A Design of Self-Migrating Threads in C++

Naoya Suzuki Munehiro Fukuda
Institute of Information Sciences and Electronics
University of Tsukuba, Tsukuba, Ibaraki 305-8573, JAPAN
e-mail: {nas, fukuda}@is.tsukuba.ac.jp

Lubomir F. Bic
Department of Information and Computer Science
University of California, Irvine, CA 92697-3425, USA

e-mail: bic@ics.uci.edu
Technical Report ISE-TR-99-160
May 7, 1999

Abstract

The navigational autonomy of mobile agents has the potential to form
a novel programming paradigm for certain parallel applications such as
individual-entity-based simulations and some graph problems. However,
for finer granularity and better scalability of computations, mobile agents
cannot perform well if they are interpreted. Thread migration is another
software technology that moves threads to remote processors in order to
reduce their remote memory accesses. But this migration is passive and re-
quires a shared memory infrastructure. We propose self-migrating threads
that navigate autonomously over a network and resume their native-mode
executions at the destination. By giving them the capability to construct
system-wide logical networks, we expect that self-migrating threads can
support entity- and graph-based applications at any granularity and scal-
ability. We have designed the functionality of self-migrating threads and
implemented a low-level migration library. In this paper, we discuss the
feasibility of our design by considering the implementation techniques and
basic migration performance.

Contents

1 Introduction ' 3

2 Execution Model : 4
2.1 Computational Network and Objects 4
2.2 Principles of Operations 6

3 System Implementation 9
3.1 MainlIssues 9
3.2 Preliminary Performance 12

4 Related Works 14

5 Conclusions 16

1 Introduction

Mobile agents are script entities that autonomously navigate over a network and per-
form various tasks at each node they visit [2]. Of interest is their inherent parallelism,
obtained by the dissemination of the agents through the network. With their naviga-
tional autonomy and task-coordinating capability, mobile agents have the potential
to form a novel programming paradigm for some types of parallel and distributed
computing.

We have developed MESSENGERS, one of a few systems that realized distributed
computing through the parallel execution of and interactions among mobile agents
roaming over application-specific networks [1]. This computation paradigm is well
suited for entity-based simulations and certain graph problems [8, 6]. However, such
applications sometimes demand finer granularity and larger scalability than is cur-
rently possible. For instance, some ecological simulations may need millions of en-
tities, and graph analysis tools, like Petri-nets, may generate very large numbers of
network nodes. Currently, MESSENGERS demonstrates its competitive performance
only in coarse- to medium-grained distributed computing due to the nature of inter-
pretation [7]. Therefore, it is not feasible to use MESSENGERS directly for massively
parallel computations.

Another software technology that migrates computations is based on threads. It
migrates threads to remote processors if these contain frequently accessed data and
thus reduces remote memory accesses. Although threads are the finest-grained com-
puting entities, they are generally based on shared memory programming, which
requires distributed shared memory or similar infrastructures to be implemented over
the system. In addition, most thread migrations take a passive form, where threads
are moved by their underlying language systems or operating systems.

As a new approach to entity- and graph-based parallel computations, we pro-
pose self-migrating threads that autonomously navigate over networks and resume
their native-mode executions at each destination. We give them the same capability
as MESSENGERS to construct system-wide logical networks at runtime. Therefore,
these threads can behave as autonomous light-weight entities roaming in a dynamic
computation space, rather than passive computations running on a shared memory
infrastructure.

We have designed the functional specification of self-migrating threads that are
coded using C++ and use special navigational constructs. To study the performance
feasibility, we have implemented a low-level thread migration library, had threads
migrate among four workstations randomly, and obtained results competitive with
those of similar computations using MESSENGERS, IBM Aglets [12], PVM, and MPI
[10]. This paper demonstrates the feasibility of self-migrating threads from two view

points: our implementation techniques and basic performance.

The rest of this paper is organized as follows: Section 2 briefly introduces our
programming paradigm using self-migrating threads; Section 3 discusses some im-
plementation techniques and shows preliminary performance; Section 4 differentiates
our design from other related works; and Section 5 concludes the discussions.

