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Abstract

In this paper, a new method ”Rotated Alternative LU (Rotated ALU) decomposition” for
solving block pentadiagonal linear systems is proposed, that makes vector processing more effi-
cient. And a new way to apply the Rotated ALU decomposition to periodic pentadiagonal linear
systems is proposed. A few numerical experiments show that these methods are more faster than
the conventional LU decomposition.

1 Introduction

Applying the fourth order accuracy’s approximate factorization (AF) method to compressive three-
dimensional computational fluid dynamics (CFD), a lot of linear systems (1.1) must be solved.

Ajrtse = by ‘ (1.1)

In the case of Dirichlet boundary conditions, its coefficient matrix is block pentadiagonal matrices
Aj,k (i makes row direction) [6].

When vector processor is used, the direct method, the LU decomposition(Gaussian elimination),
is more often used for solving a lot of linear sytems like (1.1) than the iterative methods. Then the
matrices A;; can be factorized by the LU decomposition, with vectorizing for j or k direction to
compute at the same time. However, the conventional LU decomposition is afford to improve its
calculating performance on the vector processors.

In this paper, a new effective method on vector processor the "Rotated Alternative LU (Rotated
ALU) decomposition method” for block pentadiagonal systems is proposed. This method makes the
vector-length (the number of the elements that are simultaneously computed) twice with the linear
algebra.

In the case of periodic boundary systems, this method can not be applied directly. And the
Sherman-Morrison-Woodbury formula is used as a preconditioner for the Rotated ALU decomposition.
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2 Solving block pentadiagonal linear sysfems

In this case, the coefficient matrix is as follows.:

ok 5 >
% 3 3 3 3
A5k Bir G5 Dy By

B . .. .. .. .. | 1)
-2 ple2 de2 -2 -2
o By i, O T
O Aj,k B]fk Cj[k Dji’k
I Ay Biy |
where Aj.’k,B;}k,C;)k,Dj)k,E;iyk(z’ =1,.,;7=1,..,mk=1,..,n) are 5 x 5 block matrix.

2.1 The conventional LU decomposition method

Usually, E y.k& is factored as the product of the lower block tridiagonal matrices and the upper block
tridiagonal matrices with the conventional LU decomposition.

Fj,k = f/j,kUj:k (2.2)
rC, 1 [ I DY EY, 1
]2’/” o7 O 7k Jz’}w 2 O
Bg,k (fg’k . I Djy Ejy
Aj:,c B2, Cch I Dik th
= e X PRV e c. .
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L Aj,lc Bj,k le',k J L I |

Here, I means the unit matrix, L, ; is the forward elemination matrices, U; . is the backward
substitution matrices. And block matrices with tilde (ex. C’?)k) are updated by the factorization.

When vector processor is used, the vector-length is m with vectorizing for j—direction or n with
vectorizing for k—direction.

Program1 roughly shows the forward elemination step. In this program, j—direction is vectorized.

parameter (ix=l, iy=m, iz=n)
dimension (A (iy,iz,ix,5,5), B(iy,iz,ix,5,5),
¢ C(y,iz,ix,5,5), D(iy,iz,ix,5,5), E(iy,iz,ix,5,5))

do 1 i=1,ix

do 1 k=1,iz

do 1 j=1iy B
By =B~ A x Dyl
Cie=0Chp—As x B2 = By x Dint

?;k = (g;,k)_l X (Dj',k - ~;,k X Eﬁl)
By = (?},k)—l X E;k
by = (C )7 . .
x (b p — ALy x b0% — Bl x bt
1 continue

Programl The conventional LU decomposition.
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Figure 1: Illustrations of the Alternative decomposition and the Rotated ALU
decomposition.

2.2 The Rotated Alternative LU decomposition method

On the other hand, the Alternative decomposition[8] (Another name: A twisted factorization|7])
method has been proposed. This method is algebraically equivalent to the conventional LU decom-
position except for the both-sides’ decomposition. Applied the Alternative decomposition, FM is
factored as (2.3).

