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Abstract. In this paper, we propose a parametric-cost simplex algorithm for minimizing
a single criterion over the efficient set of a triobjective linear programming problem. We first
characterize potential optimal solutions for this nonconvex program. Then we show that a
globally optimal solution can be found among them within a finite number of pivoting opera-
tions. Computational results indicates that the algorithm is practical and can solve fairly large
scale problems. |
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1. Introduction

The multiple objective linear programming (MOLP) involves the simultaneous maxi-
mization of more than one linear objective functions on a polyhedral set. In most cases,
the objectives are in conflict with each other and hence cannot all be maximized simul-
taneously. Instead a set of efficient solutions is often supplied to the decision maker. An
efficient solution represents a situation that no one can improve each of the objectives
without making at least one of the rest worse. Since the MOLP emerged as a new topic
in the early 1970s, the concept of efficiency has played the central role in the analysis
and solution [14, 16]. The decision maker is then required to select a compromise from
the set of efficient solutions; however, it is a rather troublesome task because the set is
usually enormous even if it is only part of the entire efficient set [7, 8].

One reliable way to reduce the decision maker’s burden is to optimize a single evalu-
ation function over the efficient set. This approach was first proposed by Philip in 1972;
and he developed a cutting plane algorithm to search the efficient set for a minimum
point of a linear evaluation function [13]. Since the efficient set is not a convex set, his
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problem belongs to multiextremal global optimization [9, 10]. In the framework of global
optimization, several promising algorithms have been proposed so far [2, 3, 4, 5, 15].

An important special case of Philip’s problem is to minimize a specified one of the
objective functions. Its uses in multiple criteria decision making are discussed in [4, 6,
12, 17]. Solving this problem, one can determine the range of values that the objective
function can achieve on the efficient set. With the help of this information, the decision
maker can set goals appropriately, and evaluate the utility of the objective function
values at individual efficient solutions. If the range is very narrow, he may decide that
the objective can be neglected.

In this paper, we will concentrate on the tricriteria case and propose a parametric-
cost simplex algorithm for minimizing one of the three objective functions over the
efficient set. As shown in [5], the parametric simplex algorithm can serve as a practical
method for searching the entire efficient set of a biobjective linear program. In the
tricriteria case, however, the efficient set is too large to search entirely. We then exploit
the fact that the evaluation function is one of the objectives, and narrow down the set
of efficient solutions that can provide an optimal solution. We refer to such an efficient
solution as an marginally efficient solution. In Section 2, we will characterize the set
of marginally efficient solutions of the general MOLP. Section 3 will be devoted to the
algorithm for generating a sequence of marginally efficient solutions. We will show that
the algorithm terminates within a finite number of simplex pivoting operations and
yields a globally optimal solution. In Section 4, we will report computational results of
testing the proposed algorithm on randomly generated problems.

2. Structure of the Problem
Let us consider a multiple objective linear program:

‘Maximize’ z = Cx

MP '
subject to' Ax=Db, x>0,

where A € R™*", b € R™, C € IR”*" and rank C = p < n. We assume that the feasible
set

X={xeR"|Ax=b, x > 0}

is nonempty and bounded. We also impose a nondegeneracy assumption on X for

simplicity:

Assumption 2.1. The coefficient matrix A has full row rank. Any subset of columns
of [A,b] has full rank if the corresponding submatrix of A has.

The purpose of MP is to find (some or all) feasible points that ‘Maximize’ the criterion

vector z, where the meaning of ‘Maximize’ is to make z nondominated by other feasible
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criterion vectors. More precisely, if X is a solution of MP, there does not exist an x € X
such that

Cx > Cx and Cx # Cx. ‘ (2.1)

We refer to such a point % € X as an efficient or Pareto optimal solution of MP, and
denote by Xz the set of all X’s. Our problem is not MP itself but to find an efficient
solution x* that minimizes a specified criterion 2; = cix in the usual sense, where ¢
denote the ith row of C. Therefore, the problem can be written as follows:

minimize z; = c'x

P .
subject to x € Xg.