2 Execution Model

Our design of self-migrating threads is based on the following four principles: (1) pre-
serving MESSENGERS’ network architecture, (2) permitting users to describe threads
and network in C++, (3) providing flexible logical-to-physical network mapping
schemes, and (4) eliminating overhead in logical network management.

2.1 Computational Network and Objects

We provide self-migrating threads with three levels of networks as in MESSENGERS
(see Figure 1.) The lowest level is the physical network (a LAN or processor in-
terconnection network), which constitutes the underlying computational resource.
Superimposed on the physical layer is the daemon network, where each daemon is a
UNIX process executing and exchanging threads with others. The logical network is
an application-specific computation network created on top of the daemon network.

A daemon network topology is initially defined in a user’s configuration file by
enumerating all participating physical nodes, (i.e., daemon nodes) and listing the
neighbors for each node. The logical network is dynamically constructed by self-
migrating threads, either independently of or with regard to the underlying daemon
network.

Computation involves four classes of C++ objects: thread, daemon, node, and link.
The thread object is a self-migrating thread, which carries its members as it migrates
over the logical network. The daemon object contains daemon node information,
shared by all thread objects that are running on the same daemon process. The
node object represents a logical network node, whose method and data members are
accessed by thread objects residing on this node. The link object corresponds to a
logical network link, capable of storing only data members and visible from threads
residing on the both ends, (i.e., nodes) of this link.

The naming scheme of those objects is as follows: The daemon object is identified
either directly with a system-unique ID from all daemons or indirectly with a relative
ID from its neighbor. The system-unique ID takes a positive integer, while the relative

Logical Network

node

NodelD thread

hop(2/1)

Daemon Network

daemon daemon daemon

Phisical Network

iris00.ics.uci.edu irisO1.ics.uci.edu iris02.ics.uci.edu

a a a
S S A S A

[J

Figure 1: Computational network and objects

one uses a negative integer. In Figure 1 for instance, the daemon running on the iris02
workstation is identified either with the system-unique ID {3 from all daemons or with
the relative ID §-2 from the neighbor running on iris01. The node is identified with
the concatenation of its daemon ID and daemon-local node ID, and thus referred
to as (daemon_ID/node_ID). The link is recognized from both ends, (i.e., nodes),
using a pair of source and destination link IDs. The source link ID is visible as the
destination link ID at the other end, and vice versa. Figure 1 shows that the source
and destination IDs of the link between two nodes, (1/2) and (2/2) are visible as 1
and 2 from node(1/2), but as 2 and 1 from the other node(2/2).

It is expected that threads, with the ID-oriented naming, can migrate to network
objects faster than most string-oriented mobile agents. However, note that IDs are
used for generation of and navigation to network objects but not for direct access to
- the object contents. A thread must first move itself to the object, whose contents are

then accessible to it.

2.2 Principles of Operations

Figure 2 describes a C4++ code framework which defines the node, link and thread
classes as inheriting their base classes, provided by the system. Note that the daemon
process provides the daemon class and the main() function, which do not need to
be defined by a user. As shown in this figure, a user may define different thread
classes derived from its base class. After initialization, new thread instances pass the
control to the body() member function that is in charge of their autonomous network

navigation.

class Node : BaseNode { ...; 1};
class Link : BaseLink { ...; };
class Threadl : BaseThread {
public: body (); ...; };
class Thread2 : BaseThread {
public: body (); ...; };

Figure 2: Network objects defined in C++

When invoked, a daemon process instantiates a daemon object indicating its status,
as well as two nodes, called INIT and TRASH respectively. New threads are injected
from a user shell, start their navigation from the INIT node and terminate themselves
by migrating to TRASH. Threads are capable of constructing and destructing other
objects with new and delete operators during their execution. In the following, we
will explain how a thread constructs and navigates over network objects.

