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Abstract. On the basis of Soland’s rectangular branch-and-bound, we develop an algorithm
for minimizing a product of p (> 2) affine functions over a polytope. To tighten the lower
bound on the value of each subproblem, we install a second-stage bounding procedure, which
requires O(p) additional time in each iteration but remarkably reduces the number of branch-
ing operations. Computational results indicate that the algorithm is practical if p is less than
15, both in finding an exact optimal solution and an approximate solution.
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1. Introduction

In this paper, we will describe an algorithm for linear multiplicative programming, i.e.,
minimization of a product of p (> 2) affine functions over a polytope [14, 15, 17]. It is
known that a product of affine functions need not be (quasi)convex [2]; and hence the
problem can have multiple locally optimal solutions, many of which fail to be globally
optimal. In other words, linear multiplicative programming belongs to multiextremal
global optimization [13].

In the middle 60’s, Swarup [27] first studied a special case of p = 2 in the framework
of indefinite quadratic programming to find locally optimal solutions. This nonconvex
program, however, had attracted little attention until the late 80’s when an intensive
research was undertaken because of its potential for application in various areas, includ-
ing multiple criteria optimization {11}, bond portfolio optimization [18], microeconomics
[12], and optimal packing and layout [20]. We can now compute a globally optimal
solution very efficiently if p = 2, using parametric simplex algorithms [14, 19, 25, 30]; in
fact, the average computational time is proved to be only polynomial in the number of
variables and constraints [16], though the problem is NP-hard even when p = 2 [23].

In contrast to the case of p = 2, the more general class of problems with p > 3 is

rather hard to solve. There is no definite exact solution method such as the parametric
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simplex algorithm; but several promising algorithms have been proposed so far. All of
these algorithms are based on global optimization techniques: outer approximation [21],
branch-and-bound [8, 24|, their hybrid [4] and polyhedral annexation [29]. They are
fairly efficient when p is a small number. Unfortunately, however, their running times
often explode the moment that p exceeds, say, around five. Recently, to find a way out of
this, two heuristic algorithms were proposed [5, 22]; but their real abilities for problems
with p > 5 are still unknown.

The purpose of this paper is, using a rectangular branch-and-bound algorithm [13],
to solve the linear multiplicative program efficiently even if p exceeds five. Taking into
account cases where the feasible set has some structures such as a network flow, we
develop the algorithm on the basis of the one proposed by Soland [26], since relaxed
problems to be solved in it precisely inherit the structure of the original problem. To
tighten the lower bound on the value of each subproblem, we install a second-stage
bounding procedure, which requires O(p) additional time in each iteration but remark-
ably accelerate the convergence of the algorithm. In Section 2, we will transform the
problem into a separable concave minimization problem in order to apply the rectangu-
lar branch-and-bound algorithm. In Section 3, after explaining Soland’s relaxation used
in the first stage of bounding operation, we will give the detail of the second stage for
tightening the lower bound. In Section 4, we will show that the second-stage bounding
procedure requires O(p) arithmetic operations and O(p) evaluations of the logarithmic
function, and then describe the whole of the algorithm. We will report the results of

numerical experiments in Section 5, and give some final remarks in Section 6.

2. Reduction to a separable concave minimization

Let us consider a linear multiplicative program of minimizing a product of p (> 2) affine

functions:
P
minimize z = f(x) = [[(cfz + di) ,
i=1 (2.1)
subject to Az =b, >0,

where A€ R™", be R™,¢c; e R" and d; € R for i = 1,...,p. We assume that the
feasible set

X={xeR"|Ax=0b, z > 0}

is nonempty and bounded. According to the signs of affine terms in f ,' we can divide X

into a family of polytopes:

X(T)=Xn {a: €R" (2.2)

cfe+d; <0 forieT
cfe+d; >0 forigZ |’



where Z C {1,...,p}. As will be shown in Appendix (see also [22]), if X (Z) is nonempty
for some 7 of odd cardinality, then (2.1) reduces to a number of concave maximizations
over X(Z)’s. This implies that we can solve such an instance using an ordinary algorithm.
Throughout the paper, we impose the following assumption on problem (2.1):

Assumption 2.1. If7 s of odd cardinality, then X(Z) is an empty set.