Fie = PixQir

) S _
c, 0 1D}, B, 0
By O I D2, B2,
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(2.3)

Block matrices with tilde in (2.3) are updated by the factorization, too. Here the LU decom-
position can be computed simultaneously from the both-sides of diagonal elements to the middle of
row ( l—'gl) This computation is vectorizable for jdirection. And the backward-substitution can be
computed from the middle element to the each side.

In this paper, the procedure of decomposition is given attention to.

Generally, vector processors perform superbly as the vector-length is sufficiently long. From other
point of view, the double vector-length makes the performance improve. Concerning this property
on vector architecture, the Altenative decomposition can be further improved with keeping the alge-
braically equivalence. This new proposed method is named the "Ratated Alternative LU (Rotated
ALU) decomposition method” [4] .

Fig.1 is the illustration of the Alternative decomposition and the Rotated ALU decompostion for
single matrix ]31,1 (m=1;n=1). In this figure, the black solid lines, the gray solid lines and the broken
lines are corresponding to the both figures, and the arrows shows the order of the LU decomposition.
The Rotated ALU decomposition is done as follows.

1. ]31)1 is partitioned into two-parts by the middle row. And the matrix Ql,l is also partitioned
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same way.

2. The latter part is rotated by 180 degrees like Fig.1 and joined to the first part in the direction
of the vectorization(in this case, 7). Then the first part is j = 1;k = 1, the latter part is
J = 2;k = 1. Eventually the number of the j-direction’s element is double. And the matrix @1,1
is also rotated same way.

The Rotated ALU decomposition computes the first and latter part at the same time.

For the matrices Pj,k (here, j = 1,...,m;k = 1,...,n), the first part forms j = 1,...,m, the latter
part elements are rotated by 180 degrees and formed j = (m+1), ..., 2m. And jdirection is vectorized.
Finally the vector-length increases twice (2m) These processes are done for K = 1,...,n. And the
matrices Q; is also done same way.

Program2 shows the forward elemination by the Rotated Alternative LU decomposition. The
details are same as Program1.

parameter (ix=(I + 1)/2, iy=2m, iz=n)
dimension (A(iy,iz,ix,5,5), B(iy,iz,ix,5,5),
¢ C(iy,iz,ix,5,5), D(iy,iz,ix,5,5), E(iy,iz,ix,5,5))

do 2 i=1,ix
do 2 k=1,iz
do 2 j=L1,iy

B;k_Bjk ;kxDlQ ) B

Clp=Ch — Ajp x B32 = By x D33
D; e = (CH) ™ x (D) — B, x B

],k = (C;k) ! XE;k
b= (Ci )"
x(b;'., AZ 5 X b; kz —-Bz,c X b; kl)

2 continue

Program2 The Rotated Alternative LU decomposition method.

2.3 Numerical Experiments-1

In this section, a few numerical results are presented, that is comparing the conventional LU decom-
position to the Rotated ALU decomposition. In experiments, the computing against some various
vector-length that had been based on the CFD problems was done.

2.3.1 Methods

Testing model was as follows. Block matrices composing the coefficient matrix Fj)k was generated with
based on Frank matrix, and with being able to factor by the LU decomposition. The exact solution
zjr was generated by random numbers. The right hand side b; ; was generated by multiplying ﬁ}k
and z; 5. To keep the number of the elements (! x m x n) being constant, the number of the row-
direction’s elements (1), the LU decomposition direction, was fixed (I = 63), and the number of other
directions’ elements were varied to be satisfied with m xn = 2400(Constant) (Tab. 1). And jdirection
was vectorized.

The computing time and the accuracy for the solving linear systems are measured and evaluated
between the conventional LU decomposition and the Rotated ALU decomposition. Experiment was
carried out in single precision and executed on Fujitsu VPP500/1PE vector processor.
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Figure 2: Comparison of computing time between the conventional LU decom-
position and the Rotated ALU deomposition.

2.3.2 Results

Fig.2 shows the computing time plot corresponding to Tab.1. The abscissa indicates the number of
j-direction’s elements (m) and the ordinate indicates the computing time [msec]. Fig.3 shows the
computing time ratio, (the Rotated ALU/the conventional LU)x100[%].

