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Abstract. The integration of higher-order functions into functional logic
programming is widely seen as a powerful and desirable feature. The nat-
ural way to deal with higher-order functions in the well-studied framework
of first-order term rewriting is through so-called applicative term rewrit-
ing systems (ATRSs). We propose a new calculus, called LNCA, to deal
efficiently with confluent ATRSs and prove its soundness and completeness.



1 Introduction

Research on integrating functional and logic programming ([1]) has established nar-
rowing as a suitable computational model. Some powerful features like higher-order
functions, which are common and useful in functional languages, are not yet con-
solidated in narrowing calculi. The following program illustrates the expressiveness
of higher-order functional logic programming:

plus O y =y map £ [] =
plus (S x) y=1S8 (plus x y) map £ [x | y1 =1[f x | map £ y]
double x =plus x x compose f g x=1 (g x)

. The functions map and compose are higher-order. For instance, solving the goal
map £ [S 0, 0, S 0]=[S (S (S 0)), S0, S (S (S0))]

means finding substitutions like {f — compose S double} which can not be done
by first order narrowing. This difficulty can be overcome by the use of applica-
tive term rewriting systems (ATRSs for short). In an ATRS terms are built from
variables, constants and a special binary function symbol ap which is denoted by
juxtaposition of its two arguments. For example, the term

map £ [S 0, 0, S 0]
will be represented as:
((map £) ({coms (S 0)) ((comns 0) ((cons (S 0)) [1)))

where map, cons!, S, 0 and [] are regarded as constants.

The narrowing calculus LNC ([4]) can now be used to solve such a goal but it is
quite inefficient: while just one inference step extracts all arguments of a first-order
term, for ATRSs we need one inference step for each argument. In other words, we
have to extract all arguments step by step before we even know whether, e.g., we
are using the appropriate rewrite rule, even in the case that the head-symbol is a
known function. Starting from this observation we define a new calculus which is a
specialization of LNC for applicative TRSs. We call the new calculus LNCA (Lazy
Narrowing Calculus for Applicative Term Rewriting Systems) and prove that it is
sound and complete for confluent ATRSs with respect to normalized substitutions.

The extension of LNC to LNCA is similar to that from OINC to NCA (]2, 5]).
NCA is an earlier attempt to define a narrowing calculus which deals efficiently
with ATRSs. However, its completeness is proven to hold only if we restrict our
attention to orthogonal ATRSs, right-normal goals, and normalizable solutions.
The advantages of LNCA over NCA are:

— completeness holds in the general case of confluent ATRSs with respect to
normalized substitutions,
— there are no restrictions on the shape of the goals.

The completeness proof of LNCA is very similar to that of LNC. We briefly mention
the main ideas of the proof:

Fact 1 For every normalized solution 6 of a goal G there exists a substitution
¢’ <0 [Var(G)] and a normal NC-refutation IT : G ~}, T,

! [s | t] is syntactic sugar of cons(s,t)



Fact 2 There exists. a subclass WF: of LNC-refutations, the well-formed LNC-ref-

. utations, such that for every. normal NC-refutation JI : G.~. T there exists a
~substitution ¢’ < 8 [Var(G)] and ¥ € WF such that ¥ : G =>9, a,

1 Fact 3. For every well-formed LNC-refutation ¥ : G =>j O with- respect to an

- _ATRS there . -exists a substitution 6’ <#@ [Var(G)] and an LNCA—refutatlon

A G%g:

Fact lis proven in [4]. Fact 2is a reﬁnement of Lemma 36in [4], Whlch describes how
a non-empty normal NC—refutatlon II G ->+ T can be lifted to an LNC—refuta,tron
W G40 with @ <6 [Var(G)} ‘We notlced that the LNC-refutations generated
" by hftlng normal NC-refutations as deséribed in [4] have some mterestmg propert1es,
whlch were used to define the class of well- formed LNC-refutations.” The proof of
" Fact 3 lnvolves a deep analy51s of the structure of Well formed LNC-refuta.trons for
ATRSs. ’

, We beheve that LNCA can be later used as a basis for some determlmstlc calculi
to further i 1mprove efficiéncy, like LNCq ([ ( ‘7]) LNCj is a deterministic extension of
'LNC that is complete for left- Tlinear, conﬂuent constructor-based term rewntmg

: systems, ‘and goals with® strict ‘equality. -

" The rest of this paper is orga.mzed as follows. Sectlon 2 rev1ews some bas1c
deﬁmtlons and notatlons used in term Trewriting and" narrowing. In- Section' 3 we
deﬁne LNCA and prove 1ts soundness The proof of completeness of LNCA is glven

. m Sectlon 4.

% 2 Prehmlnarles

A szgnature is a set .’F of functlon symbols Whlch is the d1s301nt union of two sets:
Fp,the set of defined symbolsand Fe, ‘the set of constructors.- Associated with every
function symbol f.€ F is.a patural number- arity(f) denoting its arity. Function
symbols of arity .0 are called constants. The set: T(]—' V) of terms built from a
signature F and a countably infihite set of variables V is the smallest set contammg
V.such-that f(t1,. . ,tn) € T(F, V) whenever f € F with-arity(f) = nand ¢y, ...
c1y€ T(.’F V) We Wnte cinstead of c() Whenever ¢is a constant. The set.of vanables
occurring . in: a: syntactical-object S is- denoted, by.. Va’r(S') We use the symbol

- denote the, 1dent1ty of two syntactic entities. :

A position is a sequence of natural numbers 1dent1fymg a subterm ina term The |
set ?os(t) «of positions of a term: ¢-is inductively defined as follows: Pos(t) = {¢}
if ¢ is-a'variable or a constant, andPos(t)= {e} U= {i-p | p € Post:)}: if-t =
f(t1, -+ ;tn)- Here €, the empty sequence,. denotes the root position. If p:€ ‘Pos(t)
then %), denotes the subterm of't at. position p, and t[s], denotes the term that 1s
-obtained from t by replacmg the subtérm at position p by s.

