Stack Algorithm

In the holistic twig joins [4], given a query twig pat-
tern the twig stack algorithm basically operates in two
phases. In the first phase, firstly, it computes solu-
tion extensions, which generate candidate nodes that
are guaranteed to give solutions to individual query
root-to-leaf paths. It traverses a set of input streams
of nodes, which correspond with the query nodes, to
match their structure relationships at any position in
streams with the query pattern. Secondly, the algo-
rithm generates solutions to individual query root-to-
leaf paths. It constructs stack encodings that resemble
individual query root-to-leaf path patterns for storing
only candidate nodes generated by the solution exten-
sions. It guarantees that the solutions are generated
in the order of common prefixes (DocId, LeftPos) of
query root nodes.

In the second phase, these solutions are merge-
joined to compute the answers to the query twig pat-
tern. The algorithm merges query root-to-leaf path
solutions whose query roots have common prefixes
(DocId, LeftPos). All merged query root-to-leaf path
solutions that satisfy the query twig patterns are gen-
erated for the answer of the query twig pattern.

2.4 Parallel Query Processing Model

For maintaining heterogeneous XML documents and
processing numerous query twig patterns, we devise the
query processing model mainly for inter query paral-
lelism. The structure of our cluster system comprises
one coordinator node and a number of processing nodes.
They maintain the global XML metadata including the
global distribution information for determining query
processing plans. Processing nodes maintain their own
XML databases resulted from partitioning XML data.
Among processing nodes there is no data dependency
that requires communication. The communication oc-
curs only between the coordinator and processing nodes
when the coordinator sends a query to processing nodes
and receives solutions from them.

There are two particular cases in processing
queries: (i) A whole query is processed by one or more
processing nodes. The processing nodes compute all
tasks in the first phase and the second phase of the
twig stack algorithm and deliver the final solutions to
the coordinator. (ii) A query is decomposed to its root-
to-leaf paths. Each path is processed by one or more
processing nodes. The processing nodes compute only
tasks in the first phase of the twig stack algorithm and
deliver solutions of individual root-to-leaf paths to the
coordinator. Finally, the coordinator merges the root-
to-leaf path solutions for the query answers.
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Fig. 3 An overview of constructing the grid metadata for
XML.

3. Grid Metadata Model for XML

In this section, we will explain Grid Metadata Model for
XML (GMX) [13], [12] and its series of XML data par-
titioning methods. The main objective is to partition
streams of XML nodes, which are the underlying data
structure for holistic twig joins, and to provide ways
of refining partitions for achieving workload balance in
the distribution.

3.1 Constructing GMX

GMX is a model for XML metadata that is maintained
in a two-dimensional structure for describing a rela-
tionship between XML documents represented as XML
node streams and twig queries. The main objective
of this model is to provide abstraction for partitioning
streams by taking into account the coherency between
query twigs and XML documents. In this subsection,
all examples used refer to Figure 3.

Figure 3 illustrates the relationship among XML
documents, streams of elements and query twig pat-
terns. As explained in the previous section, an XML
database, which stores nodes of XML documents in
the form of 3-tuple representation, generates all dis-
tinct streams of elements, e.g., Sa, Sb, Sc, Sd, Se, Sf ,
Sg, and Sh. In this case, Sa is associated with doc1

only, Sb is associated with doc1 and doc2, while Se is
associated with doc2 and doc3. On the other hand,
query root-to-leaf paths (query-paths for short), which
are decomposed from their related query twig patterns,
have their own elements that can be associated with
streams of elements. For instance, path p1 that has el-
ements b, c is associated with Sb and Sc and, similarly,
p2 that has elements b, d is associated with stream Sb

and Sd. Transitively, a query twig pattern have a re-
lationship with streams of elements through the rela-
tionship between query paths and streams of elements.
For instance, query q1 is associated with Sb, Sc, and Sd

because its root-to-leaf paths p1 and p2 are associated
with Sb, Sc, and Sd. Moreover, another transitive rela-
tionship occurs between query twig patterns and XML
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documents, e.g., query q1 is obviously associated with
doc1 and doc2 because Sb, Sc, and Sd are associated
with doc1 and doc2.

By observing this relationship illustration, the par-
titioning model has a document dimension D, a query-
path dimension P , and a query dimension Q, where
elements of the query-path dimension P can be aggre-
gated for their associated query in the query dimension
Q. The association of an instance in the query-path
dimension and an instance in the document dimension
indicates a processing cost of the query-path for the
XML document; the cost function is specified in Eq. 3.
Similarly, the association of an instance in the query
dimension and an instance in the document dimension
indicates a processing cost of the query for the XML
document; the cost function is specified in Eq. 2.

We define a set of m-distinct element names, which
can be simply derived from the entire XML documents,
e.g., T = {a, b, c, d, e, f , g, h}. Each element in T is
stored in no particular order. However, once T is con-
structed its element sequence is fixed because element
positions in T will be referred by the dimensions.