Node Construction/Destruction: A node object is constructed and deleted as follows:

typedef int DaemonID, NodeID;
DaemonID daemonId;
NodeID localId;
localld = new Node(arguments)

: ID(daemonId, localId);
localld = delete Node

: ID(daemonId, localld);

The new operator creates a node and invokes its constructor with arguments when
the daemon specified with daemonld does not yet have the node with localld. Oth-
erwise it fails in the node construction. Null daemonld and localld mean a node
construction on the current daemon and a local node ID given by the system respec-
tively. Upon a successful creation, new returns the local ID of this node. Similarly,
the delete operator succeeds in a node deletion when such a node exists as a skeleton
and returns the deleted node’s daemon-local ID.

Link Construction/Deletion: A link object is constructed and deleted as follows:

DaemonId daemonId;
NodeID localld;
typedef int LinkID;
LinkID sourceld, destId;
sourceld = new Link(arguments)
: ID(daemonId, localld, sourceld,
destId);
node.getLink() ;
sourceId = delete Link : ID(node.link[i]);

The new operator creates a link with sourceld and destld from the current node
to the one with daemonld and localld, and then passes arguments to its constructor,
provided such a link does not already exist. Null sourceld and destld mean receiving
this pair of IDs from the system. The current node’s getLink() member function
generates a source ID list of all the emanating links, each of which is accessible with
an index ¢ and then deleted by the delete operator. Both the new and delete operators
return the source ID of the created and deleted links respectively upon a successful
completion. Note that the distinction between node and link in creation or deletion
is made with arguments given to the ID() function, which is overloaded accordingly.

Thread Navigation: The thread propagates along links and/or jumps directly to nodes
using its member function hop(). Its execution is not interrupted by other threads
residing on the same node unless 1t initiates a navigation.

Figure 3: A Mesh Construction

node. getLink (searchFunc, modifyFunc);
hop(node.link[i]);

The current node’s getLink() member function, if given with searchFunc(), gener-
ates a source ID list of the emanating links that satisfy the conditions provided by
searchFunc(). It also modifies the contents of the selected links, using a given mod-
ifyFunc(). Null searchFPunc passed to getLink() means selecting all the emanating
links. The thread can then move itself along each of those links with hop(node.link[i]).
The hop() is capable of multicasting the thread, depending on the variation of its
arguments:

hop(node.link): propagates the thread along all selected links.

hop(daemonlID, locallD): makes the thread jump to the node with daemonlID and
nodelD. :

hop(): makes the thread jump to the same current node; this is used to relinquish
the CPU.

hop(TRASH): makes the thread jump to the TRASH node, which terminates it..

Figure 3 shows an example of constructing an NL x NL mesh of nodes on an
L x L mesh of daemon so that an N x N sub-mesh of nodes are mapped to each
daemon. The thread object that performs such a network construction is coded in
Figure 4. Upon being injected on the INIT node of a daemon and initialized by the
default constructor, the thread object invokes the body() member function. It first

creates a node with daemon-local ID §1 on each daemon (line 12) and establishes a
link to each of those nodes created (line 13). Thereafter, the thread propagates itself
along all the links (lines 15-16). It then starts constructing an N x N mesh of nodes
on each daemon in parallel (lines 17-35), as it hops from one node to another in the
increasing order of their local node IDs (line 34).

In each iteration of node creation, the thread first generates a horizontal link and a
new rnode at the end (lines 18-25). Assuming that it is residing on node(null/i), where
null means the current daemon and 7 satisfies 1 < ¢ < N x N, it creates its eastern
neighbor node(null/i+1) on the local daemon and a horizontal link to the end (lines
19-20), unless node(null/i) is at the east edge of the sub-mesh (line 18). If it is at
the east edge of the sub-mesh but not of the whole mesh (line 21), the thread creates
node(daemon.id+1/i-N+1) on its eastern neighbor, the daemon (daemon.id+1), and
a horizontal link to it across the daemon boundary (lines 22-24).

Similarly, the thread creates a vertical link and a new node at the end (lines 26-33).
It creates the southern neighbor node(null/i+N) locally and a vertical link to the end
(lines 27-28), unless node(null/i) is at the south edge of the sub-mesh (line 26). If it is
at the south edge of sub-mesh but not of the whole mesh (line 29), the thread creates
node(daemon.id+L/i-N(N-1)) on the south neighboring daemon and a horizontal link
to it (lines 30-32).