2.1. D.c. REPRESENTATION OF THE EFFICIENT SET
Let

Y=X+{deR"|Cd <0, Cd+0}. (2.2)

We see from (2.1) that each y € Y is dominated by some x € X. By means of this set
Y, we can express the efficient set X as

Xp=X\Y. | o (23)

Since the second term of (2.2), called the criterion cone, is convex polyhedral, Y is a
convex subset of IR". Hence, (2.3) implies that the feasible set of P is not a convex set in
general but a d.c. set (difference of two convex sets). Problems of this kind, called d.c.
- programs, can have multiple locally optimal solutions, many of which fail to be globally
optimal [9, 10]. |
Let us denote by S the set of optimal solutions of a problem:

minimize 2z = ¢'x
subject to x € X.

If SNY =0, then any x € S is an optimal solution of P; we can obtain it using the
simplex or interior-point algorithm. To exclude such a trivial case, we assume hereafter
that

SNY #£0. | - (24)

Under this condition, it is known [10] that any d.c. program has at least one globally
optimal solution in the intersection of Y with some edge of the polytope X, where 8-
denotes the set of relative boundary points. In addition to this, since the efficient set Xz
is a connected subset of X [14], problem P must have a globally optimal solution on
some efficient edge or extreme point. In fact, we have the following, which was proved

by Benson (Theorem 4.5 in [2]) for problems of minimizing a general linear function:
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Lemma 2.1. Among efficient extreme points of X exists a globally optimal solution x*
of P.

In our problem P, the objective function is a component of the criterion vector
z = Cx. Exploiting this special structure, we can strengthen Lemma 2.1. To do this,

however, we need some preliminaries.

2.2. MARGINALLY AND INTERNALLY EFFICIENT EXTREME POINTS

For any constant vector A° € IR? \ {0}, let us consider a composite linear program
associated with MP:

maximize z(A°) = A°Cx
subject to x € X.

QM%)

Since X is bounded, the objective function attains its maximum at some extreme point,
say x°, of the polytope. By Assumption 2.1, the point x° corresponds to a unique
basis matrix B € R™ ™ of A. Let us decompose A, C and x accordingly into [B, N],
[Cp, Cn] and (xp,xy). Then we can write the optimal dictionary of Q(X°) as follows:

XB=]_)—AXN

- _ 2.5
2= X°Cgb + A°Cxy, (2.5)

where
b= B'lb, A= B_IN, C=Cy— CgA.

Each factor of the relative profit A°C is either zero or negative in (2.5). From the
optimality condition in linear programming [1], the point x° is optimal for Q(A) as well
if AC is nonpositive, in other words, if A belongs to a polyhedral cone:

AB]={X e R? | AC < 0}.

For any A # 0, problem Q(A) has an optimal solution. Therefore, the whole space
of A except the origin is completely covered by a finite number of polyhedral cones
A[B(r)]’s, where B(y)’s are feasible bases of X. Moreover, we have the following:

Lemma 2.2. Let r denote the number of feasible bases of X. Then {A[Bw)] | k¥ =
1,...,7} is a partition of R? \ {0}, i.e., ‘

Q A[B(y] = R”\ {0} ~ | (2.6)

int A[B(k)} Nint A[B(g)} =0 if k£L ’ (2.7)

where tnt- represents the interior.




Proof: We have already seen (2.6). Let us prove (2.7) by assuming the contrary. Let
A’ be an interior point of both A[By] and A[B(y). Associated with B and By are
different dictionaries of Q(A"), where the relative profits are respectively

X(—l(k) <0 and )\'C(g) < 0.

These inequalities imply that each basis uniquely determines an optimal solution of
Q(X"). However, this can never happen unless the optimal solution is degenerate. [ |

Suppose that A[B()] shares a face defined by Aégk) = 0 with A[By)] for £ # k, where
Cik) denotes the jth column of (_J(k). Then we can obtain By from B,y in a single
pivoting operation; we need only to replace some column of B() by the jth column of
Ny. We say that B is adjacent to By in this case. The extreme points x* and x*
associated with adjacent bases By and By, are also adjacent on X with some edge.

It is well known [14] that x° € X is an efficient solution of MP if and only if x° is
an optimal solution of Q(A®) for some A° > 0. Therefore, from (2.6), the extreme point
x* associated with Byy) is efficient if and only if the cone A[B )] intersects the positive
orthant RE. = {A € R? | A > 0}. We classify such efficient extreme points x*’s into two
families:

Definition 2.1. Extreme point x* of X is internally efficient (abbr. i.c.e.) iff
A[B(k)] CRE.
Extreme point x* of X is marginally efficient (abbr. m.e.e.) iff

ABw] ¢ R; and A[Bp]NRE # 0.