The document dimension D is defined as a set of
documents, e.g., D = {doc1, doc2, doc3}. Each docu-
ment doci has a m-dimensional vector C containing the
number of occurrences of every element name tj in the
document doci. Also, there exists a function ψ(doci) to
return a set of element names in T that correspond to
non-zero component values of the vector C.

The query-path dimension P is defined as a set of
query-paths, e.g., P = {p1, ..., p7}. Each query-path pi

is represented as (q, N) where q is a query twig pattern
to which the query-path belongs, N is a m-dimensional
vector containing the value of 1 for an element occur-
rence and, otherwise, 0 for no occurrence. Similarly, a
function ψ(pi) exists to return a set of elements in T
that correspond to non-zero component values of the
vector N .

The query dimension Q is defined as a set of query
twig patterns, e.g., Q = {q1,...,q4}. Each query qi is
represented as (α, β, γ, N) where α is a probability
of query occurrences in the system, β is an estimated
root-to-leaf output size, γ is an estimated final output
size and N is a m-dimensional vector that can be con-
structed from its query-path vectors. In this case, qi.N
=

∨
pj .q=qi

pj .N where
∨

denotes component-wise OR
operation. Similarly, a function ψ(qi) exists to return a
set of elements in T that correspond to non-zero com-
ponent values of the query vector N .

Once all dimensions are completely determined, we
represent GMX as {(di, pj , pcost) | M : di × pj → pcost
∧ ψ(pj) ⊆ ψ(di)}. A function M specifies a relation-
ship between a document di and a query-path pj that
functionally determine a cost pcost of processing the
query-path pj for the document di. The relationship
specification must satisfy a full containment property:

all elements of a query-path pj denoted as ψ(pj) are
fully contained in elements of a document di denoted
as ψ(di). The cost pcost is computed by a cost func-
tion cf(di, pj).

In the case that the query-path dimension is aggre-
gated for the query dimension, the GMX is represented
as {(di, qj , qcost)} where similarly, the relationship is
specified as ψ(qj) ⊆ ψ(di) and a cost qcost of process-
ing the query qj for the document di is computed by a
cost function cf(di, qj).

3.2 Cost Model

The proposed cost model is to estimate a query process-
ing cost for an XML document. This cost estimation is
crucial part since the outcome of cost estimation will di-
rectly affect the distribution of XML data and queries.
We will introduce the cost model for each query pro-
cessing case mentioned in the previous subsection.

cf = α(
InputSize

RI/O
+

Ccomp

Rcomp
+

Ccomm

Rcomm
) (1)

cf(d, q) = α(
1

RI/O
+

1 + 3β + γ

Rcomp
+

γ

Rcomm
)

∑
t∈q.nodes

|St|(2)

cf(d, p) = α(
1

RI/O
+

1 + 2β

Rcomp
+

β

Rcomm
)

∑
t∈p.nodes

|St|(3)

Basically, we define the cost model of a query as
expressed in Eq. (1) that includes three terms of costs
and α, a probability of the query occurrence. The first
term is the cost of disk I/O access at start up to re-
trieve from an XML database the InputSize which is
the number of input stream nodes associated with the
query nodes denoted as

∑
|St| and RI/O is the retrieval

access rate. The second term is the computation cost
Ccomp for manipulating the retrieved nodes in mem-
ory and Rcomp is the computation rate. The last term
is the communication cost Ccomm, especially for deliv-
ering solutions to the coordinator and Rcomm is the
communication rate in a cluster network.

We need to develop a careful investigation accord-
ing to the particular cases in query processing as dis-
cussed above. The first case is to process a whole query
within a single cluster node. In the first phase of the
holistic twig joins, getting solution extensions requires
computation linear to the InputSize. The computa-
tion of manipulating stacks and generating individual
root-to-leaf path solutions is linear to the number of
candidate nodes involved in the solutions. It can be
estimated by a fraction β of the InputSize. Thus, the
entire computation in the first phase can be simply ex-
pressed as (1+2β)InputSize. In the second phase, the
merge-join task is linear in the sum of its input (the so-
lutions to individual root-to-leaf paths) and output (the
answer to the query); a fraction γ of the InputSize is
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used to estimate the number of nodes in the output.
It can be simply expressed as (β + γ)InputSize. In
addition, communicating the query answer to the coor-
dinator obviously requires the number of nodes involved
in the final answer, γInputSize. Therefore, the whole
expression of the first query case is simply stated in Eq.
(2).

The second case is to decompose the query into its
root-to-leaf paths p. The cost is computed only for the
tasks in the first phase of the holistic twig joins. The
computation of the first phase requires similar compu-
tation of the first phase in the first case. Meanwhile,
the communication to deliver the solutions takes the
number of nodes involved in the root-to-leaf path solu-
tions, βInputSize. Therefore, the whole expression of
the second query case can be simply stated in Eq. (3).