Proposition 2.1. Under Assumption 2.1, there is a subset T such that X = X(I);

moreover, such an index set 7 s unique and

Xg{melR”

cfe+d; <0 forieT
cife+d; >0 forigT |

Proof: See Appendix and [22]. |

From Proposition 2.1, we can assume that (2.1) satisfies
cie+d; >0 foranyx € X, i=1,...,p, (2.3)

by reversing the signs of ¢; and d; if necessary. Under this condition, it is known that f
is pseudoconcave on X (Theorem 5.15 in [2]); and hence an optimal solution * to (2.1)
exists among vertices of the polytope X.

Let I; and u; be appropriate numbers satisfying
0< li S fi(m*) S Ui,y ’Z' = 17" -5 P-
For example,

i = min{cfz |z e X}+d; | . 1
i=1,...,p.
w;=max{c]z |z € X} +d; P

Introducing a vector £ of p auxiliary variables &, ¢ = 1,...,p, we have an equivalent
problem to (2.1):

P
minimize 2z = Hfi

i=1 .
subject to eX (2.4)

where C' = (¢1,...,¢,)%, d = (d,...,d,)T, 1 = (I1,...,,)T and v = (u1,...,u,)T.
Similar transformations are found in [4, 28]. As in [5, 24], we further transform (2.4)

into

P
minimize w = p(¢) = logé;

i=1
(P) subject to reX

E=Cax+d, I1<¢<u.




Proposition 2.2. If (2.1) has an optimal solution a* of value z*, then (P) has an
optimal solution (x*,Cx* +d) of value log z*; conversely, if (P) has an optimal solution

(2*,&") of value w*, then (2.1) has an optimal solution x* of value 2*" .
Proof: 1t follows from the monotonicity of the logarithmic function. ]

Although the objective function ¢ of (P) is still concave, it is separable into p func-

tions, each of a different single variable. This enable one to solve (P) using a branch-

and-bound algorithm based upon rectangular subdivisions of the set M = {£ € R” |l <

€ <u}. Let M ={MF|k=1,...,K} denote a rectangular partition of M, i.e.,
MF = uf] x - x 5], k=1, K
K
U M* =M, intM*NintM"* =0 if k # h.
k=1

The class of rectangular branch-and-bound algorithms [13] systematically narrows down

a rectangular region containing £, by repeating three basic steps.
Branch-and-bound procedure.
Step 1. Select an appropriate M* from M.

Step 2. (Bounding operation) Compute a lower bound &* on the minimum value of
pover M*N{€ e RP | ¢ =Cax+d, x € X}. f@F > p(€°) for the best
feasible solution (x°,£°) to (P) obtained so far, exclude M* from further

consideration.

Step 3. (Branching operation) T @* < ¢(£°), then divide M* into two rectangles
M* and M*:.

It is needless to say that Step 2 holds the key to efficiency of the algorithm. In the next

~ section, we will discuss how to find a tight lower bound w*.

3. Relaxations
Taking a rectangle M* out of a given partition M = {M* | k = 1,..., K}, we define
the associated subproblem of (P) as follows:

P
minimize w= p(§)= Zlog &
(Pk) . B =1 i
subject to E=Czx+d, 2z€X
£ e M~



Step 2 of the branch-and-bound procedure requires a lower bound @* on the optimal
value w* of this problem, where w* is understood to be 4+-oc if (P¥) is infeasible. A typical
way of computing T* is to relax (P*) by enveloping ¢ from below over M*. First, we
will explain two relaxation procedures of this type: one is Falk-Soland’s relaxation [9]
and the other is its simplified version by Soland [26]. Then we will show how to tighten
the bound yielded by Soland’s relaxation.

3.1. FALK-SOLAND’S AND SOLAND’S RELAXATIONS

The convex envelope of the logarithmic function over the interval [I¥, u?] is defined by

2

' log u¥ — log I*
‘Pf(fz) = gu/}. _.Zl“g &+

ubloglt — IFlog uf
uf —1* '
From the concavity of log, we see that

gof(f;,) <log&; if & € [I¥,uf]; (pf(fi) > log&; otherwise. (3.1)

Therefore, replacing log §; by ¢¥(¢;) for i =1,...,p, we have a relaxed problem of (P¥):
P

minimize w = *(¢)= Z(pf(f,)
1==1

subject to E=Cx+d, zcX
¢ € M*.