Note that some of extreme points adjacent to an m.e.e. point might be inefficient while all
extreme points adjacent to an i.e.e. point are efficient. We are now ready to strengthen
Lemma 2.1.

Theorem 2.3. Among marginally efficient extreme points of X ezxists a globally opti-
mal solution x* of P.

Proof: Let x* be an arbitrary i.e.e. point. By definition, x* is optimal for Q(A) if and
only if A € A[Biy] = {A € R? | ACx) < 0} C R%. Consider a problem Q(—e’) of
minimizing ¢'x = e‘Cx, where e’ € IR? is the ith unit vector. The relative profit —eié(k)
of Q(—e') with respect to By, has at least one positive factor, since —e’ & A[B;)]. This

implies that there is an extreme point x¢ of X adjacent to x* such that c’x? < c’x*. Since
k

k

x* is internally efficient, x* is efficient and hence belongs to Xz. By the arbitrariness of

X", no i.e.e. points can be optimal for P. Then we see from Lemma 2.1 that a globally

optimal solution of P exists among m.e.e. points. ]
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Any A € IRE can be normalized so that the components add up to one. Therefore,
if we choose a A appropriately from A = {A € R}, | 37_, A; = 1}, any efficient extreme
point of X will be given as an optimal solution of Q(A). As Theorem 2.3 suggests,
however, we need not search for an optimal A every nook and cranny but only part of
A along its relative boundary.

3. Parametric Algorithm for the Tricriteria Case
On the basis of the observation in Section 2, we will develop an algorithm for solving
problem P with tricriteria.

In the case of p = 3, composite linear programs to be considered are of the form:

maximize z{A) = A\jclx + Ape?x 4+ Azedx

A
QY subject to x € X,

where
AcA={AeR} |+ + 2 =1}

As we have seen, Q(X*) provides an optimal solution x* of P for some A* € A. Since A
is a two-dimensional simplex, we can find a A* by searching A only along its three edges.
In the first stage of this search, we solve Q(\) parametrically by changing the value of
A from (1 — 2¢,¢€,€) to (¢,1 — 2¢,€) for sufficiently small number ¢ > 0, and evaluate the
value of z; = ¢;x at the encountered m.e.e. points. Similarly, we carry out the second
and third stages, where the value of A is changed from (€,1 — 2¢, ¢€) to (¢,¢,1 — 2¢), and
from (e,€,1 — 2¢) to (1 — 2¢,¢,¢). In this section, we will show that each of these three
stages can be done in almost the same manner as the parametric-cost simplex algorithm

for linear programs with a single parameter (see e.g. [1]).

3.1. FIRST STAGE OF THE SEARCH

In the first stage of the search, we solve the linear program Q(1 —e— p, u, €) as increasing
the value of y from € to 1 — e. The number ¢ is positive and sufficiently small, but need
not be fixed beforehand.

Let x° be an optimal basic solution of Q(1 — € — p°, p°,¢) and B its associated
basis, where p° € [¢,1 — €]. We assume that the cone A[B| has a nonempty interior and
intersects a boundary edge (1,0,0)—(0,1,0) of A. This implies that x° is an m.e.e. point.
The dictionary of Q(1 — € — p°, pu°, €) with respect to B is

XB=B——AXN

_ 3.1
z=[(1-e— p)cg+ pch +ecy]b + [(1 — € — p)&* + pc? + ec3|xy. (3.1)
Hence, A[B] is defined by the system of inequalities:
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where Jy denotes the index set of nonbasic variables. Let

3 - a2 =l s
Q; = ¢ — G ﬁj—cj—cja J € Jn,

and let

J={jeln|Bi>0}, J={j€In]|p; <0}

If J = 0, then (3.2) holds for all 4 > p°. In this case, we terminate this stage and
proceed to the next, where we can use x° as the starting m.e.e. point. Similarly, (3.2)
holds for all p < p° if J = 0.