From these results, the Rotated ALU decomposition is faster nearly 30[%] than the conventional
LU decomposition. On the accuracy, both algorithms are the same for this testing model, and the
relative 2-norm error is as follows.:

lzjr — Z;ll2 —6
—2r. PR~ 0O(10 2.4
e (1075 (24)

where x; 1, is the exact solution, and Z; ;, is the numerical solution.

Table 1: Testing sizes.

[l 163 63 63 63 63 63 63 63
m | 40 60 80 120 160 240 300 480
60 40 30 20 15 10 8 5
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Figure 3: The ratio of computing time between the conventional LU decompo-
sition and the Rotated ALU deomposition.

3 Solving periodic block pentadiagonal linear systems
In this case, the coefficient matrix is as follows.:

o1 D, B 0 4 B
.Bj2',k Cj,k Dz',k E_’]?,k
Ajy By 5k Diy B3

G = R (3.1)

i—1 AR LI LR L
EJ[ . O Aj,l» BJlJc le,k Jlk
Dj i Ejx ik Bix Ol

where A},k,BJ{k,Ag’k,Eéll,Dé,k,Ej.)k are periodic boundary elements (PBE: the matrix’s elements
generated from periodic boundary conditions by discretizing of partial differential equation).
3.1 Difficulty of applying the Rotated Alternative LU decomposition method

The conventional LU decomposition factors (3.1) into (3.2).

Gk =

. - L. EL i ]
Cik I Dj Ejz’k 2 O A L“?%k

2 2 i j j
B2, C2 I D3, E]3,k, \ * Al
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(3-2)

By using the conventional decomposition, the PBEs occur fill-in! that is showed by * in Eq.(3.2).

On the other hand, the Rotated ALU decomposition would be able to solve faster, but this method
cannot be applied directly to such like the periodic block pentadiagonal linear systems. Because this
method to éj,k invited fill-in, that makes the applying the Rotated ALU decomposition difficult.

To solve with the Rotated ALU decomposition, the coefficient matrix must be factorized with the
Alternative decomposition (2.3). However, the Alternative decomposition occurs the fill-in showed in
(3.3) by the %, and the number of the unknowns are much more than the number of the equations.

G],k —
rct T r Al ol Al Bl 7
]2,k - I Dj,k Z?JL R O Aj,k Bij,k
By Cin 0 I D E?, * A2,
3 B3 A3 ok Thk :
A3 B2 O3 I D}, E3, x %
i b ms s Coe *
Aﬁc Bj’k Cj,i Djjc Eji X * * 0 0 I 0 0 * %
.. ... .. * * > M
Al-2 ;-2 pi-2 -2 Bl-2
0 O Dy B | 2, e B T
Cik Dk Ejl,k o 0 9k BJlk ~{
i C’Jl»’k_ L D5k Bk Asp Bip I ]
(3.3)
Therefore, it is impossible to solve the linear systems of (3.1).
3.2 Applying the Sherman-Morrison-Woodbury formula
Against this point of issué, the Sherman-Morrison-Woodbury (SMW) formula [3]
(P+UvhH=t = pl_oplyad+vTpty)ytvTp-t. (3.4)

is used as a preconditioner for the Rotated ALU decomposition.

For applying to the SMW formula, the coefficient matrix & 4.k should be splitted into two-matrices,
block pentadiagonal matrices(P) and the matrices composed of the PBEs, and the latter term should
be transform into two block matrices’ multiplying. Here, P is adaptable form for the Rotated ALU
decomposition. This preconditioner has been named ”Split/SMW?” [9].

Applying is as follows. Here,

1 — 1 1
Cix = Cix— 45

Djl',k = Dgl‘,k - B_71',k7
C’f’,k = 0]2,]9 - A?,k:
G = Gl - ERL
B;,k - B;’,k - D_l’i,kJ

! _ 1 !
Ciw = Chip—Ejp

1The behavior that the elements of matrix is zero but not so in an exact factorization.