3.3 Partitioning XML Data

A partition is defined as a subgrid metadata and a re-
fined partition is a subgrid metadata of a partition. For
generality, a refined partition is also called a partition
due to possibly further refinement. In addition, a par-
tition is associated with a cost, which is computed by
the cost function.

In the proposed partitioning scheme, firstly we at-
tempt to group similar XML documents and similar
queries in partitions to be expectedly allocated in the
same cluster nodes for the purpose of query execution
efficiency. For some coarse partitions, we refine them
further by our partition refinement methods so that
our distribution approach is able to average workloads
of partitions in cluster nodes.

3.3.1 Clustering XML Documents

Clustering XML documents, the first method of XML
data partitioning is to manage heterogeneous XML doc-
uments by grouping them according to their similar el-
ements. A hierarchical clustering technique is adopted
from other clustering techniques such as K-means and
density-based clustering techniques because the cluster-
ing technique provides flexibility for users to decide the
best clustering results easily.

For clustering XML documents, feature vectors are
outlined from every document vector doci.C in the doc-
ument dimension D, where each vector value of each
document is normalized towards the entire number of
element occurrences. Proximities to define document
similarity in the hierarchical clustering are measured by
Euclidean distance with three different methods: sin-
gle link, complete link and group average. Finally, each
clustering result is regarded as a partition.

Figure 4 shows partitions as the result of cluster-
ing XML documents. In this figure, doc1 and doc2 are
more similar in terms of their common elements than
the others; so, that they reside in the same partition.
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Fig. 4 Partitions resulted from clustering XML documents.

Also, the relationship between partitions in the grid
metadata and streams is obviously seen.

3.3.2 Clustering Queries

In the query clustering method, we use the same hierar-
chical clustering technique to group queries that have
similar query elements without considering the query
structure. Every partition resulted from XML docu-
ment clustering is further clustered by this method.
The feature vectors are derived from outlining each
query vector of query element occurrences qi.N with-
out normalizing its values and Manhattan distance is
more appropriate to measure the proximity. Finally,
each cluster result is regarded as a refined partition.

Figure 5 shows partitions as the result of cluster-
ing queries. In this figure, q1 and q2 residing in doc1

and doc2 are more similar in terms of their common
elements than q3. So, the former partition is split hori-
zontally into two partitions: one partition is to group q1

and q2 and another one is for q3. Also, it is noticeable
that the stream Sd is duplicated in the two partitions
as required by q1, q2, and q3.

a1 Sab1 b2 b1 b2 Sbc1 c2 c1 c2 Scd1 d2 d1 d2 Sdg1 g2 Sgd1 d2 d1 d2 Sde1 e2 Sef1 Sfe1 e2 e3 Seg1 g2 g3 Sgh1 Shdoc1 doc2 doc3 D

Q Grid Metadata for XMLStreams

q4 cf (doc3, q4)doc1 doc2 doc3
cf (doc1, q1) cf (doc2, q1)cf (doc2, q2)cf (doc2, q3)

q1q2q3
a1 Sab1 b2 b1 b2 Sbc1 c2 c1 c2 Scd1 d2 d1 d2 Sdg1 g2 Sgd1 d2 d1 d2 Sde1 e2 Sef1 Sfe1 e2 e3 Seg1 g2 g3 Sgh1 Shdoc1 doc2 doc3 D

Q Grid Metadata for XMLStreams

q4 cf (doc3, q4)doc1 doc2 doc3
cf (doc1, q1) cf (doc2, q1)cf (doc2, q2)cf (doc2, q3)

q1q2q3
Fig. 5 Partitions resulted from clustering queries.

3.3.3 Refining Partitions

We devise further partition refinement methods. A
partition having considerably high cost of processing
queries may be further refined as necessary to cope
with imbalance workloads. There are three methods
of partition refinement. First, a partition is composed
from one or more queries associated with many XML
documents. The partition is split on XML documents.
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Second, a partition is composed from many queries as-
sociated with one XML document. The partition is
split on queries. Third, a partition is composed from
one query associated with one XML document. The
partition is split according to root-to-leaf paths of the
query. Figure 6 illustrates results of partition refine-
ment methods.

q4 cf (doc3, q4)doc1 doc2 doc3
cf (doc1, q1) cf (doc2, q1)cf (doc2, q2)cf (doc2, q3)

q1q2q3 D

Q
q4 cf (doc3, q4)doc1 doc2 doc3
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q1q2q3

(a)
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cf (doc1, q1) cf (doc2, q1)cf (doc2, q2)cf (doc2, q3)

q1q2q3
(b)
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Fig. 6 Partition refinement (a) split by documents, (b) split
by queries, (c) split by query-paths.