Assuming J # 0, let us define

Ai(e) = min {~(aje +¢})/6; | j € T} |
p(e) = max{— (e +&;)/B; | j € I}, } (3-3)

where p(e) is understood to be —oo if J = @. Then (3.2) reduces to p(e) < p < u(e)
Note that the interval [p(e),7(€)] has p° and an interior point. Hence, X° remains an
optimal solution of Q(1 — € — p, 1,¢€) as long as p lies on [p(e), (e)]. Once p exceeds
7i(e), hdwever, the optimality condition (3.2) will be violated at some j € J. To obtain

an alternative optimal basis, we have to identify a j € J that attains the minimum in

(3.3). Let
Jo = argmax{é;/ﬂgl JE€E 7} , Jo = argmax{a;/B;| j € J.}.
Lemma 3.1; Let s e J,. There‘ 18 a number § > 0 such that
(ase+2,)/0s > (aje+¢;)/B;, Ve € (0,6), (3.4)
for each j € T\ J,.

Proof: Let J\ J, partition into J\ J, and J,\ J,. If j € J,\ J,, then & /3, = ¢;/B; and
@,/Bs > a;/B; by definition; hence (3.4) holds for all § > 0. Suppose that j € T\ J..
Then we have ‘

c/B, — 2 /B; > 0. (3.5)

If o,/B, > a;/B;, then (3.4) is obvious for all § > 0. Otherwise, it follows from (3.5)
 that there is a number 6; > 0 such that

(as/ﬂ-‘! - aj/ﬁj)e + (Eslx/ﬂs - E;/ﬂj) >0, Vee (07 6])

Therefore, letting § = min{é; | j € J\ J. s.t. a,/B8, < a;/B;}, we have (3.4) for every
jEeJ\ J. . |



Lemma 3.1 implies that fi(e) is attained at each s € J, when ¢ is sufficiently small.
If Jo is a singleton, we can obtain an alternative basis B’ adjacent to B by a single
pivoting operation: we exchange a column of N indexed by s € J,, for a column of B,
which is uniquely determined under Assumption 2.1. The resulting basis B’ generates

an m.e.e. point because A[B] and A[B’] share a closed line segment:
(AER A= (1 e~ R(d), (), e), € € 0,3,

which intersects the boundary edge (1,0,0)-(0,1,0). Also, we can easily check from
(3.4) that intA[B'] # 0. If J, contains more than one index, however, problem Q(1 —¢—
7i(€), Ti(e), €) causes dual degeneracy. We need some additional procedures to continue
this stage.

3.2. PROCEDURES AGAINST DUAL DEGENERACY
The relative profit factors of (3.1) at pu = 7i(e) with € € (0,6) satisfy

[l — e —Ti(e)lc; + ()l + €€ =0 for each j € J,
[1 —e~H(e)g] + ()T + €c? <0 for each j € Iy \ Jo.

Hence, the solution set of Q(1 — € — 7€), 7i(€), €) is given by
Fl,)=XN{xeR"|z;=0, j € Jv\Ja},

which is a |J,|-dimensional face of X and can contain more than two m.e.e. points to be
tested for optimality if |J,| > 1. In practice, however, we need only to test the solution
of a linear program:

minimize z; = ¢ix

P(J,
(Ja) subject to x € F(J,).

Let x, denote the vector of z;, j € J,, and N, the corresponding submatrix of A. Then
P(J,) is essentially a problem with variables (xp,%,) constrained by

Bxg+Ny,x,=b, x>0, x,>0.

By Assumption 2.1, this system has no degenerate basic solution, since [B,N,,b] is a
subset of columns of [A,b]. This implies that P(J,) can be solved in a finite number of
the usual simplex pivoting operations [1].

After solving P(J,), we have to escape the dual degenerate face F(J,). For this

purpose, we next solve

maximize w = (c? —cl)x

R(J,
(Ja) subject to x € F(J,).