A :substétution is.a map § from V to T(]: V). with the property that the set
D(G) {z €V | b(z)+# =} is finite. This set is called the domain of 0. -

We denote by € the substitution with empty domain. Substitutions are extended
to homomorphisms from 7 (F,V) to T(F,V). In the following we write ¢ instead
of 6(t). We denote the set |J,¢p gy Var(z0) of variables introduced by 6 by I m(0).
The composition 8162 of two substitutions ; and @, is ‘defined by 26,05 = (z61)62
for all £ € V. 0y is at least as general as 03, denoted by 6, < s, if there exists a
substitution # such that 6,6 = 02 The. restriction 0]y of a'substitution ¢ to a set
V(C V) is defined by 8}y (z). = O(z) if ¢ € V and O]y (z) = @ ifzeV-V.A

variable substitution maps variables to variables. A variable renaming is a bljectrve



variable substitution. We write §1 = 85 [V] if 0i[y = 02[y, and 01 < 6y [V] if there
exists a substitution  such that 6;0 = 0, [V]: Two terms s and ¢ are called unifiable
if there exists a substitution § such that s6 = 0. A most general unifier of s and
t is a unifier @ such that § < @ for any other unifier ¢ of s and ¢. Most general
unifiers of unifiable terms always exist and are unique up to variable renaming.

A rewrite rule is a pair of terms of the form I — r such that I,r € T(F,V),
Var(r) C Var(l), | = f(t1,... ,ts) for some terms t1,...,t, € T(F,V); and f €
Fp. lis the left-hand side (LHS f for short) of the rule and r the right-hand side (RHS
for short). A term rewriting system. (TRS for. short) is a finite set R of rewrite rules.
The rewrite relation —x associated with a TRS R is.a binary relation on 7(F, V).
defined as follows: s —r t if there exists a rewrite rule I — r € ’R, a substltutlon
9 and a position p € Pos(s) such that sh, =16 and t = s[rf],. The transitive and
reflexive closure of —% is denoted by "727 and the symmetrlc closure by or. We
usually omit the subscript R. A term ¢ is a normal form if there exists no term
s such that t — s. A substltutlon 6 is normahzed if all mstances x0 of variables
z € D(f) are normal forms. A TRS R is terminating if there are no infinite rewrite
~ sequences tg — & — ---, and confluent if for all terms t1, ta, t3 Wlth t1 —* 1y

and {; —* t3 there exists a term ¢4 such that t2 — t4 a.nd t3 —* 4. Two terms
t; and t, are convertible if there exists a sequence ¢1. «» -+ > 1, (1 > 1) written
asty o t,. Iffisa vanable rena.mmg then the rewrite rule 19 — r6 is called a
variantof | — r. A variant is freshif all variables occurring in it have never been used
before. An applicative term is a term built from variables, constants and a special
binary function symbol ap which is denoted by juxtaposition of its two arguments.
Parentheses are omitted under the convention of association: to the:left; so (£ (S
0)) 0 and £ (S 0) O denote the same term. The head symbol of an applicative
term is the symbol that occurs at: the leftmost-innermdst position: In the: sequel ‘we
denote head symbols which are:either function symbols or variables by-the letters

a, b, ¢c,..., variables by z,y, z, function -symbols by f, g, h, arbitrary terms by
"s,t,u,..., and integer numbers by4,7j,k;: . An applicative rule is-airewrite rule
I — r between two applicative terms such’ thati I has the form f 1, ... I; where f

is a function symbol with arity n. We say that such a rule defines the symbol f.
' An applicative term rewriting system (ATRS) is a finite set of applicative rewrite

rules: We abbreviate an applicative-term a:#;7 ... #;,to a t;. Ifn' = 0 thena t,
denotes a. By the same conventlon b S t,, stands for b 31 o Syt .. txiand
ct,Jforct,...tji.' : oo

We dlstmgmsh a binary functlon symbol ; written in lnﬁx‘notatiion. A-term:of
the form s % ¢ where s and ¢ do not contain occurrences of =~ is:called  equation
with the LHS s and the RHS:t. The symbol ~ denotes the symmetric closure of &5 .
A goal is a finite sequence of equations. Given an equation e = s & t, We say that
a substitution 8 is a solution of e if s§ and 16 are convertible w.r:t. the given TRS
R. Given a goal G consisting of equations e;,+. .} e,; We say that a 'substitution #
is a solution of G if # is & solution of every e (1 < i< n). We denote an empty
goal by Ol :

2.1 Normal NC-refutatiens

In this subsection we assume that R is a confluent TRS. We distinguish a special
constant true and allow it as an equation. We use T as generic notation for goals
consisting only of true constants. In this setting it can be shown that ¢ is a solution
of a goal G iff GO —%, T where Ry =R U {z ~ x — true}. An NC-stepis a



relation on goals defined by
Ei,s>t,Ey ~g 1 (B1,8[r]p ~ t, E3)8 (1)

where p € Pos(s) such that s, € V, I — r is a fresh variant of a rewrite rule from
R.and 6 is a most general unifier of ! and s),. When confusions may occur, we
underline the chosen subterm. ;

.An NC-derivation is a finite sequence of inference steps abbreviated by G ~§ G’
where n is the number of inference steps and 6 the composition of all substitutions
involved in the inference steps. We may write ~* instead of ~" if n > 0 and ~¥
instead of ~»" if n > 0. An NC-derivation that ends in T is called NC-refutation. In
the sequel we will denote NC-derivations by the symbol I, sometimes subscripted.
Given an NC-refutation IT and m € N, we define the length |II| of II as the the
number of NC-steps of 1T, and the sub-refutation I, of II as the NC-refutation
obtained by omitting the first m goals and inference steps in I1.

Definition 1 An NC-refutation II : G ~j T is called normal if it consists of
NC-steps of form (1) with E; = T, and for every representation of II in the form:

O :G=E},s~t Ey~p T,(s~t,E5)01 ~5, T,
thé-éubstituti’on 021var(se,) is normalized.

Inthe sequel we denote by N'C the class of normal NC-refutations. The following
property of normal NC-refutations is of interest to our paper.

Théorem 1 For every normalized solution # of a goal G there exists II € NC such
that IT : G ~}, T and ¢’ < 0 [Var(G)].