3.4 Distributing Partitions Statically

The GMX partitioning schemes are computed while
XML data distribution is being performed statically
before executing queries. The main objective of our
distribution approach is to average workloads among
cluster nodes as well as to minimize the overall query
processing costs and storage costs. A workload of a
cluster node is contributed from accumulated costs of
partitions allocated on the cluster node. The distribu-
tion approach just gives sub-optimal workload balance
since, in fact, equal workloads in all nodes are very
difficult to achieve and impractical to find the best dis-
tribution strategy.

Initially, we specify n cluster nodes where each
cluster node maintains its workload and a set of parti-
tions. We specify a threshold τ , which is defined as the
average workload in n cluster nodes. A cluster node is
said to be overloaded if its workload exceeds the thresh-
old value.

Basically, our distribution approach adopts a
Round Robin method combined with heuristic rules
with the objective of minimizing the workload variance
in all cluster nodes. Round Robin method is utilized at
initial distribution of partitions that are resulted from
performing document clustering and query clustering.
Then, repeatedly some selected partitions in overloaded
cluster nodes are refined. The refined partitions are
subsequently redistributed to underloaded nodes until

the workload variance is minimized.
To simplify search space for redistributing and re-

fining partitions, we implement two heuristic rules. The
first rule is to redistribute partitions. Some partitions
in a cluster node having the highest workload are at-
tempted to move to a cluster node having the lowest
workload only if the movement leads to a lower work-
load variance value. This is conducted repeatedly to the
second highest workload node and so on until there is no
possible movement of partitions among cluster nodes.
In this rule, we try to avoid refining partitions to exploit
the similarity of XML documents and queries in parti-
tions for query execution efficiency. The second rule is
to refine partitions. A partition with the highest cost in
a highly overloaded cluster node is chosen for partition
refinement. The refined partitions are, then, assigned
to the intended underloaded cluster node only if the as-
signment yields a lower workload variance value. These
two heuristic rules are repeatedly executed until the
variance value is minimized under a certain threshold
value ε.

4. Streams-based Partitioning Model

We propose an additional XML data partitioning
method, which is based on range containment concept,
to provide more refined partitions at stream nodes-
based granularity. Streams-based partition introduced
in [14], [11] is computed on-the-fly when incoming
queries introduce imbalance workloads of query pro-
cessing costs on the system. In fact, dynamic partition
and distribution contributes additional costs of com-
puting the partitions and distributing the partitions.
The requirement to compute the partitions and to dis-
tribute them should be simple and straightforward to
keep computation time minimal.

4.1 Basic Notion

Considering a given query twig pattern, we try to find
candidate solutions on XML data by matching the
query twig pattern against the structure of the XML
data. In this case, candidate solutions are obtained
from streams of XML nodes associated with the query
twig pattern. The main intention is to compute par-
titions containing candidate solutions of stream nodes
such that data dependency among partitions does not
exist. This basic notion of computing partitions is il-
lustrated in Figure 7.

Partition of a stream is basically a substream.
It has a range positional numbers (MostLeft,
MostRight) that can be obtained from the pair
(DocId, LeftPos) of the first node and pair (DocId,
RightPos) of the last node in the stream, respectively.
We define the range containment property of two dif-
ferent streams S1 and S2 as follows: S2 is contained in
S1 if S1.MostLeft < S2.MostLeft and S2.MostRight
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n5

Partition 1 Partition 2

Partition 1 Partition 2
Fig. 7 The basic notions of partitioning.

< S1.MostRight where

• S1.MostLeft < S2.MostLeft is defined if
S1.DocId = S2.DocId and S1.LeftPos <
S2.LeftPos, or S1.DocId < S2.DocId,

• S2.MostRight < S1.MostRight is defined if
S1.DocId = S2.DocId and S2.RightPost <
S1.RightPost, or S2.DocId < S1.DocId.

4.2 Partitioning Streams of XML Nodes

The way to generate partitions is to select an initial
stream associated with an element in a query twig pat-
tern to be partitioned first. We select a stream having
the largest size in the given query as the initial stream.
We notice that positions of XML nodes in the initial
stream are not always uniformly distributed within a
certain range of positions. Instead of partitioning the
initial stream according to an equal range of positions,
the initial stream is partitioned according to a window
size, which is the basic unit size of a partition contain-
ing fixed number of XML nodes.

Based on partitions of the initial stream, other
streams associated with other query nodes can be even-
tually partitioned by propagation. Propagating parti-
tions of a stream to another stream takes into account
the structural relationship between the two query nodes
associated with the streams by computing their range
containment properties of the stream nodes. As shown
in Figure 8, we first propagate partitions from the ini-
tial node to the root node of the query by applying
a bottom-up partition approach. Subsequently, stream
partitions of the root node propagate partitions to other
streams of all other unvisited nodes by applying a top-
down partition approach.