Note that nodes at the north and west edge of each sub-mesh will be created by the
thread working on the local daemon or the one working on its neighboring daemon,
but never duplicated by both.

3 System Implementation

3.1 Main Issues

The proposed execution model involves two functional concerns: (1) state capturing
and resumption and (2) non-interruptible execution between any two network navi-
gations. We also need to take care of two performance concerns: (1) frequent thread
migrations and (2) scalable and fast logical network construction. The following
discusses our solutions to those four concerns.

State Capturing/Resumption: The thread state consists of its local variables, the
CPU registers, its stack, any dynamically allocated heap memory, and open 1/0
connections. Among these, only the I/O connections are local to each machine and
thus cannot be moved.

1)
@
3)
(4)
(5
(6)
"N
(8)
(€°D)
(10)
an
(12)
(13)
(14)
(15)
(16)
«un
(18)
(19)
(20)
21)
(22)
(23)
-(24)
(25)
(26)
@n
(28)
(29)
(30)
3D
(32)
(33)
(34)
(35)

enum direction {north, east, south, west};
class Node : BaseNode { };
class Link : BaseLink { };
class Thread : BaseThread {
public:
body();
private:
int i;
}
Thread: :body() {
for (i =1; i <=L * L; i++) {
new Node() : ID(i, 1);
new Link() : ID(i, 1, null, null);
}
node.getLink();
hop(node.link) ;

for (i =1; i < N * N; i++) {

if (A %N '=0){ // ! at right vertical

new Node() : ID(mull, i+1);

new Link() : ID(null, i+1, east, west);

} else if (daemon.id % L != 0) {
new Node() : ID(daemon.id+1i, i-N+1);
new Link() : ID(daemon.id+1, i-N+1,
east, west);

}

if ((i-1)/N !'= N-1) {//' at lower horizon

new Node() :ID(null, i+N);

new Link() :ID(null, i+N, south,north);

} else if ((daemon.id-1) / L !'= L-1) {

new Node() :ID(daemon.id+L, i-N*(N-1));
new Link() :ID(daemon.id+L, i-N*(N-1)),

~south, north);
}
hop(null, i+1);
3

Figure 4: A code example of thread object

10

11

Dynamically allocated spaces are hard to carry, since there is no information in
the compiled code to detect pointers that specify those dynamic spaces. Instead of
allowing general memory allocation and pointer use, we have proposed and imple-
mented in MESSENGERS an abstract data type, termed Dobj, whose instances are
created dynamically, are self-referenced, can be exchanged among mobile agents and
their working places, and are carried with agents through library functions [9]. We
introduce this Dobj abstract data type to our self-migrating threads so that they can
construct and carry dynamic data structures with Dobj instances over the network.

For stack extraction and restoration, we can focus on the body() member function’s
stack contents. If threads are allowed to migrate only inside body(), it must not be
called recursively. The rest of the state to be captured includes the thread’s local
variables and the CPU registers, which do not cause any problems except 1/O-related
register contents like interrupt masks.

The scenario of thread migration is as follows: The thread.hop() member function
first salvages all Dobjy dynamic objects attached to this thread and then calls setjmp()
to save the register contents. The body()’s stack is saved using the stack base and
top pointers, and the thread object itself is captured using “this” pointer and sizeof
operator. From the program counter, hop() calculates the displacement from the
body() function’s entry point to the current execution address, (which we refer to as
“execution displacement”.) Thereafter, all captured states are sent to the destina-
tion daemon. It copies the object contents to a new space allocated for this thread
object, and invokes the body() function which, at the beginning, overwrites its new .
stack with the one carried, computes the resuming point by adding the “execution
displacement”to its entry point, and then calls longjmp() to resume its execution.

Non-interruptible Thread FEzecution: Non-interruptible execution is guaranteed by
implementing the node as a monitor. At each node, only one of the arriving threads
is allowed to resume its execution and access the node. The thread.hop() makes the
current thread leave the node and selects another thread to execute. Therefore, there
is no concurrency inside a node, while threads residing at different nodes may run
concurrently. No deadlock occurs for node access, since there are no threads residing
on two or more nodes at a time.