2.2 The LNC Calculus
Definition 2 LNC consists of the following inference rules:

[o] outermost narrowing

f(s1,...,8n) =t E
simlh,...,spmly,rrtE

if f(I1,...,1l,) — r is a fresh variant of some rule of R.
[i] ¢mitation

f(s1,-..,8n) 2, F
(s1 ®21,...,50n R Ty, E)0

if x €V, where 8 = {z — f(z1,...,2,)} with 21,...,z, fresh variables and
n>0.
[d] decomposition

f(Sl,...,Sn)%f(tl,..-,tn),E

s1Rty,..., 8, %tn,E
[v] variable elimination
et E
Flz 1] z ¢ Var(t)



[t] removal of trivial equations

zrx, E

2 zEeY

In LNC, the equations s; &~ 11,...,s; = I, which are created by the outermost
narrowing step are called parameter-passing equations. If G and G’ are the upper -
and lower goal in the inference rule [o] (& € {0,i,d,v,t}) then we write G =4 G’
and call it [¢]-step. An LNC-stepis an [a]-step where o € {0,i,d,v,t}. The additional
rewrite rule or substitution may be supplied as a subscrlpt that is, we may write
things like G =>[o],1—r G’ and G =19 G'. ‘

For the [i] rule, if the variable & appears to the- RHS (LHS) of the selected
equation then we say that [i] is applied to the LHS (RHS). For the [o] rule, if the
term f(s1,...,Sn) that is being narrowed is to the LHS (RHS) of the selected
equation then we say that [o] is applied to the LHS (RHS). To avoid confusions
concerning the side on which an [o] or [i]-step is performed, we either underline it or
provide an addltlonal subscrlpt to identify it. For example, e, E =],k G’ denotes
an [i]-step applied to the LHS if &k = 1 and to the RHS if £ = 2.

LNC-derivations, sub-derivations and the corresponding notations are defined as
in the case of NC. We denote LNC derivations by the symbol ¥ and its derivatives,
sometimes subscripted. For the particular case of applicative term rewriting systems
we use the symbol A and its derivatives to denote LNC-derivations. An LZNC-
refutation is an LNC-derivation of the form ¥ : G =% O; where O 1s the empty
goal. We denote by LNC the class of LNC-refutations.

The selected equation f(s1,...,5,) ~ ¢ in an [o]-step has the equation r ~ £ as
the only one-step descendant. In the imitation rule [i}, the one-step descendants of
the selected equation f(s1,...,s,) = & are the equations s;0 ~ z; (1 <4 < n). The
selected equation f(sq,.. 5n) ~ f(t1,...,1n) in the decomposition rule [d] has
the equations s; & t; (1 < < i< n)as one—step descendants. The selected equations
of [v] and [t] have no one-step descendants. The one-step  descendant of a non-
selected equation s =~ ¢ is the equation (s = t)8 where 6 is the substitution created
in that inference step. The descendant relation is the reflexive-transitive closure of
the one-step descendant relation.

LNC is a calculus which is complete with respect to normalized solutions. The
following lemma is extracted from the completeness proof of LNC given in [4].
We adopt the following convention for the formulas appearing in the lemma: the
symbols k, ¢, n denote non-negative integers such that 1 < k,7 < 2; j-and p denote
term positions; if n > 0 then j € {1,...,n}, otherwise j = ¢.

Lemma 1 There exists a well-founded order < C NC x NC such that:

VIT:G=e,E ~F T € NCI(W, ITy).
U G, GLANITI : Gy W;/ T e NCA
I K I ARel(IT, ¥, IT1) Ao’ <8 [Var(G)]

where Rel(IT, ¥, II1) is defined as follows:

1. The descendants of E are narrowed in II at the same pos1t10ns and in the same
order as the descendants of Fo in II;.
2. If ¥ is a [d]-step:

{8} :GEf(Sl,...,Sn)%f(tl,... ,in),Ei[d] S1Rt,..., 8=y, B



then 4-j-p is a narrowing position to a descendant of e in II iff i-p is a narrowing
position to a descendant of s; ~ ¢; in II;.
3. If #; is an [o]-step:

G=f(s1,--,80) 2L E 2ol b j(h,o fu)r SRy Sn m b, r R EE

’j‘then

""(a) IT narrows a descendant of e at position k.

~(b) IT; does not narrow descendants of s; ~ l; at positions in the RHS.

" (c) 1-p is a narrowing position to a descendant of s; ~ I; in [Ty iff k-j-p is a

narrowing position to a descendant of f(s1,...,8,) ¢ in II.
(d) 2-p is a narrowing position to a descendant of r & ¢ in IT iff (3 —k)-pisa
narrowing position to a descendant of f(s1,...,8p) =t in II.

4. If ¥, is an [i]-step:
G=f(s1,---,5n) 2 2, E =i k,o={orf(z1,...,va)} 510 R 1, .. S0 R Ty, Fo

then:
f:,;(a) II starts with an NC-step at a position of the form k-j-p.

(b) i-j-p is a narrowing position to a descendant of e in I7 iff #/-p is a narrowing’

_position to a descendant of sjo & z; in II; where ¢/ = ¢ if k = 1 and
L P =38—difk=2
5;‘ilf ¥, is a [v]-step then IT starts with an NC-step at root position.

Corollary 1 LetII:G w"' T € NC. Then the successive applications of Lemma
1, starting from IT, YIGIdS an LNC-refutation ¥ : G =>3', O € LNC such that

¢ < 60 [Var(G)).

Proof. The result of successive applications of Lemma 1, starting from 7, is de-
picted in the figure below:

II:II@:G(;:GW;'FQT

. ’U’Uo
Hl : G1 W;-l T
H,’ : Gi ‘V*)g; T
Yo,
i1 0 Gipya W(}':.“ T

Yoipa

Since Vi.IT;41 < II;, this process will eventually terminate with an NC-refutation
g1 :Gpyr =0 w3n+1:€ T. The LNC-refutation generated in this way is:

W:GO:}UO G1:>o'1"':>o'n Gn+1:D

According to Lemma1,Vi € {1,... ,n}.0:0;41 < 0; [Var(G;)]. Then ¢’ = 0001 ...0n
20001'--Un0n+1 50'00'1‘..0',,_10 S <0’091 <€0-—-0 [Var(G)] ]



3 The LNCA Calculus

LNC does not handle applicative terms efficiently because the applicable inference
rules in the case of [o]-steps are determined by the outermost symbol of the term.
This symbol is almost always the binary function symbol ap which does not im-
pose any restriction on the choice of rewrite rules. We-overcome this problem by
specializing the inference rules of LNC to look at the head symbol rather than at
the outermost symbol of the term under consideration and, if that symbol is an
operator, to choose only the rewrite rules which define it.