Then,

C:k‘Dj;k Ejzk , D 1 145 Bii)
B%kcng]kEjk 0 4,k
AJI» J’vCJ}vD]’»EJ 0 0
A I
Gj,k _ n [ 00
Al 2 Bé 2 Cl 2 Dll7 kz El 2 0 0
z ja ok jal -1
0 Aj,kl B;,kl C_’jl,kl é,kl Ejik (z)
i A, B; Oj,k~ L D i Ej
= P+ [Ul UQ] VVZT
= P+UVT

By (3.5), the linear systems (1.1) is represented as follows.
Girmin = (P+UVT)x;p =bsy
therefore,
zir = (P+UVT) by
By using (3.7) and the SMW formula, the solution x;  is

zix = {P'-PlUI+VTPU)'WTP b, ,
= {I-P U +VTPIU) VTP b,

(e (1) (5]}

WT
= Y, —[Z125] [Wé" } Yjk

where,
Yir = Pl
(2:2,) = P7'U
= PO Uy,

W] = (e[ ma) 5]

(3.7)

(3-8)

(3.9)
(3.10)

(3.11)

By using (3.8), Eq.(3.7) comes to solving two linear systems (3.9)(3.10) which coefficient matrix
is the block pentadiagonal matrices P. And these equations can be solved with the Rotated ALU

decomposition.

This new proposed method is named the ”Split/SMW+Rotated ALU decomposion method” {5] .

3.3 Numerical Experiments-2

Here, a few numerical results are presented, that is comparing the conventional LU decomposition to
the Split/SMW + Rotated ALU decomposition. In these experiments, the way of expeiments and the
processor had been same as the Numerical Experiments-1. And this experiments’ own peculiar part

is described.
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Figure 4: Comparison of computing time between the conventional LU decom-
position and the Split/SMW+Rotated ALU deomposition.

3.3.1 Methods

Testing model was as follows. Block matrices composing the coefficient matrix C;'j,k were generated
with based on Frank matrix, and were sufficient nonsingularity of matrices P and (I + VT P~1U).
The exact solution z;; was generated by random numbers. The right hand side b; ; was generated
by multiplying @j,k and z; ;. The examination models have been showed as Tab.1. And #direction
was vectorized.

The computing time and the accuracy for the solving linear systems are measured and evaluated
between the conventional LU decomposition and the Split/SMW+Rotated ALU decomposition.

3.3.2 Results

Fig.4 shows the computing time plot corresponding to Tab.1. The abscissa indicates the number of
Jj-direction’s elements (m) and the ordinate indicates the computing time [sec]. Fig.5 shows the com-
puting time ratio. In these figures, ”Split+RALU” means ”Split/SMW+ Rotated ALU decomposition
method”.

From these results, the Split/SMW+ Ratated ALU decomposition is faster 35 ~ 40[%] than the
conventional LU decomposition. On the accuracy, both algorithms are the same for this testing model,
and the relative 2-norm error is as follows.:

lzs = Ziulls - 5 10-9) (3.12)
ll;.kll2

where z;; is the exact solution, and Z;  is the numerical solution.

4 Conclusion

In this paper, new methods are proposed and showed efficiency, those methods’ application is block
pentadiagonal linear systems appearing to the CFD problems.

In section 2, the detail of the Rotated ALU decomposition method are explained. This method
is derived from improvement on the Alternative decomposition. From some numerical experiments,
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Figure 5: The ratio of computing time between the conventional LU decompo-
sition and the Split/SMW+Rotated ALU deomposition.

the Rotated ALU decomposition is showed to effective for vector processors and kept up the accuracy
against the conventional method. On the case of using vector processors, not only in the CFD problemnis
but also in other problems, the coefficient matrix is stractural symmetric matrices, the Rotated ALU
decomposition method is useful.

In section 3, the theme is periodic block pentadiagonal matrices linear systems. This coefficient
matrix is splitted into block pentadiagonal matrices and the matrices of the PBE, forvusing the
Sherman-Morrison-Woodbury formula. From some numerical experiments, this Split/SMW+Rotated
ALU decomposition is showed to effective and kept up the accuracy against the conventional method.
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