In the bottom-up partition approach, a parent’s
(ancestor’s) stream will be partitioned according to
the containment property of the base stream par-
titions (descendants or child’s stream). Here, for
each partition in the base stream, we set a range
(MostLeft, MostRight) positions, then search the
(MostLeft,MostRight) positions of the ancestor’s
stream by computing the range containment between

a c er
b fdSbSb SfSfSdSd

SeSeSaSa ScSc Sr
d

Upward partitionDownward partition
Initial nodeInitial stream
Duplicated stream

Fig. 8 Partition propagation.

partitions of the two streams.
In Figure 9 (a), the results of bottom-up partitions

can be analyzed as follows: Searching the (MostLeft,
MostRight) positions of the ancestor’s stream may
contribute to some stream nodes not giving candidate
solutions. This condition, however, will be handled by
the holistic twig joins algorithm to guarantee that solu-
tions are generated. Some nodes that are located out-
side of the (MostLeft, MostRight) positions of the
ancestor’s stream partition are trimmed; thus, it helps
speeding the computation of the holistic twig joins. Be-
yond that, we notice that some nodes are possibly du-
plicated to maintain the range containment property
between two partitions of the base stream and the an-
cestor’s stream.

The top-down partition approach has a similar
mechanism to the bottom-up approach to partition
the intended stream by finding the containment prop-
erty. For each partition of the descendant’s stream,
(MostLeft, MostRight) positions are obtained by
searching the descendant’s stream that satisfies the
range containment properties. For each partition of
the ancestor’s stream, its (MostLeft, MostRight) po-
sitions are used to obtain (MostLeft, MostRight) po-
sitions of the descendants stream by satisfying the left
and right containment properties. It is often the case
that partitions of the ancestor’s stream contains fully
duplicated XML nodes. Then, we just need to parti-
tion the descendant’s stream equally according to the
window size. This downward approach also has the
advantage of trimming left-over stream nodes that are
not included in the partitions. Figure 9 (b) shows an

Stream to be partitionedBase streamL R An XML nodetrimmedmostL mostRPartition 1Resulted Partition 1 Partition 2Resulted Partition 2 trimmed
Resulted Partition 1trimmed L R An XML nodeBase streamStream to be partitionedmostL mostRPartition 1 Resulted Partition 2Partition 2 trimmed

(a)
(b)

Fig. 9 An example of (a) an Bottom-Up partition, (b) a Top-
Down partition.
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example of the top-down partition approach.

4.3 Distributing Partitions Dynamically

The main objective is to average dynamic workloads
among cluster nodes. The overall dynamic workloads
are roughly estimated from accumulating processing
costs of queries being executed in the system. Also,
the workload average δ can be computed directly from
the overall workload divided by the number of cluster
nodes.

NPi =
δ − WLi∑N

p=1 δ − WLi

× WLj − δ

WLj
× #partsj (4)

The Eq. (4) computes the number of partitions
NPi to be distributed on an underloaded cluster node
i from an overloaded cluster node j by proportioning
workloads of an underloaded cluster node i over the
overall workloads of underloaded cluster nodes toward
the number of partitions.

Initially every time a cluster PC receives a query
to be processed from the coordinator, it estimates the
amount of workloads that may need to be allocated
to other cluster nodes. The running query states
dispatched by the coordinator are analyzed against
the distribution information including query processing
costs to identify which queries are running on which
cluster PCs. The analysis also estimated the average
workload δ of processing costs of all queries being exe-
cuted, to determine which cluster PCs are underloaded
or overloaded. Note that only overloaded cluster PCs
computes the Eq. (4).

Subsequently, every overloaded cluster node deter-
mines an initial stream to be partitioned first, then per-
forms Bottom-Up propagation followed by Top-Down
propagation to partition the rest of the streams. Fi-
nally, resulted partitions are redistributed to under-
loaded cluster nodes according to Eq. 4.

5. Experimental Evaluation

The main objective of this experiment is to show the
effectiveness of our proposed partitioning schemes in
dealing with static XML data partition and dynamic
XML data partition in order to achieve good perfor-
mance of the overall query execution.

5.1 XML Data Sets and Experimental Platform

11 different XML data sets used in the experiment are
derived from real data sets used for experiments in Ni-
agara Query Engine Project and by Stanford Univer-
sity Infolab, and from synthetic data sets of XOO7 and
XMark benchmarks. Each XML data set is character-
ized by the number of DTDs, the number of query twig
patterns, the number of XML documents and the size

Table 1 XML data sets

No XML Data DTD Qry Doc Size (bytes)
1 Bibliography 1 4 16 158,096
2 Sport Clubs 1 3 12 162,986
3 Cars 1 6 48 1,357,856
4 Departments 1 5 19 2,722,723
5 Purchases 1 2 10 4,873,260
6 Quotes 1 2 10 4,412,418
7 Dramas 1 3 18 7,428,278
8 Sigmod 2002 3 10 43 2,934,193
9 Movies 5 21 5 28,463,633
10 Auction 1 4 8 119,900,420
11 Assembly 1 4 5 171,309,031