‘More complicated is the atomic link access. Such atomicity is guaranteed only in-
side the modifyFunc() that is passed as an argument to node.getLink(). The node.getLink()
not only makes a list of the emanating links that satisfy a given condition but also
passes each of those links to modifyFunc(). One side of the link has a monitor which
the modifyFunc() needs to enter before modifying the link contents. Obviously, mod-
ifyFunc() issued at the other end of the link must be first dispatched to the monitor
before its invocation, which guarantees deadlock-free atomicity.

12

Support for Frequent Thread Migration: It is anticipated that a large number of small
threads will frequently migrate over the system. To handle this situation, we have
developed a TCP/IP-based communication module that the daemon process uses.
This module establishes two socket connections with each remote daemon, one for
read and the other for write. All the connections are asynchronous and kept open
in order to avoid I/O blocking and redundant open/close system calls. Two threads,
(which are different from thread objects and thus invisible to users), watch ready
socket connections and work on thread objects transfers in parallel: one for receiving
and the other for sending through the connections. They relinquish the CPU whenever
they find no available sockets and fail in read/write system calls. This scheme not
only raises the CPU usage but also avoids the saturation/starvation of socket buffers.

Logical Network Management: The proposed execution model constructs the logical
network independently from thread migration. The node and link objects are identi-
fied with an integer value rather than a string-oriented name. While they may include
strings as their data members, nothing except the ID need be defined inside those
objects. This scheme is therefore expected to make the logical network construction
faster and more scalable than mobile-agents systems that are capable of generating
logical network or working places.

3.2 Preliminary Performance

Self-migrating threads bring the possibility of performance improvement by reducing
remote memory accesses. They however need more time to be transfered over the
network than simple messages, due to the state capturing/resumption and termina-
tion/creation of threads required at the source and destination sites. The smaller the
threads and the more frequent their migrations, the more performance degradation

is incurred.

Therefore, we need to observe the performance of the inter-daemon communica-
tion module we developed especially for the transfer of frequent and small messages.
In addition, we should also imitate the typical execution style of individual-based
simulations in that self-migrating threads, each with a small amount of computation,
navigate over network frequently.

For those two performance evaluations, we used a network of four 170 MHz
SPARCstations (96MB memory each) connected by a 100Mbps collision-free Hitachi
switch. Using pthread library provided on Solaris 2.5, we have implemented self-
migrating threads, which carry their states as described above.

13

TCPLIB vs PVM/MPI-CH
40 e

Elapsed Time (seconds)

Bytes to send and recv (bytes)

Figure 5: Performance of inter-daemon communication module

Inter-daemon Communication Module: To asses the performance of our inter-daemon
communication module, we coded the following test program: each of four processes
running at a different machine repeatedly exchanges a message with the three others
1000 times. In each iteration, each process first sends all messages and thereafter
receives the ones from the others, so that temporary congestion is likely to occur.
We used and compared three different communication packages for this program: our
inter-daemon communication module, PVM, and MPI-CH[10].

Figure 5 shows the performance obtained when increasing the message size. Our
inter-daemon communication module shows better performance than PVM and MPI-
CH for any message size. Especially, for small messages below 500 bytes, the per-
formance i1s 1.5 to 2 times better than the others. This is because our scheme uses
two threads working on send and receive concurrently, while the other packages are
single-threaded and thus may be sometimes blocked on I/0.

Threads’ Random Walk: We modeled the individual-based simulation as a simple
random walk by self-migrating threads. In this program, 1,200 threads repeat 30
times a random walk among four daemon processes. For every migration, each thread
performs a certain amount of dummy floating-point computation. Note that no logical
network is involved and thus its management overhead is not considered. Again, to
asses performance, we programmed five different versions: our self-migrating threads,
PVM, MPI-CH, MESSENGERS and IBM Aglets. For PVM and MPI-CH, each process
repeats the same number of messaging and performs the same amount of dummy

14

computation for every message. For MESSENGERS and IBM Aglets, 1,200 mobile
agents repeat the same operations.