(3.2)

This is Falk-Soland’s relaxation [9]. Since (3.2) is a linear program, we can solve it by
using the simplex or interior-point algorithm. If (3.2) is infeasible, we set @* = 400
in Step 2; then M* is excluded from consideration. Otherwise, (3.1) implies that the
optimal value WL of (3.2) is less than or equal to w®. Hence, @5 can serve as a lower
bound @* in the branch-and-bound procedure.

Soland’s relaxation [26] is a further relaxation of (3.2). Namely, by dropping the last

set of constraints, we have Soland’s relaxation of (P*):

minimize w = ©*(§)

: (3.3)
subject to E=Cax+d, ze€X.
Since the feasible set includes that of (3.2), the optimal value @* of (3.3) satisfies
wy < wp < W (3.4)

While (3.4) implies that @* can also serve as a lower bound @*, it indicates that the
branching tree associated with @* tends to grow larger than that with @5. This tendency
might cause the algorithm inefficiency. Soland’s relaxation, however, has some merits
that can offset this weakness; i.e., (i) it precisely inherits the structure from the original
problem; (ii) it is able to terminate the algorithm with a rigorous optimal solution in
finite time. Let us see point (i) below; as to point (ii), we will discuss it later.

We can make point (i) clear by putting & = Cx + d back into the objective function:

5



. minimize w = Z logu logl (elTx + d; ) + d*
(Qr)
subject to T e X,

where

g — i uktlog Ik — ¥ loguf‘

ok Jk
Pt w; — I}

Since (Q¥) has no side constraints, we can directly apply efficient specialized algorithms
to it if X has some favorable structure such as a network flow. In addition to this, all
the relaxed problems to be solved in the algorithm have common constraints. Hence, an
optimal solution to (QF) remains feasible for a relaxed problem next to be solved and

will recover its optimality within a few simplex pivoting operations.

3.2. TIGHTENING THE BOUND @
Let us proceed to a procedure for tightening the lower bound @* yielded by Soland’s
relaxation, without spoiling its strong points. |

Obviously, any feasible solution (a,&) to (P*) satisfies

2 loguf — logl¥ & o
>z et - (3.5)

Therefore, no feasible solution is lost even if we add (3.5) to (P*) as a constraint. Instead,
we drop the first and second sets of constraints from it. Then we have an alternative

relaxed problem in the p-dimensional space:

minimize w = ()

3.6
subject to ¢ € LFn M*, (3.6)
where
P log uf — loglk
t=1 z z

Proposition 3.1. If (3.6) is infeasible, then (P*) is infeasible. Otherwise, for any
optimal solution &' to (3.6) we have :

@ < p(€) <t (3.7)
¢ € dLF, (3.8)

where O - denote the set of boundary points. The first inequality of (3.7) holds strictly of
& e (1, ub) for some i.

Proof: Let S = {(x,¢) € R" x R? | ¢ € GL*}. Then S supports the convex set




W={(z¢eR"xR"|§€=Cax+d, x € X}

If (3.6) is infeasible, then S separates {(x,£) € R" x R? | £ € M*} from W; in other
words, the feasible set of (P*) is empty.
Now, suppose that (3.6) has an optimal solution ¢'. Then we have

log ut — log I* |
<Z Og“ Og D8 T OBl er gk, (3.9)

where the equality holds because log is monotone increasing and (log u} — log I¥)/(uf —
1¥) > 0 for each i; hence (3.8) follows. Also, from (3.1) we have

1 log 1%
> —%—Z——Og——é 1t <3 log(€). (3.10)
i=1 i=1
The first inequality of (3.7) follows from (3.9) and (3.10). If £ € (¥, u¥) for some 4, the
inequality of (3.10) holds strictly by the strict concavity of log. n

We see from Proposition 3.1 that (3.6) provides a better lower bound than (Q¥) does.
Unfortunately, however, (3.6) belongs to the same class as (P*), and is too expensive to
solve repeatedly in the branch-and-bound algorithm. We need to further relax (3.6) by
linearizing the objective function .