Definition 3 Let R be an ATRS. LNCA consists of the following inference rules:

[of] outermost narrowing for head-function terms

fsmtp=2t, E
§1 R UL, .-, 8m B U, Tty 8L E

if there exists a fresh variant f um' — 7 of a rewrite rule in R.
[ov] outermost narrowing for head-variable terms

TSy th 2t E
(51 R V1, .., 8m R Un, Pty =1, E)8

if there exists a fresh variant f ug vp, — r of a rewrite rule in R, m > 0, and
6 ={z fu}.
[if] émétation for head-funciion terms
fSmtp~zu, E
(11, . ,85m R Bm,t1 U1, ..., T 2 Uy, E)

if m >0, 0 = {2+ f xn} with x,,, fresh variables.
[iv] imitation for head-variable terms

YSm tn =220, B

(1R 21, ,8m R &m,t1 2 U, ...,th =2 u,, E)F

ifm>0,z#yand § = {x+— y x,} with x,,, fresh variables.
[df] decomposition for head-function terms

fsam ft,, F

sy Rty .., Sy Rty B

[dv] decomposition for head-variable terms

TS, Bty F

S1 %tl,... ySn %tn,E
[vf] variable-elimination for head-function terms

fsmtpnzzu, F
(tl >~ Uy ... ,tn'zun,E)ﬂ

ife eV —Var(f sm)and 8 ={z— fsp}.



[vv] variable-elimination for head-variable terms

YSmtpn~zu,, F
(t]_ ~ UL, ... ,tn'zumE)G

ifzeV—Var(ysm),y€Vand 6§ ={z+—ysny}

We write G =[q,0 G’ to denote an LNCA-step corresponding to an inference rule
[a] with « € {of, ov, if, iv, df, dv, vf, vv}, upper goal G, lower goal G/, and involved
substitution §. We assume ¢ = € when o € {of, df, dv}.

The notions of derivation, refutation, and length of a derivation for LNCA are
similar to those for LNC. We denote by LA CA the class of LNCA-refutations. A
[V]-step is either a [fv]-step or a [vv]-step of LNCA. An [I]-step is either an [if]-step
or an [iv]-step of LNCA.

The soundness of LNCA is stated in the followmg theorem.

Theorem 2 Let R be a confluent ATRS and G a goal. If there exists an LNCA-
refutation A : G =7 O then § is a solution of G.

Proof. The proof is performed in two steps. We first prove that for every LNCA-
step of the form G =4 G’ the following property holds: if §’ is a solution of G’ then
66’ is a solution of G. Next, we prove by induction on n that if G =7 O then 0 is
a solution of G. '

Let G =¢ G’ be an arbitrary LNCA-step and ¢’ a solution of G’. We prove
that 8¢’ is a solution of G. The proof is by case distinction on the nature of the
- LNCA-step from G to G".

— Assume G = f sy t, @ t, E 3[01] G =51 8 uUup,...,8m R Um, 7ty 8 LE
where f u,, — r is a fresh variant of some rule in R. Then § = ¢ and 66’ = ¢'.
We have to prove that & is a solution of G. Since # is a solution of G, the fol-
lowing conditions hold; (1) Vi € {1,...,m}.5;¢0/ <% w6, (2) (r tn)0 <% t¢,
(3) ¢ is a solution of E. Because of (3), we only have to prove that ¢’ is a
solution of the equation f s,, t, ~t. We note that:

by (1) : by (2)
(f Sm tn)ﬁl <—>;2 (f U, tn)g' —R (7" t,,,)e' (————)% 14’

and hence ¢ is solution of the equation f s, t, = ¢.

— Assume G =2 Sp tn 2 6L, E D00 G = (51 R V1, ,5m R Um, T t, & 1, E)
where f ug v,; — 7 is a fresh variant of a rewrite rule in R, m > 0 and 6 =
{z — f ug}. Then (1) Vi € {1,...,m}.5:00" =% vif¢’, (2) (r t,)00 % 166,
(3) 6¢' is a solution of E. Because of (3), we only have to prove that 60’ is a
solution of the equation z s,, t, ~t. We note that:

by (1) ; i by (2)
(% sm t2)00 = (f ug sm tn)00 —% (f ug vin t,)00" —x (v t,)00" —% 160’

and hence 66’ is solution of the equation z s, t, ~ t.

— Assume G = a s tn ¥ T Up, E S0 G = (51 = 21, ,5m N Ty, 11
Uly.orytn =2 Up, E)0, where a € VUF, a € {if, iv}, 6 = {z — a xn},
with x,, fresh variables. Then we have: (1) Vi € {1,...,m}.5;60' <% z;00',
(2) Vi €{1,...,n}1;00 <% u;j00’, (3) 06 is a solution of E. Because of (3),
we only have to prove that 86’ is solution of a s, t, ~ = u,. Since:

by (1) by (2)
(z up)00 = (a Xpm 1y)00" ——% (a s;m 1wl )00 —% (a s, ty,)00

the substitution #¢’ is a solution of the equation a s, t, ~ ¢ u,.




— Assume G = a 8y X @ t, F D[ G = (s1 ® 11,...,8, R t,, E where
a € VUF and o € {df, dv}. In this case § = ¢, §¢' = ¢, and we have:
() Vie{l,...,n}.56 % t:0', (2) ¢ is a solution of E. Because of (2), we
only have to prove that 8 is a solutlon of a s, = at,, which is obv10us because
of property (1).

— Assume G = a 8p tn R T U, E D10 G' = (t1 2 us, ..., 1n = Uy, E)0 where
a €E VUF, a € {vf, vw}, ¢ & Var(f sm) and § = {& — a s,}. Then: (i)
Vie{l,...,n}.4;00 —% u;0¢, (ii) 06’ is solution of G. Because of (2), we only
have to prove that 8¢’ is solution of the equation f s,, t, =~ = u,. We have:

by (1)
(z 1,)00" = (a sy u,)80' —% (a sm tn)€0'

We prove now that if G =% O then ¢ is a solutlon of G. The only possible LNCA-
refutations of length n.= 1 are: ‘

f=f2u0
TR T Sdv]e O,
J$m =~ % Spne O, where ¢ & Var(f sy,) and § = {2 +— f s}
Y Sm & Spywv]e U, where £ & Var(y s;) and 6 = {x — y sy, }

Obviously, all these LNCA-refutations are sound. Assume now A € LNCA with
|A] = n > 1. Then we can write A : G =4 G’ 3;", O where 88’ = 0. We want
to prove that ¢ is a solution of GG. By the induction hypothesis for As1, ¢ is a
solution of G’. According to our first proof step, this implies that 8¢’ is a solution
of G. Thus, o = 66’ is a solution of G. - |

4 Completeness

- In this section we prove the completeness of LNCA for confluent ATRSs with re-
spect to normalized substitutions. Subsection 4.1 contains an analysis of the struc-
ture of LNC-refutations generated from normal NC-refutations as shown in Corol-
lary 1. Based on this analysis, we introduce the class of well-formed LNC-refutations
and prove the completeness of LNC with respect to this class. Subsection 4.2 is con-
cerned with the study of LNC-refutations for ATRSs. In Subseciion 4.3 we state
some properties of well-formed LNC-refutations for ATRSs. Based on these prelim-
inary results, we prove the completeness of LNCA in Subsection 4.4.