Figure 6 shows the results. Our self-migrating threads demonstrate a better perfor-
mance than all the other versions except MPI below 2000 floating-point computations.
In particular, it demonstrates a better performance over PVM for any range of com-
putation. This is because PVM processes make the CPU idle when blocked by 1/0,
while our self-migrating threads resume their computations as soon as two threads in
charge of communication wait for I/0.

Self-migrating threads however show 10% to 15% performance slow-down as com-
pared with MPI for any computation range. The main reason is that MPI provides
non-blocking communication so that a user process can proceed with the compu-
tation regardless of the completion of previous message sends. Unlike MPI, our
self-migrating threads incur their creation and termination overhead whenever they
navigate over the network.

As compared to MESSENGERS, self-migrating threads are faster 10% to 20%, below
2000 floating-point computation, while slowing down their performance beyond this
threshold. This is because MESSENGERS incur overhead by its frequent flips between
interpretive and native mode executions in fine-grained computation but it gains by
three implementation techniques in coarse-grained computation: (1) its automatic
virtual-time synchronization, (2) the pool and reuse of Messengers terminated, and
(3) the omission of interpretive code in their migration when the code has already
been transfered to the same destination earlier.

The IBM-Aglets daemons are unable to exchange more than eight aglets among
four workstations, because of the Java socket exception. Therefore, we injected only
two aglets on each workstation, for a total of eight aglets. Even in such a small scale
computation, they need 26.2 seconds for repeating the random walk 30 times. Thus,
aglets are out of consideration for fine-grained parallel computing.

For our self-migrating threads, we expect further performance improvements with
the same implementation techniques as MESSENGERS: virtual time and reuse of
threads, the latter of which results in omitting the code in their transfers. Taking
these into consideration, the basic performance we have obtained is convincing to use
self-migrating threads for individual-based simulations.

4 Related Works

Thread migration has been employed in several distributed-memory-based systems:
UPVM [4], Ariadne [13], and Emerald [14]. However, this form of migration typically

15

Thread rﬁigration vs PVM/MPI-CH/MESSENGERS

PYM —+—
60 |- MP| —--x-—- -

MESSENGERS ---*---

Thread migration -
»
ke
=y
[e]
(&3
[0)]
@
o
£
el
@
w
o
©
i

Floating-point operations / thread

Figure 6: Performance of a random walk by 1200 self-migrating threads

takes on a passive form. In other words, the threads are being moved by some other
object or the underlying operating system. On the other hand, the self-migrating
threads have navigational autonomy and move as the result of their own actions.

Several other systems have realized self-migrating threads: Obliq [3], Nomadic
Threads [11], and Olden [15]. In Obliq, agents run as threads. Each however executes
interpretive agent code and thus degrades performance. Nomadic Threads is a system
that generates and migrates a thread to a remote machine when remote memory
accesses have occurred frequently. Such memory accesses are predicted and migration
code is automatically inserted at compile time. Similarly, Olden dispatches a thread
to a remote host. However the thread carries only the current activation stack,
while leaving behind the previous stacks, into which it passes the return value when
terminating the current function. Threads in both Nomadic Threads and Olden use
a procedural language and move over a globally fixed address space. In addition, the
time and direction of their navigation is determined by their compiler, not by a user,
although the threads themselves initiate navigation.

Our self-migrating threads dynamically construct and migrate over a system-wide
logical network, use C++, and permit a user to control migration. In addition, they
can carry and exchange dynamic data structures among them, while some of the other
systems partially addressed the capability of carrying heaped data [5].

16

5 Conclusions

We have focused on scalability and granularity in entity-based and graph-based appli-
cations, for which mobile network objects improve programmability. For this purpose,
we have designed and are now implementing self-migrating threads whose behavior
is described in C++. This paper discussed the design feasibility from two view
points: implementation schemes and basic performance. The experiments in our low-
level communication module and thread migration demonstrated convincingly the
feasibility of migrating a large number of threads that include small data and small

computations.