Total 17 64 194 343,722,894
Average 1,771,767
Variance 6.20E+13

Table 2 Statistics of XML data partition results

1 Document dimension size 194
2 Query-path dimension size 177
3 Query dimension size 64
4 Finest grid instances 2,551
5 The number of distinct streams 485
6 The number of XML nodes 20,185,704
7 The number of duplicated streams 61
8 The number of duplicated XML nodes 1,873,233

of XML data set in bytes. In total, there are 194 XML
documents along with 17 DTDs and 64 query twig pat-
terns generated randomly from the given DTDs. The
total size of XML documents is about 330 MB and they
are varied in sizes and contents. Statistics about these
XML data sets is shown in Table 1 in more details.

The experimental platform used is a shared-
nothing homogeneous cluster system. One node plays
a role as the coordinator and 8 nodes as the process-
ing nodes. Each node has a 4-ways Intel Xeon(TM)
3.0 GHz CPU with 1 GB memory running RedHat En-
terprise Linux 4.0. PostgreSQL 8.1 is installed as the
XML database in each node. All nodes are connected
through a Gigabit high-speed LAN and we use MPICH2
for implementing the communication between the coor-
dinator node and the processing nodes.

5.2 Evaluation of Static XML Data Partition

In this subsection, we evaluate the results of our pro-
posed partitioning scheme statistically according to
GMX computation and parallel system performance.

5.2.1 Statistics of XML Data Partition

In the GMX construction, the sizes of the document
dimension and the query-path dimension in its struc-
ture were 194 and 177, respectively. The GMX struc-
ture maintained 2,551 finest grid instances and required
small storage to store the sparse data. Detail statistics
about the total number of XML elements and their du-
plication is shown on Table 2.

We examined the query distribution resulted from
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Table 3 Distribution of estimated workloads and queries

Cluster Initial Final Final Query Distribution
Node Id Workloads Workloads

1 2,267.12 1,937.23 Q5, Q6, Q33, Q34, Q35, Q43, Q64
2 10,409.22 2,829.01 Q33
3 845.77 2,184.84 Q18, Q19, Q27, Q28, Q29, Q30, Q31, Q32, Q33, Q36, Q45, Q55, Q56,

Q57, Q58, Q59, Q60, Q61, Q62, Q63
4 881.35 2,040.94 Q1, Q2, Q5, Q6, Q7, Q8, Q9, Q10, Q36, Q40, Q42, Q52
5 680.73 2,278.75 Q15, Q16, Q22, Q23, Q25, Q27, Q28, Q29, Q30, Q31, Q32, Q33, Q34,

Q35, Q46, Q50
6 801.10 2,170.93 Q7, Q17, Q20, Q21, Q24, Q33, Q36, Q64
7 880.55 2,355.09 Q3, Q4, Q11, Q12, Q13, Q14, Q36
8 973.17 1,942.22 Q11, Q12, Q14, Q26, Q36, Q37, Q38, Q39, Q41, Q44, Q47, Q48, Q49,

Q51, Q52, Q53, Q54
Total 17,739.01 17,739.01

Threshold τ 2,217.38 2,217.38
Variance 1.12E+07 8.36E+04

distributing partitions. As shown in Table 3, 18 long-
running queries that accessed considerably large XML
documents were potentially executed by several cluster
nodes for intra query parallelism execution. For exam-
ple, a query Q33 was distributed to cluster node id 1,
2, 3, 5, and 6. The rest of 46 queries were executed in
a single cluster node for inter query parallelism.

5.2.2 Parallel System Performance

In this subsection, we evaluate workload balance in all
cluster nodes and the parallel speed up performance
based on the entire query execution. To the best of
our knowledge, XML data partitioning method specifi-
cally for the holistic twig joins processing does not exist
yet. Here, we compare the grid metadata partition-
ing method (GMX) with two basic partitioning meth-
ods: a document-based partitioning method (DOC)
and a document clustering-based partitioning method
(DCLUS).

The XML data partition and distribution schemes
of the two basic methods are described as follows. In
DOC, the basic unit of partition was an XML docu-
ment where its size was considered as the cost of a par-
tition. We distributed XML documents with Round
Robin approach followed by the heuristic rule of redis-
tributing partitions. As the result, queries associated
with certain XML documents were potentially executed
according to the distribution of the XML documents
onto cluster nodes.

In DCLUS, we clustered XML documents with the
same technique as ours where a cluster was regarded as
the basic unit of partition. A cost of a partition was
derived from accumulated sizes of XML documents re-
siding in a cluster. Similar to ours, the distribution
method adopted Round Robin approach combined with
the two heuristic rules. In this case, refining a parti-
tion was to compute its subclusters of XML documents.
Queries associated with certain XML documents in a
partition were distributed according to the distribution
of XML document partitions.