4.1 Well-formed LNC-refutations

We first introduce some useful notations. Let: I : G ~* T € NC and e € G. We
define:

Ple, I ) the property that narrowing 1s never applied-at positions of the RHS
of a descendant of e in II.

E,(IT) the longest prefix of G such that Ve € E,(IT). ’P(e ).

$(II) the LNC-step constructed from II as shown in Lemma 1.

() the NC-refutation constructed from II as shown in Lemma 1.

U(II) the LNC-refutation constructed from I7 as described in Corollary 1.

First we prove the following lemma:
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Lemma 2 Let IT : G =¢,E ~} T € NC and assume 7(II) : G1 ~+%, T. Then the
following conditions hold:

1. If (IT) is an [i]-step:
G= f(sl, S 8p) 2T E:>,,_{x._,f(x1, o)} (1R &, ..., & :cn,E)cf

‘then in 7r(II ) narrowing is applied to at least one of the descendants of the
equations s;0 & 1,..., 8,0 & &, at a position of the LHS.
2. ¥ Ep(MT)# 0 and zp(ﬂ) E,(IT), E; =, (E', Ej)o then:
(a) If ¥(II) is an [i]-step then it is applied to the LHS of e.
(b) E'c = By(x(IT)).
(c) if ¥(II) is an [o]-step then it is applied to the LHS of e.

Proof.
1. If ¥(II) is an [i]-step:

Y(IT) : f(s1,...,8n) 2 &, E =i k,0={zf(21,... ,5a)}
$10 R 21,...,8,0 R &y, Bo

~then w(IT) : 510 & @1, ... ,5,0 X T, Eo ~* T. According to Lemma 1, 4.(a),
the first NC-step of IT is applied at a position of the form k-j-p where 1 < 7 < n.
‘Then, according to Lemma 1, 4.(c), w(IT) narrows a descendant of s;o ~ z; at
., position 1-p, which is a position of the LHS.
2. Since E,(II) # O there exists e € E,(IT).
(a) Assume (1) is an [i]-step. Then e is of the form 2 ~ f(s1,...,s,) with
z € V and n > 0. We want to prove that the RHS of e is z. If this is not the
case then e = z ~ f(s1,...,5,). By Lemma 1, 4.(a), IT starts with an NC-step
at a position of the form 2-j-p in e where 1 < j < n. Since e € E,(II), this case
is impossible and therefore we must have e = f(s1,...,5,) = z.
(b) Let ¢’ € E'oc. We have to prove that ¢’ € E,(w(II)), i.e. that the property
P, 7r(H )) holds. We distinguish two cases:
(b1) ¢ is a descendant of e in ¢(H ). Then %(IT) is an [o]-, [d]- or [i]-step. If
%(IT) is an [o]-step then it is applied to the LHS since, by Lemma 1, 3.(a),
an [o}-step to the RHS would imply e ¢ E,(IT). Therefore, we can write:

'lﬁ(ﬂ) 2 f(s1,...,8n) %t,E:k[o],f(zhm,;n)_ﬂ. simly,... sp=ly,rxt E

such that ¢’ = r = t. If property P(r ~ t,w(IT)) does not hold then there
is a narrowing position to a descendant of » & ¢ in 7(II)) of the form 2-p.
From Lemma 1, 3.(d) results the existence of a narrowing position of the
form 2-p to a descendant of e in I7. Since this contradicts the condition
e € E,(IT), we deduce that property P(e’, 7(I)) holds.

If ¥(II) is a [d]-step:

f(Sl,...,Sn)%f(tl,. n)E:>[d]31Nt]_, .. nNtn,E'
then ¢/ = s; ~ t; for some j € {1,... ,n}. Because e € E,(II), II does
not perform narrowing at positions of the form 2-j-p to descendants of e.

From Lemma 1, 3.(b) we deduce that m(II) does not narrow descendants
of 5; & t; at positions of the RHS. Thus, P(s; ~ t;, 7(IT)) holds.
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If (IT) is an [i}-step then according to 2.(a) of this lemma e is of the form

f(s1,...,8,) ® & with z € V and n > 0. In this case we can write:
f(sl; e )sn) RN :>[i],a={a:»—>f(a:1,...,:z:n)} 510 R 21,...,5.0 B 2, Eo
and assume e’ = sjo = &; for some j € {1,...,n}. We want to prove

that w(II) does not narrow descendants of e’ at positions of the. RHS. If
narrowing is applied to a descendant of ¢’ at a position of the RHS then from
Lemma 1, 4.(b) we deduce that narrowing is applied to a descendant of e
at a position of the RHS. This contradicts our assumption that e € E, ().
Therefore, P(e’, #(II)) must hold.

(b2) €’ is not an LNC-descendant of e in ¥(II). Then €’ is either a parameter
passing equa.tion of e or an LNC-descendant of some € € E,(II) N E. The
case when ¢’ is a parameter-passing equation of e is covered by Lemma 1,
3. (b) The other case is an immediate consequence of Lemma 1, 1.

Hence ¢’ € E’ lmphes e’ € Ey(o(Il)).

If ¢ ¢ E' then €' is a one-step descendant of an equatlon e¢ Ep(ﬂ ) Then
narrowing is applied to the RHS of a descendant of ¢’ in I and by Lemma 1
1. narrowing is applied to the RHS of ¢’ in #(IT). Thus, e’ ¢ E,(c(II)).

(c) Assume %(IT) is an [o]-step. From e € E,(II) and Lemma 1 3.(a) we deduce
that ¥(IT) is applied to the LHS of e. |

Lemma3 Let I : G->+TENC

1. If an [1] -step is applied to a descenda.nt ¢/ of an equatlon e € E, (H ) in ¥(II)
then it is applied to the LHS of ¢’.