Since any optimal solution £’ to (3.6) satisfies (3.8), lower and upper bounds on each

component & are given by

s¥ = min{¢; | € € ALF N M*}, (3.11)
8 = max{¢; | € € OLF N M*}. (3.12)

Note that dL*NM* = oL*F N ([s*, t*] x - - - x [sﬁ, tﬁ]), in which the set of optimal solutions
to (3.6) is included. For i = 1,...,p, let us envelop log from below over the interval
[s, %] and define

log t* — log s* t¥log s* — sk log t"
th — sk & t’” — s"

k(&) =

Then we have a linear programming relaxation of (3.6):

P
X minimize w = <1>’“(§) = Z@f({,)
(Qy) i=1
subject to € € OLF n M*.

Proposition 3.2. If (Q}) is infeasible, then (P*) is infeasible. Otherwise, for any
optimal solution &" to (QF) we have

T < R(E) < W, (3.13)

|



where the first inequality holds strictly if £/ € (1%, u¥) and [s*,t¥] C [1¥, u¥] for some i.

Proof: Let us prove the first inequality of (3.13) when L* N M* s (). For any optimal
solution £" to (Q'z‘) we have
loguf —lo l s
i=1 l 'l

Since log is concave and [s¥, t¥] C [I¥, u¥], we have

IR

PH(E) S BHE) forall & € [sh,th]. (3.15)
The first inequality of (3.13) follows from (3.14) and (3.15). If £/ € (I¥,u¥) and [sF, &
is a proper subset of [I¥,uf], the inequality of (3.15) holds strictly for £; = f:’ [

Let w§ = ®*(¢") for an optimal solution &” to (QF) if AL* N M* # 0; otherwise
w3 = +00. As Proposition 3.2 suggests, we can reinforce the bounding operation based
on (QF) with (Q%) and modify Step 2 of the branch-and-bound procedure in the following
way:

Step 2-a. (First stage of bounding operation) Set @* := wk. If T* > (¢°) for the

incumbent (x°,£°), exclude M* from consideration.

Step 2-b. (Second stage of bounding operation) If W' < (€°), set @* := wk. If w*
©(&°), exclude M* from consideration.

Step 2.b is aimed at revaluing the effect of constraints & € M* in (P*) that Soland’s
relaxation (QF) ignores. Problem (Q%) playing the central role in Step 2-b is referred
to as a cutting-plane relazation of (:P’“), since OL* works like a cutting plane in outer

approximation algorithms.

4. Algorithm

Before describing the whole of the algorithm, we will show that the total computational

time spent in constructing and in solving the cutting-plane relaxation (QF) is bounded

by O(p).

4.1. WORST-CASE COMPLEXITY OF STEP 2-b

To construct (Q}), we first need to compute s* and t* for each i = 1,...,p. Setting
y; = (uf — &) /(uk — 1¥) in (3.11) and y; = (¢; — L)/ (uf —1%)in (3.12) for j = 1,...,p,
then we have

minimize ;= (l; — Uf)yi + ub
p p
subject to Yoy =Y ;- (4.1)
J=1 j=1



minimize —t; = (If — uk)y; — I
P
subject to Z ay; = (4.2)
,':1
05!/3 ..<_1a j=17""p7

where
P
a; = loguf - logl;?', i=1....,p, B=w - Zloglf.
i=1
If 3<0or % a; <3, we can immediately see that @5 = +oo. Let us assume that
P
0<Y o; <8 (4.3)
i=1

Both (4.1) and (4.2) are continuous knapsack problems having a special structure, where
the cost-to-volume ratio of all the items is zero except for (I¥ — u¥)/a¥ < 0 of the ith

item. Therefore, the values of sf and #¥ can be computed in a constant time as follows:

sh = (lf — u,ik) min{1, (Zf___l a; — ,3) Joi} + Ufa
= (ub — 14 minf1, B/} + 1

Since a;’s and 3 can be computed in O(p) arithmetic operations and O(p) evaluations
of log, we can construct (Q}) in O(p) time if an evaluation of log can be done in a unit
time.