Since the feasible set is again F'(J,), we can compute an optimal solution x' and basis
B' in a finite number of pivoting operations. Let us decompose A, ¢ and x accordingly
into [B',N'], (¢4, ck) and (xp/,Xn), respectively. Also, let

éi =CN1 —CBI[B,]-]N', i=1,2,3-
Then we have
&-5<0, jeJvN(JaUJa), R CR))

where Jy is the index set of xy.. Moreover, the following holds for € € (0,8) because
x' remains a dual degenerate optimal solution of Q(1 — € — T(e), #(e), €):

[1 — € —T(e)]} +H(e)eE + €2 =0 foreach j € JyN(JpU J,) (3.7)
[1 —e—7(e)e; +7(e)& + €&} <0 for each j € Jy: \ (Jp U o). '

As before, letting

I3 1 2 .
a; = ¢; — ¢ ,6~—cj—cj, 7€ JInv,

i %
we define
F'(€) = min {—(aje+&)/8; | j € T}
' ' ~1 o ! (3'8)
p'(e) = max{—(cje+&)/B; | j € L'}
where

Note that J' # @. Since the profit vector ¢z — ¢! is linearly independent from that of
Q(1 — e — 7i(e), Be(e), €) if € > 0, at least one inequality in (3.6) holds strictly. If 7' = 0,
then we set 77'(¢) to be +oo. |

Lemma 3.2. Let 6 denote the number defined in Lemma 3.1. Then
Ae) = p(e) <F(e), Vee(0,9). (3.9)
Proof: 1t follows from (3.7) that

B(e) = —(aje+¢})/B; foreachje J' N(JpUJa)
f(e) > —(aje+¢)/B; for each j € J'\ (Jp U Ja),

which proves the equality in (3.9). We obtain the inequality from
Aie) < —(aje + E})/ﬂ; foreach j € 7 =T\ (JgU ),
by noting 7N (JgU J,) = 0. _ m

We see from (3.9) that the cone A[B'] has an interior point and intersects the bound-
ary edge (1,0,0)-(0,1,0) of A. Therefore, the optimal basis B’ of R(J,) defines an

m.e.e. point.



3.3. ALGORITHM DESCRIPTION
The second and third stages of the search are similar to the first one. The rest to be
discussed is how to find an initial m.e.e. point for the first stage. This can also be done
by solving a linear program parametrically.

Consider a composite linear program Q(1 — 2¢, €, ¢), i.e.,

maximize c¢'x + e(c?+ ¢® — 2¢)x

3.10
subject to x € X. (310)

We solve this problem parametrically as increasing the value of € from zero. The feasible
basic solution first encountered for ¢ > 0 is an m.e.e. point and can be used as the
starting point in the first stage.

Let us summarize the algorithm:

algorithm MIN_CRITERION.
begin
solve (3.10) parametrically until an m.e.e. point x° is found;
(X*a z:) = (xo,cixo);
let B and N denote the basis and nonbasis of A associated with x°;
compute the relative profit & with respect to B for each i = 1,2, 3;
first :=cl;
repeat :
set o := ¢} — ¢} and §; := ¢} — ¢ for each j € Jy;
T={jey|p>0}
SEARCH_EDGE;
temp := ¢! ¢! :=c?%; c? :=c3; ¢ := temp
until ¢! = first
end;

procedure SEARCH_EDGE.
begin
while J #  do begin
Jo = argmax{(}/6; | j € T}; Jo = argmax{as/f; | § € L.}
if |J,] =1 then begin
perform a pivoting operation which brings a column of N indexed by s € J,
into B;
update x° according to the new partition [B,N] of A;
end
else DEGENERACY;
if ¢’x° < 2 then (x*, z}) := (x°, c’x°);
compute the relative profit & with respect to B for each i = 1,2, 3;
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set o := & — & and B; := & — ¢} for each j € Jy;
J:={jedy|B;i>0}
end;
end;

procedure DEGENERACY.
begin
- compute an optimal basic solution x° of P(J,);
if c’x° < 2¥ then (x*, 2}) == (x°, ¢'x°);
compute an optimal basic solution x° of R(/,);
update the partition [B,N] of A according to x°;
end;

Although the algorithm requires one to process a number of linear programs, we need
not solve all of them from scratch. If B is an optimal basis of the preceding linear
program, it is also a feasible basis of the current one; hence B would recover optimality
within a fewer pivoting operations. It is also worth noting that the minimum values
of all criteria z; = ¢ix, i = 1,2,3, can be computed simultaneously if we update three
incumbents 2}, i = 1,2, 3, appropriately in the algorithm.

Theorem 3.3. The algorithm MIN_.CRITERION terminates within a finite number of
pwoting operations and yields a globally optimal solution x* of P.