2. If an [o]-step is applied to a descendant e’ of an equation e € E,(IT) in ¥(II)
then it is applied to the LHS of ¢’.

Proof. During the proof we will make use of the following notations:

PE, () : If an [i]-step is applied to a descendant e’ of an equation e € E,(IT)
in W(IT) then it is applied to the LHS of ¢’.

Pg,,lol(IT) : If an [o]-step is applied to a descendant ¢’ of an equation e € E,(J7)
in ¥(II) then it is applied to the LHS of ¢’.

We prove by induction with respect to the order < on NC that the propertles
PE, Jo}({T) and Pg, [;(IT) hold.

Let 1T 1=w(II ) Because II; < IT, from the induction hypothesis we get that
Pg, i({11) and Pg, }({11) hold. According to Lemma 2, 2.(b), all one-step de-
scendants of equations of E,(IT) are in E,(II1). Then, by the induction hypothesis
for IT;, all [o]-steps to descendants of equations of E,(II) in W(II;) = ¥(II)s are
applied to the LHS. Moreover, if 4(II) is an [o]-step then, by Lemma 2, 2.(c), ¥(IT)
is applied to the LHS of e. We conclude that Pg, o}(I) holds.

It remains to prove that Pg, jj(/T) holds. Assume e € E,(II) such that an
[i]-step is applied to a descendant of e in ¥(II'). We distinguish two cases:

(i) ¥(IT) starts with an [i]-step to e. Then, by Lemma 2, 2.(a), [i] is applied to the
LHS of e.

(ii) [i] is applied in ¥ (1) to a descendant of an immediate descendant e’ of e in
IT. According to Lemma 2, 2.(b), we have ¢/ € E,(II;) and the result follows from
the induction hypothesis applied to 7. |

Definition 4 Let ¥ € LN C. We define:
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Ppo)(¥) : if an [o]-step is applied to.a descendant e of a parameter-passing
equation then it is applied to the LHS of e.

,‘ ?ﬁ}(!?) : if an [i]-step is applied to a descendant e of a parameter-passing
: equation then it is applied to the LHS of e.

The followmg theorem summarizes the main properties of LNC-refutations obtamed
by lifting normal NC-refutations.

Theorem 3 Let IT : G~} T € NC and Wy = ¥(II). Then ¥ satisfies the following
properties:

1. If %, contains a sub-refutation ¥’ that starts with an [i]-step:

f(s1,-..,8n) 22, E
=i, o={er f(@1,...,5n)} 510 R T, ..., 800 R Tp, Bo =5, O

then:
(a) The first step is of ¥’ not directly followed by n [v]-steps.
(b) If z € Var(si, ... ,sn) then zaf’ is normalized.

2. The properties Ppj(¥o) and Py (¥o) hold.

Proof. If IH | = 0 then there is nothing left to prove. Otherwise, we can write
I G =}0. By Corolla.ry 1 we have Wy : G =3, O where 6/ < 0 [Var(G))].

_;Assu'me that W, contains a sub-refutation ¥’ that starts with an {i]-step. Then
we have the following situation:

Ho=11: Go=G T
’U'*

Hk—ﬂ'(Hk 1):Gr = f(s1,...,8n) 2, E ' ~t T
Yo

My = () : Gry1 =510 X &1,... ,500 R &n, BEo T T
U*

where ¢ = {z — f(21,...,2n)}. Since II} € NC, according to Lemma 2, 1.,
narrowing is applied in ITx4;1 to at least one of the descendants of the equations
S10 /& ®1,..., 8,0 & T, at a position of the LHS. Suppose s;o &~ #; is narrowed at
a position of the LHS. -

Assume now that the first step of ¥’ is followed by n [v]-steps. Then the con-
struction of ¥, is as depicted in the figure below. o '

JIPaRE Gk+1 =10 R L1, ..., 50 R &y, ..., 00 N Ty, Ea ~»T T
Vgt |
Heyi i Gryi = 8;0; R &Li,...,5n0;i & Ty, Bo; ~mt T
‘U‘[ n—i41
Mgynt Gk+n+1 = Foy, : ~t T
* .
O
where 01 = o{z1 v 510}, ..., 0n = On_1{Tn — 5n0n-1}. According to Lemma 1,
1., the descendants of the equation s;o & z; are narrowed at a position of the LHS
in Mgq1, .., Hgyi. Since ([ ys) is [v], from Lemma 1, 5. we deduce that Ik
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starts with a narrowing step at root position. This contradiction proves the validity
of condition 1.(a).

We next prove condition 1.(b). Assume that z € Var(sy, ..., s,). We want to
prove that zo0] is normalized. By Lemma 1, 4.(a), Il starts with a step at non-
root position. Since Il is normal, 0]ya,(s(s,,... s,)) IS normalized. In particular, z6
is a normal form. Since ¢ < ¢ [Var(G)] and z € Var(G), we deduce that z6 is an

" instance of z6’, and therefore z6’ is normalized.

We prove now that Pi)(¥(I7)) and Pp)(¥ (7)) hold. Let e be a parameter-

passing equation in ¥(IT). Then the construction of LP(II ) from IT looks as follows:

o=1I: Go=G | wt T
Iy = w(Ilg-1) : Ge = f(l, ..., ln) =t E : ~t T

Yol s (o1, ssm)=sr
gy = ﬂ”(Hk) Grpi=saiml, . sl sy, Tt E T T

—
-4
U*
O ; ‘ ng

By Lemma 1, 3.(b) we have that s; ~ {1,...,s, & I, € Ep(IIx41). In particular,
e € Ep(Hk.,_l). From Lemma 3, 1. for II4+1 € NC we know that if [i] is applied to
a descendant ¢’ of e in W (/T )5 x41 = W (I g41) then it is applied to the LHS. Hence
Pp(¥(IT)) holds. Also, from Lemma 3, 2. for Mz41 € NC we know that if [o] is
applied to a descendant e’ of e in Y541 = W(Ilg41) then it is applied to the LHS
of ¢’. Hence P (¥ (II)) holds. |
It is now appropriate to characterize the LNC-refutations generated by ¥ from
normal NC-refutations.