In the same way as (4.2), we can rewrite the cutting plane relaxation (Q’z‘ ) as follows:
P
minimize w = Z’nyi +6
i=1
7 :
subject to E oy = [ (4.4)

=1

OSyiSL 1=1,...,p,

where
k _ 1k

7= g (logtf —logs), i=1,....p
P (# = 1) log sk — (sk — 1) log ¢

622 t’,"-—-s’."’
z 3

=1

This problem (4.4) is the usual continuous knapsack problem [7}. If the items are ar-

ranged in the order
Yol € Vi iy, < o0 <y, s, (4.5)

an optimal solution ¥ is given by



11 j=1,...,q~‘1
T, =3 (B—Sitiai)/oy,, j=q
0 J=q+1,...,p,

for some ¢ such that E}l;} a;; < < ¥}, @;; under assumption (4.3). The value of @}

is then given by
. g~1 v ‘ g—1
wz_—'z%j-i"-,?‘ /j_zal‘j .
j=1 O'q j=1

The ordering (4.5) requires O(plog p) time; but Balas and Zemel [3] have shown that
Y can be computed in O(p) without sorting ~;/a;’s, since g can be found in linear time
as a weighted median. Thus we have the following proposition, which implies that Step
2-b in the modified branch-and-bound procedure takes only O(p) additional time:

Proposition 4.1. Given T}, the cutting plane relazation (QF) can be constructed and
be solved in O(p) arithmetic operations and O(p) evaluations of log.

4.2. DESCRIPTION OF THE ALGORITHM )

In Step 3, we follow the branching rule in Soland [26]. Let Z* be an optimal basic
solution to (QF) and zk = CT* + d. We choose an index r such that

=k . =k .
r € argmax {log& — of(E) | i=1,...,p}, (4.6)
and divide M* into

, 8 3 3 gk g v v ¢
M4 = [l{“,ull“] X -+ X [lff__l,uf_ll X {lfa £,] x [lf+1,u£+1] Xoee [1%3”1”

. o : ) —*% ) ’ :
M = [lfu'}] Xeee X [lf—l, uf—l] x [¢ “k] X [lf+1»uﬁ+1] X ---[l{‘,u’f].

r? r

Note that Ef is an interior point of the interval [I¥, u*]. Otherwise, from (3.1) and (4.6)
we have
0(€) < 9(E) < H*E)

for the incumbent £€°; and the set M* must have been excluded from consideration in
Step 2-a.

This rule inhibits boundless growth of the branching tree when X is a polytope. Let
V denote the set of vertices of X and let Y; = {efe +d; |x € V} fori =1,...,p.
Since (Q¥) has no side constraints, we have T € V and Z’: € T,. Hence, every partition
set M* generated by the rule, has its 2 vertices in the finite set T = T, x ... x T,.
Consequently, the total number of M}’s cannot exceed |Y|. This is the secondary strong
point of Soland’s relaxation that we have mentioned in Section 3.1. For further details,
see [26]. _

We are now ready to describe the branch-and-bound algorithm incorporating the
two-stage bounding operation.
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algorithm BBCUT.
begin
determine the initial rectangle M := {£ ¢ R? |l < & < u} withl > 0;
MLIST := {M}; set the incumbent value w® := +o0; k := 1;
while MLIST # () do begin
select a rectangle as M* = {¢ € R” | I* < ¢ < u*} from MLIST;  /+ Step 1 */
MLIST := MLIST \ {M*}; '
fori=1,...,pdo /* Step 2-a %/
determine the convex envelope ¢ of log over the interval [I¥, u}];
construct the Soland’s relaxation (QF) using o5’s;
solve (Qf) to obtain an optimal basic solution T* and the value ks
if ¥ < w° then begin /% Step 2-b x/
£ =07 + d;
if cp(zk) < w® then update w° := ga(gk) and (x°,£°) := ("’“,ﬁ
for i = 1,...,p do begin
compute st and t¥ by solving (4.1) and (4.2), respectively;