Proof: In each of the three stages, the procedure SEARCH_EDGE generates a sequence
of adjacent bases B(j), B(g), ..., such that the associated cones A[B)]’s cover a bound-
ary edge of A. Some of B()’s might be dual degenerate and define cones with empty
interior. However, the procedure DEGENERACY tests them for optimality and pro-
vides a nondegenerate basis in a finite number of pivoting operations. Since each edge of
A has a finite length, we see from (2.7) in Lemma 2.2 that the number of nondegenerate
Byy’s is finite. Thus, the algorithm inspects all bases that define m.e.e. points in a finite
number of pivoting operations. The output x* of minimum value is a globally optimal
solution of P by Lemma 2.3. |

4. Computational Results
We will report computational results of testing the algorithm MIN_CRITERION on

randomly generated problems in this section.
The feasible set Xg of each test problem was the efﬁcxent set of a triobjective linear
program: '

‘maximize’ z = (&'x, &%x, &x)

subject to Ax <b, x>0,

(4.1)
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Table 4.1. Average number of pivoting operations.

m X d preprocess stage I stage 11 stage I1I total

80 x 100 126.9 139.4 126.0 124.3 516.6
120 x 100 194.0 151.8 ~ 151.2 135.2 632.2
130 x 150 256.5 242.1 200.8 215.7 915.1
170 x 150 274.5 242.0 255.3 174.8 946.6
180 x 200 382.9 298.6 323.8 255.1 1260
220 x 200 435.8 347.7 343.0 316.2 1443

Table 4.2. Average CPU time in seconds.

m X d preprocess stage 1 stage II stage III total

80 x 100 3.152 5.720 5.201 5.152 19.23
120 x 100 12.31 14.94 14.66 13.33 55.24
130 x 150 21.38 32.07 26.60 28.61 108.7
170 x 150 42.68 56.34 58.79 40.72 198.5
180 x 200 71.00 84.37 91.65 72.63 319.7
220 x 200 131.7 150.7 148.1 136.7 967.2

where A € R™*?, b € R™ and & ¢ RY, i =1,2,3. All data of &’s and A were drawn
randomly from integers uniformly distributed on the interval [1,100]; and those of b
were fixed at 100. The size of (m, d) ranged from (80,100) to (220, 200). If we introduce
slack variables, (4.1) reduces to MP of size (m,n,p) = (m,d + m, 3); hence (m,n) was
between (80,180) and (220,420). For each (m,d), ten bounded instances were selected
and composed a subclass of P:

minimize z; = é'x

: (4.2)
subject to x € Xp.

The algorithm MIN_CRITERION was coded in double precision C language and solved
(4-2) on a Unix workstation (HyperSPARC, 150MHz).

Table 4.1 shows the average numbers of pivoting operations taken in three stages (I,
IT and III) for each size (m,d). It also contains the number spent for solving (3.10)
(preprocess) and the total (fotal). Table 4.2 shows the average CPU times in seconds, in
the same manner. We can roughly estimate that preprocess indicates the computational
time needed for solving a linear program of size (m,d). According to this estimation,
the tables tell that the algorithm MIN_CRITERION solves a randomly generated class

12



Table 4.3. Relative frequency of finding x*.

minélx min &’x min &x
m X d stageI II III stage I II III stagel II III
80 x 100 05 03 0.2 0.5 0.2 03 0.7 02 0.1
120 x 100 0.3 0.7 0.0 06 01 0.3 1.0 0.0 0.0
130 x 150 04 05 0.1 04 01 0.5 0.9 01 0.0
170 x 150 0.2 0.8 0.0 06 0.2 0.2 0.8 0.2 0.0
180 x 200 0.5 0.5 0.0 0.7 0.2 0.1 06 03 0.1
220 x 200 0.2 0.8 0.0 04 0.2 04 0.8 0.2 0.0

(4.2) in almost the same computational time as needed for solving four linear programs.

Table 4.3 shows the relative frequency of finding the output x* in each stage. We see
from it that each of the three stages can provide optimal solutions whichever criterion is
* minimized in (4.2). Therefore, we can never omit any stages to obtain a globally optimal
solution of P.

Since all the test problems were nondegenerate, the performance of the procedure
DEGENERACY is still open. Hence, we cannot make a final conclusion about the
éomputational properties of the algorithm MIN_CRITERION. However, it would serve
as a practical approach to global optimization at least for degeneracy-free problems.
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