Definition 5 (Well-formed LNC refutation) ¥ € LNC is well-formed if it
satisfies the following propertles

1. X ¥ contains a sub-refutation that starts with an [i]-step

U f(s1,...,8n) >, B
Zil,o={z—f(z1,..,82)} S1O R T1,...,5,0 R Ty, EU :>;/ O

then: . ,
(a) the first step of ¥’ is not directly followed by n [v]-steps.
(b) if # € Var(si,...,sn) then zo#’ is normalized.

2. Properties Pp(¥) and Ppg(¥) hold.

We denote by WF the class of well-formed LNC-refutations. An immediate conse-
quence of Theorem 1 and Theorem 3 is:

Corollary 2 For every normalized solution # of G there exists ¥ : G =%, O € WF
with ¢/ < 8 [Var(G)].

At the énd of this subsection we state some useful properties of well-formed LNC-
refutations.

Lemma 4 Every sub-refutation ¥; of ¥ € WF is well-formed.
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- Lemma 5 Let ¥ € WF such that U5p 151 8 U1, ..., Sp R Un, B =% O, where
$1 R U1,...,Sn A U, are descendants of parameter-passing equations. Then

V1< i< n(sif =" uf) (2)

Proof. Let & = ¥ . The proof is by induction on |@|. If |§| = 1 then n.=1 and ¥
consists of a [d]-, [v]- or [t]-step. In each of these cases, property (2) holds. Assume
now [@| > 1. We distinguish the following cases:

"~ & starts with a [v]-or a [ ]-step. Then s16 = u16. From the induction hypothe51s
for §51 we have s;0 —* u;60 if 2 < <n.
— & starts with an [o]-step to the LHS. Then s = f(s},...,s}) and:

¢>1:31%u1,...,sn%un,E‘
' ' ' /
ol f(uh,e. ul)—r 51 R UL, - .., Sp R UL, TR UL, S2 R Uz, ..., 5n U, B

From the induction hypothesis we have s} —* uf (1 < i < k), 70 —} u10,
5;0 —4 u;0 (2 < j < n). It remains to prove that s16 —j u10-, which is obvious
. because 5,0 = f(s10,...,5.0) =" f(uy,...,up)0 — rf =" wd.
— & starts with a [d]-step. Then s1 = f(s},...,s}),u1 = f(u},...,up), and:

. ’ I\ o ’ ’
D: f(sh,...,5) = f(uy,...,up),s2 R Uz,...,50 R Un, B
] S1 R UL, -, 8 R Uy, 50 R Un, B =5 0

From the induction hypothesis we have s —* 48 (1 < i < ¥£) and s;6 —* u;0
2<j<n).It remains to prove that s16 —} 4160, which is obvious because
510 = f(s1 50y —* f(ul, ... up)f = wif.

— @ starts w1th an [1] -step. By Lemma 2, 2. (a), @ is of the form

D: f(sh,...,sp) R uy, 50~ uz,.. s,,Nu,,,E
=
Dilor={ur—F(@1,..,on)} 5101 X T1,. .. ) 801 R :L’g, ee.,8p01 R Unoy, Eoy
=50

From the induction hypothesis we have s.0 = sic16’ —* z;6' (1 < i < £) and
sif = s50:10" —* ujo10 = u;0 (2< 5 < n) It remains to prove that s16 —
u16, which is obvious because 5160 = (31 sp0) —* f(z#,... ,xﬂ’) =
f(xl, 163)9, = U10'19 u1€ |

Note that property 1. of well formedness is not necessary to prove Lemma 5.
Corollary 3 If ¥ : s ~ t, E =), 1.r =5 [ € WF then sf is not a normal form.
Proof. ¥ can be written as:
f(sl,_. o 8n) 2 E o, )= ST Rl s R, TR L B
By Lemma 5 we have Vz € {1,...,n}.s;6 —* [;6. This implies:
s0 = f(s1,..,52)0 =* F(l, ..., 1) — 0

and hence s is reducible. [ ]
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Lemma 6 Let ¥ : E),s & ¢, Ey =3 00 € WF such that s = t is the n-th equation
in the initial goal of . We denote by ¢suwap(¥,n) : E1,t & s, E3 =} O the LNC-
refutation obtained from ¥ by performing the same inference steps in the same
order at corresponding positions. Then ¢ uqp(¥, n) is well-formed.

Proof. From the construction of ¢;uap(¥,n) we see that @swaep(¥,n) verifies con-
dition 1. of well-formedness. The validity of condition 2. of well-formedness for
"¢ swap(¥, ) follows from its validity for & and the observation that, due to the asym-
metry of the [o]-rule, the descendants of parameter-passing equations are identical

in ¥ and @swap(¥, ). |
In the sequel we confine our attention to the case of applicative term réwriting
systems.

4.2 The Structure of LNC-refutations for ATRSs

In this subsection we analyze the structure of LNC-refutations for the particular
case of ATRSs. We first introduce the notions of immediate a-descendant and a-
descendant of an equation. :

' Definition 6 (immediate a-descendant) Let A : G = ¢, E = G’ be an LNC
_ inference step. :

—HG=s1 502 E =21 tyr G =s1 R N,50 8 lo,r &1, E then sy & 11 in
G is the only immediate a-descendant of e.

- HG=f~t E =) jr G =r =1, E then there is no immediate a-descendant
of e. ’ ‘ .

- If G = s1 82 ~ 2, F [ oz{oma; v2} G = $10 & 1,520 & 23, Eo then
s10 &~ z1 in G’ is the only immediate a-descendant of e.

— G =35 saxt 2, F =[] 1 At 52 R t2, E then s; ~ t; in G’ is the only
immediate a-descendant of e. _

— If Ais a[v]- or a [t]-step then e has no immediate a-descendants.

Definition 7 (a-descendant) The relation of a-descendant is the reflexive-tran-
sitive closure of the relation of immediate a-descendant.

Note the difference between the notions of a-descendant and descendant.

“Lemma 7 Let ¥ : G = s &= ¢, E =} 0. If the first [o]-step of ¥ is applied to an
a-descendant of s & ¢ then there exists ¥/ € {¥, ¢,uap(¥, 1)} such that:

(1) all [i]-steps before the first [o]-step in ¥’ are applied to the LHS,
(ii) the first [o]-step of ¥’ is applied to the LHS of an a-descendant of s =~ ¢.