determine the convex envelope ®¥ of log over the interval [s¥, ¢¥
end;
construct the cutting plane relaxation (Q}) using ©* and ®*’s;
compute the value @5 of (QX) by solving (4.4);
if W% < w° then begin /* Step 3 x/
choose r € arg max{log [ cpf(ff ) |i= 1 .2}
MM o= [l uf] x e B uf ] x (I E ] X [liprs uppa] > - [iF, o]y
M = (0] st By, k] (B 0] (B ] o [ )
MLIST := MLIST U {M’“‘,M’”}
end
end;
k=k+1
end;
output an optimal solution (a*,£*,w (m ,€%,w®) (or (z*, %) := (z*,2"))

end;

We should note that the algorithm is finite for the above reason without considering any

tolerance for the optimal value.

5. Numerical experiments

In this section, we will report computational results of testing the algorithm BBCUT on

randomly generated problems. The test problems were of the form

11



p n'

minimize =z = Z cijr; +d
i=1 \j=1

subject to Zah,-a:j <10, h=1,...,m o
j=1 (5.1)

z; 200, j=1,...,n,

where ap,; and c;; were drawn from the uniform distribution in the intervals [0.0,1.0] and
[—1.0,1.0], respectively. If we introduce m’ + p slack variables, (5.1) reduces to problem
(2.1) of size (m,n,p) = (m' + p,n' + m’ + p,p). Also, note that the resulting problem
satisfies condition (2.3) when d > 1.0.

We coded the algorithm in double precision C language according to the description
in Section 4.2. As to the initial rectangle M, which is not specified in the description, we
determined it by setting l; = d — 1.0 and u; = max{cfz |z € X'} +dfori=1,...,p,
where X’ denotes the feasible set of (5.1). We computed the value of u; using the revised
simplex algorithm, and those of u,,...,u, using the parametric cost simplex algorithm
[6]. To select M* from MLIST in Step 1, we tried two selection rules:

Depth first. MLIST is maintained as a stack. A rectangle M* is selected and deleted
from the top of MLIST; and M** and M* are added in this order to the top.

Best bound. MLIST is maintained as a priority queue. A rectangle M* of smallest &
is selected and deleted form MLIST. ’

We denote the codes adopting the depth-first and best-bound rules by BBCUT1 and
BBCUT?2, respectively. In Step 2-a of both codes, we solved (Q¥) using the parametric
cost simplex algorithm, which started with the preceding solution Z*~!, or with the
solution giving u, when k = 1. To compute the value @& of (QF) in Step 2-b, we
arranged the items of (4.4) in the order (4.5) by insertion sort, instead of applying the
linear time algorithm (3] to (4.4). Hence, our codes require O(p?) time to complete
Step 2-b in the worst case [1]. In addition to BBCUT1 and BBCUT2, we omitted Step
2-b and wrote a code of Soland’s rectangular branch-and-bound algorithm adopting the
depth-first rule (denoted by SOLAND). We carried out all experiments with these codes
on a Unix workstation (hyperSPARC, 150 MHz). '

5.1. COMPUTATIONAL RESULTS

Table 5.1 compares three codes on problems of size (m',n’) = (50,50) and d = 10.0
when p ranged from 3 to 20. Each of the columns labeled BBCUT1, BBCUT?2 and
SOLAND contains the average number of branching operations (denoted by branch),

the average number of simplex pivoting operations (pivot), and the average CPU time

12



Table 5.1. Comparison of three codes when (m’,n') = (50, 50) and d = 10.0.

BBCUT1 BBCUT2 SOLAND
p  branch pivot time branch pivot time branch pivot  time
3 5.6 186.5 .398 56 189.2 457 6.5 186.7 413
] 49.3 3313 .863 48.7 4273 1.17 84.9 367.3 1.07
7 95.8 425.7 1.28 95.8 5445 1.71 254.9 549.4 212

10 3035 6743 2.70 303.6 9653 3.82 1716 1544 9.93
15 2,930 4,077 244 2,028 9,749 521  (68,049) (49,640) (436)
20 10,939 5,893 714 12,182 16,331 147 — -

Table 5.2. Comparison of BBCUT1 and SOLAND when (m',n',p) = (50, 50, 10).