In the first experiment to measure the quality of
workloads, we used the relative load imbalance index
(LI) [15], given by this formula

LI = f(x1, x2, ..., xN ) = 1 −
∑N

i=1 xi

N · maxN
i=1xi

(5)

where xi is a workload measure at a cluster node Pi.
The index is bounded in the range [0, 1]; a lower value
means better workload balancing. In this case, the
workload of Pi is the time required to execute all queries
residing in Pi.

Figure 10 shows the quality of workload balancing.
The workload balance of GMX is superior to the other
methods as indicated by lower values of load imbalance
indices for all processing nodes. The two basic methods
DOC and DCLUS suffered from workload imbalance
because they were lack of partition refinement meth-
ods when encountering such a large XML document.
However, generally DCLUST showed smaller workload
imbalance indices because it has a partition refinement
mechanism by computing subclusters. As for the load
imbalance index of GMX, GMX suffered from the load
imbalance at 8 cluster nodes where a partition with an
extremely high cost could not be refined further by our
partitioning refinement methods.

The next experiment, the speed up performance,
or equivalently the running time, gives an immediate
measure of the effectiveness of different XML data par-
titioning methods. In the experiment, the coordinator

00.1
0.20.3
0.40.5
0.6

1 2 3 4 5 6 7 8#PC Nodes

LI Index GMX DCLUS DOC

Fig. 10 Load imbalance index.
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generated a random sequence of all 64 queries and dis-
tributed them simultaneously to processing nodes. We
measured the total execution time of the 64 queries
starting from query distribution to the last solutions
received by the coordinator.

01
23
45
67
8

1 2 3 4 5 6 7 8#PC Nodes

Speed U
p GMX DCLUS DOC

Fig. 11 Speed up performance.

Figure 11 shows the speed up performance for each
partitioning method. It confirms that the GMX speed
up outperformed all the others. Due to its superior
workload balance, GMX was able to minimize the idle
time of cluster nodes and, eventually, it contributed
better speed up performance with almost linear esca-
lation. On the other hand, the speed up performances
of DOC and DCLUS were saturated starting from 5
cluster nodes. However, DCLUST had slightly better
speed up performance than DOC since clusters of XML
documents implied more efficient execution of similar
queries allocated in the same cluster nodes.

Table 4 Queries over XMark data set

Query XPath Expression

Q1 - Simple Query //person[/name]/emailaddress

Q2 - Complex Query //site//open acution[/type/’Regular’]
[/quantity/’3’]/anno-tation[/description]
/happiness/’4’

5.3 Evaluation of Dynamic XML Data Partition

In this subsection we evaluate statistics of streams-
based partition method and the improvement of par-
allel system performance.

5.3.1 Statistics of XML Data Partition

The main objective is to show the efficiency of our
proposed streams-based partition scheme. We adopted
XML Benchmark Project as our experiment data set.
We used different sizes of XML data 110MB, 330MB,
and 550MB. Two query twig patterns with simple and
complex structures were adopted as shown in Table 4.
The total stream sizes required to execute query 1 and
query 2 for 110MB, 330Mb and 550MB are given in
Table 5.

The first test is to determine the best window size

Q1
Q2

Fig. 12 Speed up performance contributed by different window
sizes for 110MB XML data size

for initial partition. We can see in Figure 12 that a
windows size of 1,000 gives the best speed up perfor-
mance for both queries. A smaller window size intro-
duces more overheads in forming candidate solutions of
twig queries. It is shown by the window size of 250
that gives slightly lower speed up performance. On the
other hand, a larger window size causes workload im-
balance that obviously gives an immediate impact on
the performance. We can see that the speed up curve
for largest window size of 30,000 shows the worst per-
formance.

Secondly, Table 5 describes the size of stream
nodes for queries Q1 and Q2 resulted from conducting
the partition plan with a window size of 1,000. It shows
that the partition method is able to reduce partially
unnecessary stream nodes, which do not give solutions,
and to duplicate necessarily XML nodes to form can-
didate solutions. In fact, reduction of the number of
stream nodes relies on the distribution of XML nodes
over streams. According to the Bottom-Up partition
approach, the smaller window size gives more refined
partitions and produces more duplicated stream nodes.