As the next step, we are planning to evaluate the performance of logical network
constructions. Thereafter, we will fully implement our design of self-migrating threads
and develop some applications, such as Petri-net reachability graph generation, short-
est path/minimum spanning tree search, and ecological /molecular-level entity-based
simulations.

References

[1] L.F. Bic, M. Fukuda, and M. Dillencourt. Distributed computing using au-
‘tonomous objects. IEEE Computer, Vol.29(No.8):55-61, Aug. 1996.

[2] Lubomir F. Bic, Michael B. Dillencourt, and Munehiro Fukuda. Mobile net-
work objects. In Encyclopedia of Electrical and Electronics Engineering, page to
appear. John Wiley & Sons, Inc., 1998.

[3] L. Cardelli. Obliq: A language with distributed scope. Computing Systems,
8(1):27-59, Winter 1995.

[4] J. Casas, R. Konuru, S. Otto, R. Prouty, and J. Walpole. Adaptive load migration
systems for pvm. In Proc. of Supoercomputing ’94, pages 390-399, Washington
D.C., November 1994. ACM/IEEE.

[5] David Cronk, Matthew Haines, and Piyush Mehrotra. Thread migration in the
presnse of pointers. In H. El-Rewini and Y. N. Patt, editors, Proc. of the 30th
Hawaii Int’l Conf. on Systems Sciences - HICCS’97, pages 292-298. IEEE Com-
puter Society Press, 7-10 January 1997.

[6] Michael B. Dillencourt, Lubomir F. Bic, and Fehmina Merchant. Load balancing
in individual-based spatial applications. In Proc. of Int’l Conf. on Parallel Archi-
tectures and Compilation Techniques, PACT’98, pages 350-357, Paris, France,
October 1998.

17

[7] Munehiro Fukuda, Lubomir F. Bic, and Michael B. Dillencourt. Performance
of the messengers autonomous-objects-based system. In Proc. of the 1st Inte’l
Conf. on Worldwide Computing and Its Applications, WWCA’07, pages 43-57,
Tsukuba, Ibaraki, Japan, March 1997. Springer LNCS 1274.

(8] Munehiro Fukuda, Lubomir F. Bic, and Michael B. Dillencourt. Global virtual
time support for individual-based simulations. In Proc. of the Int’l Conf. on
Parallel and Distributed Processing Techniques and Applications, PDPTA’98,
pages 9-16, Las Vegas, NV, July 1998. CSREA Press.

[9] Munehiro Fukuda, Naoya Suzuki, and Lubomir F. Bic. Introducing dynamic data
structure to mobile agents. In Proc. of the Int’l Conf. on Parallel and Distributed
Processing Techniques and Applications, PDPTA 99, page to appear, Las Vegas,
NV, June 1999. CSREA Press.

[10] William Gropp and Ewing Lusk. User’s guide for mpich, a portable implemen-
tation of MPI. Version 1.1.2, Mathematics and Computer Science Division, Ar-
gonne National Laboratory, February 1999.

[11] Stephen Jenks and Jean-Luc Gaudiot. Nomadic Threads: A migrating multi-
threaded approach to remote memory accesses in multiprocessors. In Proc. of the
1996 Conf. on Parallel Architectures and Compilation Techniques (PACT’96),
pages 2-11, Boston, Massachusetts, 21-23 Octobr 1996.

[12] Danny Lange and Mitsuru Oshima. Programming and Deploying Java Mobile
Agents with Aglets. Addison Wesley Longman, Reading, MA, 1998.

[13] E. Mascaarenhas and V. Rego. Ariadne: architecture of a portable threads
system supporting thread migration. Software - Practice and FEzperience,
Vol.26(No.3):327-356, March 1996.

[14] R.K. Raj, E Tempero, H.M. Levy, A.P. Black, et al. Emerald - a general-purpose
programming language. Software-Practice & Fxperience, 21(1), Jan. 1991.

[15] Annie Rogers, Martin C. Carlisle, John H. Reppy, and Laurie J. Hendren.
.Supporting dynamic data structures on distributed-memory machines. ACM
TOPLAS, Vol.17(No.2):233-263, March 1995.