BBCUT1 SOLAND

d branch pivot time branch pivot time
20 3,008 5,935 255 3,359 6,367 28.3
5.0 2758 8279 3.03 3,243 3,043 19.2
100 303.5 6743 2.70 1,716 1,544 9.93
20.0 501.1 665.5 3.38 1,446 1,096 7.85
50.0 646.2 617.1 3.73 810.0 668.2 4.47
100.0  484.7 485.7 2.84 488.0 486.1 2091

in seconds (time) taken to solve ten problems for each p. The figures in the brackets
show the average of eight problems, since two test problems could not be solved within
200,000 branching operations by SOLAND; and no test problems could when p = 20.
The codes BBCUT1 and BBCUT?2 surpass SOLAND in every respect, which proves
that the second-stage branching procedure (Step 2-b) worked successfully. On the other
hand, the number of pivoting operations and CPU time required by BBCUT1 are rather
smaller than those by BBCUT?2 while there is little difference in the number of branching
operations. Unlike BBCUT2, the code BBCUT1 always selects a subset of M*~! as M*
unless M*~1 is excluded from consideration. Hence, the difference between (Q¥1) and
(QF) in BBCUT1 is usually slight compared with that in BBCUT2. This results in less
pivoting operations to recover &*~! in BBCUTI.

Table 5.2 shows the behavior of BBCUT1 and SOLAND on problems of size (m',n’, p)
= (50,50,10) when d ranged from 2.0 to 100.0. The same statistics as in Table 5.1 are
listed. In both codes, the number of branching operations decreases as d increases, since
the gap between log and its lower envelope over the interval [l;, u;] = [d— 1.0, max{c] z |
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Table 5.3. Computational results of BBCUT1 when d = 10.0.

p=>5 p=10 p=15

m/x n’ branch pivot time  branch pivot time branch pivot time
50x 50  49.3 331.3 .863 303.5 674.3 2.70 2,930 4,077 244
50x100  27.1 453.8 1.44 463.9 1,467 7.16 4,258 6,556  50.8
100x100  31.7 593.3 4.26 704.8 2,692 26.1 5,217 9,591 130
100x150  34.3 829.9 8.86 550.6 2,806 39.0 6,084 12,385 250
150x150  39.4 965.6 20.4 674.7 3,515 91.3 6,712 18,437 605
150200 414 1,334 36.3 945.8 6,807 224 8,835 32,958 1,311

Table 5.4. Performance of BBCUT?2 in heuristics when d = 10.0.

p=> p=10 p=15
R x 10° R x 10° R x 10°
m'x n' av. s.d. time av. s.d. time av. s.d. time
50x 50 1.7 3.4 627 0.0 0.0 1.19 0.2 0.5 1.97
50x 100 0.0 0.0 1.36 4.5 11.8 2.75 0.0 0.0 4.62
100x100 0.0 0.0 4.04 1.1 2.5 8.01 1.8 5.2 12.5
100x 150 0.1 0.1 8.15 0.1 0.2 17.0 0.1 0.2 27.2

150x 150 01 03 184 1.4 26 381 00 01 370
150200 04 13 319 02 03 639 1.1 23 942

@ € X'} + d] becomes smaller for each i. At d = 100.0, these two codes almost coincide
in the numbers of branching, pivoting operations and in the CPU time. However, it is
worth noting that BBCUT'1 requires only one-tenth to one-third of branching operations
required by SOLAND when d is between 5.0 and 20.0; and besides its CPU time is quite
stable for d > 5.0.

Table 5.3 summarizes the computational results of BBCUT1 on larger-size problems
with d = 10.0. It contains the same statistics as before. We see from this table that,
at least for the class (5.1) of randomly generated problems, the code BBCUT1 keeps its
efficiency up to considerably large size (m',n’) as long as p is less than 15.