Figure 13 illustrates the processing time for com-
puting partitions and redistribution (communication)
for queries Q1 and Q2. The generating partitions re-
quires about constant time to compute, regardless the
number of cluster PCs. The redistribution requires
much more time than the partition plan and the time
increases as the number of PCs are increased. The com-
munication time including synchronization and data
packing for transferring partition data contributes the
biggest time in the redistribution. The computation
time for 550MB data size requires less than 2.5 times
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Table 5 The number of nodes as the result of conducting partition plan

Query Data Size Initial nodes Duplicated Nodes Trimmed Nodes Processed Nodes

Q1 110MB 99,250 47 644 98,653
Q2 110MB 181,268 306 51,795 129,779

Q1 330MB 297,750 141 1,666 296,225
Q2 330MB 543,804 929 50,529 494,204

Q1 550MB 496,250 240 259 496,231
Q2 550MB 906,340 1,552 50,928 856,964

0.0020.0040.0060.0080.00100.00120.00140.00160.00 Partition Plan Allocation Plan
020406080100120140160 Partition Plan Allocation Plan

0.0050.00100.00150.00200.00250.00 Partition Plan Allocation Plan
050100150200250 Partition Plan Allocation Plan

2 3 4 5 6 7 8 2 3 4 5 6 7 8Cluster PCsCluster PCsQuery Q2 under 110MB Query Q2 under 550MB
2 3 4 5 6 7 8 2 3 4 5 6 7 8Cluster PCsCluster PCsQuery Q1 under 110MB Query Q1 under 550MBTime (ms) Time (ms)

Time (ms) Time (ms)
Q1 (100MB) Q2 (550MB)
Q2 (100MB) Q2 (550MB)

Computation Redistribution Computation Redistribution
Computation RedistributionComputation Redistribution

Fig. 13 The processing time (ms) to compute partitions and
redistribute them for 110MB and 550MB XML data sizes

of the computation for 110MB data size. In overall,
our proposed method requires minimal time and it is
suitable for on-the-fly execution.

5.3.2 Improvement of Parallel System Performance

In this subsection, we show the improvement of load im-
balance index, parallel speed up, and efficiency by com-
paring GMX (static XML data partition) and streams-
based partition method.

Figure 14 shows the comparison of load imbal-
ance index between GMX and streams-based method
(Streams for short). Streams indicates better quality
of load balancing on 7 cluster PCs and 8 cluster PCs
because it provides partitioning method with finer gran-
ularity.

Better workload balance implies lower idle time
that gives impact on better parallel speed up perfor-
mance. As shown in Figure 15, the Streams speed up
outperforms the GMX speed up. GMX speed up curve
is no longer escalated starting from 7 cluster PCs, while
GSX speed up curve indicates higher escalation.

In addition, we measure the performance improve-
ment if only few queries are being executed in the sys-
tem. We intentionally select only 5 queries to be exe-
cuted in the system to simulate the imbalance workload
situation as shown in Table 6.

Figure 16 shows that GMX performance is deterio-
rated as the number cluster PCs are increased, because
of imbalance workloads during query execution. On the
other hand, Streams speed up performs well because it

00.050.10.150.20.25
1 2 3 4 5 6 7 8#PCs

LI Index GMXStreams
Fig. 14 Load imbalance index for static and dynamic parti-
tion.

01234
56789

1 2 3 4 5 6 7 8#PCs
Speed Up GMXStreamsLinear

Fig. 15 Parallel speed up performance for static and dynamic
partition.

Table 6 The number of nodes as the result of conducting par-
tition plan

Query XPath Expression Stream Size
Q1 //article[/title/Semantic[/Web]] 15,922

[//author/Wei[/Han]]//format/PDF

Q2 //company/Profile/EmployeeNumber 40,000
[//state/WI]

Q3 //compositepart//atomicpart 1,110,510
Q4 //person[/name/Kang][/address[/city 75,182

/Panama]/Province]/Creditcard/6284

Q5 //m/t[/Cleopatra]/a/Arthur 293,628

conducts dynamic partitioning and redistributing par-
titions to achieve better workload balance. In terms
of efficiency shown in Figure 17, Streams maintains its
efficiency value above 90%, while GMX its efficiency is
extremely degraded.

6. Conclusion

In this study, we proposed novel XML data partitioning
schemes for static and dynamic XML data partition, to
achieve high scalability in parallel holistic twig join pro-
cessing. The grid metadata model for XML provides
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Speed Up StreamsGMXLinear

Fig. 16 Parallel speed up performance for static and dynamic
partition when imbalance occurs.

0%10%20%30%40%50%60%70%80%90%100%
1 2 3 4 5 6 7 8#PCs

Efficiency GMXStreams
Fig. 17 Efficiency performance for static and dynamic parti-
tion when imbalance occurs.

the underlying XML data partition for static distribu-
tion, while the streams-based partition provides finer
XML data partition for dynamic distribution. In the
experiments, the results show the effectiveness of the
proposed schemes. Distribution based on GMX meth-
ods yields balanced workloads on cluster nodes and
gives impact on good parallel speed up performance
when the entire queries are executed simultaneously.
However, when only few queries are executed, the sys-
tem performs much worse. By applying dynamic parti-
tion and redistribution the experiment shows significant
performance improvement in terms both parallel speed
up and efficiency.

Publication

We published 4 research papers in [12], [13], [11], [14]
for this study.
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