5.2. PERFORMANCE OF BBCUT2 IN HEURISTICS

As we have seen in Table 5.1, the code BBCUT?2 adopting the best-bound rule is less
attractive than BBCUT1 for finding an exact solution. However, it may be of use in
heuristics because BBCUT? picks up a most hopeful rectangle M* from MLIST in every
iteration. Even if we stop the code before MLIST = (), it would provide a reasonably
good feasible solution x°, the incumbent at the time. To confirm this, we stopped
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BBCUT?2 after 2p branching operations and evaluated the quality of the approximate
solution x° relative to a globally optimal solution &*. We employed as the quality rating

of x° a relative error:

gt =

where z* is the optimal value of (5.1) computed by BBCUT1I.

Table 5.4 shows the results on problems of the same sizes as in Table 5.3. It contains
the average relative error (R x 10%, av.), its standard deviation (R x 10°, s.d.), and
the average CPU time in seconds (##me) of ten problems for each (m/,n’,p). We can
observe in this table that BBCUT?2 generates fine approximate solutions; the average
relative error is less than 10™* for every size. This can rank with the results of heuristic
algorithms recently proposed by Benson and Boger [5] and Liu et.al. [22].

6. Concluding remarks

We have seen that BBCUT can serve as a practical algorithm both in finding an exact
optimal solution and an approximate solution to the linear multiplicative program (2.1)
with p less than 15. The algorithm BBCUT is on the basis of Soland’s rectangular
branch-and-bound algorithm and equipped with a newly designed second-stage bounding
procedure. This procedure revalues the constraints for auxiliary variables £ € M*
that Soland’s relaxation ignores. Practically, it solves a continuous knapsack problem
with p variables and hence requires O(p) additional time; but the algorithm can reduce
the number of branching operations considerably with the help of this rather simple
procedure. Since we have not compared BBCUT with other recent promising algorithms,
we can make no final conclusions about its computational properties. However, the
algorithm BBCUT will be effective for problems with structured constraints, especially
for network flow problems. because it uses no relaxed problems with side constraints.
Before closing the paper, we touch upon an extension of the cutting plane relaxation
(Q5). Recall that, to show the validity of (Q5), we need only the strict concavity and
monotonicity of the logarithmic function. This implies that the cutting plane relaxation
is applicable to other separable concave minimization problems if the objective function
is strictly concave and monotonic. Such problems will abound in the class of minimum

concave-cost network flows [10].

Appendix

The following are discussed in Liu et al. [22]. However, we provide them here for the
benefit of the readers.
As we have seen in Section 2, the linear multiplicative program (2.1) can reduce to

a family of problems:
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p
minimize = f(z) = [[(c]z + d;)
=1

subject to x e X(7),

(Pz1)

where X(Z) is defined in (2.2). By definition, we have f(z) < 0 for all x € X (T) if
|Z| is an odd number, while f(x) > 0 for all # € X(Z) if |Z| is an even number. This
implies that, if X (Z) # 0 for some 7 of odd cardinality, we need only to solve (Pz) for
each 7 of odd cardinality to find an optimal solution to (2.1). Note that (Pz) with odd
Z is equivalent to a concave maximization problem:

maximize Y log(—cfz —d;)+ > log(e]x + d;)

i€Z igT

subject to x € X(Z).
Hence, we can solve (2.1) using any one of convex minimization algorithms when it does
not satisfy Assumption 2.1.

Proof of Proposition 2.1: Suppose that X (Z') is nonempty. Then |Z’| is an even number
under Assumption 2.1. Let us take an arbitrary point @' out of X(Z'). If ¢fa’' +d; =0
for some i € 7', then @' € X(Z'\ {i}). This implies that X(Z'\ {i}) # 0 and contradicts
Assumption 2.1. If @' + d; = 0 for some i # 7', then &’ € X(Z' U {i}), which is again
a contradiction. Therefore, for any € D(Z’) we have :

cfe+d; <0 ifieT’; clx+d; >0 otherwise. (A1)

Next, to prove the uniqueness of 7', assume that there is an index set 7" # I’ such
that D(Z") # 0. Choose an arbitrary point " € X(Z"). Then the line segment z'—a”
contains a point @ € D(Z') such that ¢fa + d; = 0 for some i € (Z' \ Z") U (Z"\ T).
This contradicts (A.1); hence only D(Z’) must be nonempty. [
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