Proof. A simple case analysis reveals that if an [o]-step is applied to an a-descendant
of s =t then A starts with m > 0 [d]-steps, followed by p > 0 [i]-steps, followed by
an [o]-step. , S

If p = 0 then we can write ¥ in the form:

V:G=au, sm~=7tm,F
2fg] Uy 2,5 2ty .S, 2y, B ::>[O]>k,1—-+r:>§2 O

" Then ¥/ =¥ if k = 1 and ¢suqp(¥, 1) if k = 2 obviously satisfies conditions (i)-(ii).
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If p > 0 then we can write:

U:G=au, smzmtm,Eﬁﬁ]aunzm,sl ~t1, ey Sm 2ty B
iﬁ],k,sl (@ Upep R Tn_p,Un—p41 N Tn_ptl,--- ,Un = Tn,
S1 =~ tl;" <3 Sm N tm>E)01 §[o],]g:,[—yr=>;2 O

* If the first [i]-step is to the LHS (i.e., k = 1) then we can take ¥’ = ¥, otherwise
- we can take ¥’ = ¢ upap(¥, 1). _ [ ]

‘Lemma 8 Let G = f s,y = ¢ tn, E such that f # g or m # n. Then for every
A : G =* 0O € LNC there exists an application of an [o]-step to an a-descendant of

fsmmgts.

Proof. By induction on n + m. Obviously, A starts with an [o]-step or with a [d]-
step. If A starts with an [o]-step then there is nothing more to prove. Assume now
that A starts with a [d]-step. If m = 0 then the only possibility isn = 0 and g = f.
Since this contradicts our hypothesis, we must have m > 0. By a similar argument
we infer that » > 0 and therefore A can be written as:

A :.G =1d] flsm_l &g ta_1,5min, E.
We can now apply the induction hypothesis to A5 and get the desired result. B

- Lemma 9 Let A be an LNC-refutation f s, = f t,, E = O. If there are no
[o]-steps applied to a-descendants of f s, & f t; in A, then A is of the form:

A:fsnzftn,Eéffi‘]"l 51ty ... 50 R 1, B =0

Proof. By induction on n. If n = 0 then the first step must be [d] and we are
done. Suppose n > 0. A starts with a [d}-step. Therefore A can be written as
A:fsy® ftn,BE=a Fsn-1®fta1,5n = tn, E =4 O and the conclusion
follows from the induction hypothesis for A5;. |

Lemma 10 Let G = z s, ~ ¢ t;,, E such that m < n. Then for every LNC-
refutation A : G =* O there exists an application of an [o]-step to an a-descendant
ofx s, ~gtn.

Proof. By induction on n +m > 0. Since 0 < m < n, A starts either with an
[0]-step or with a [d]-step. If A starts with an [o]-step then we are done. If not, then
A starts with a [d]-step: _

A:G =g Sn_12 g tm_1,5: 2 tm, £ =" 0.

From the induction hypothesis for A we infer the existence of an [o]-step which is
applied to an a-descendant of the immediate a-descendant of & s, ~ g t;m in A1,
and therefore to an a-descendant of z s, ~ ¢ t,, in A. . |

Lemma 11 Let A : G = f s,y & g tn, E =* O such that m < arity(f) and
n < arity(g). Then m=n, f =g, and G:>Ez]+1 SIRtL, ..., 8m Ny, E=* 0.

Proof. By induction on lA| If |A| = 1 then A must consist of only a i[d]-step.This
implies f = g and m = n = 0. Assume now that |A| > 1. We distinguish three cases
for the first step in A:
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1. Gi[d] me 19 th-1,5m "’ti*'nﬁ;’:> .

From the induction hypothe51s for Ay weget f=gandm—1=n-—1, and
we are done.

2. A starts with an [o]-step. Note that we can not have m = 0 in this case because
there are no rewrite rules in R with LHS f. Hence m > 0 and we can assume
that the first step of A is:

I SmBgtn, EDh or [ Smo1 R A Loy, smm g, r g t,, E=* 0

where k = arity(h). From the induction hypothesis for As; we get f = h and
m—1 = k—1. This implies arity(f) = arity(h) = k = m. This case is impossible
because we assume that m < arity(f). ’

3. fsm %g__iﬁl,E lohh o § b1 = hl_tp sl r f sy, BE=*0
This case is also impossible and the proof similar to the previous one. ]

Lemma 12 Let A:G = f s,n & ¢, E =* O such that it contains an [o]-step which
is applied to an a—descendant of f spy, & t. If the first [o]-step to an a-descendant of
f sm &t is applied to the LHS then m > arity(f).

Proof. By induction on |A|. If |A| = 0 there is nothing more to prove. If Al =1
then A consists of a [d]- or a [v]-step and the lemma trivially holds. Otherwise we
distinguish the following cases for the first step in A:

1. A starts with a [v]-step. Then there are no more a-descendants left.
2. A starts with an [o]-step to the LHS. If m = 0 then A this case is possible only
if arity(f) = 0 and then we are done. Otherwise m > 0 and we have:

A:fsm R E S hor [ Smo1 Ry, 5 R, r Rt E="0

where arity(h) = k > 0. If m < arity(f), then by Lemma 11 we must have
h = f and m — 1 =k — 1. But this implies m = k = arity(h) = arity(f), which
contradicts the assumption that m < arity(f). Thus, m > arity(f).

3. A starts with a [d]-step. If m = 0 then ¢t = f and there are no a-descendants
left. If m > 0 then A can be written as:

A fsmrRgta, E=q fsmaarRgta,smaty, E=70

From the induction hypothesis for A1 we deduce m — 1 > arity(f), and hence

m > arity(f).
4. A starts with an [i]-step. Then m > 0 and A has the form:

A fsmma E =i],c={z—z; w2} (f Sm—1 N X1,5m N :Ez,E)O’ =*0
The induction hypothesis for A>1 yields immediately the desired result. [ ]

Lemma 13 Let A: f s, & t E =6} 1—»=" 0 where n = arity(f). Then [ has the
form f 1,.

Proof. If n = 0 then'! = f. Otherwise ! is of the form A 1; with arity(h) = k& > 0 and
Aisoftheform A: fs, M, E = njor [Snc1® by, sn iy, ret, E=* 0L
From Lemma 11 for As; we have f = h and n = k. |

Lemma 14 Let A :z s, R ¢, E =[] 5 1,—r=" O such that n > 0 and [o] is never
applied to an a-descendant of = s, ~t in Asy .Then k > n. :
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Proof. Without loss of generality, A can be written as:

z S, %t,Ei[o]’{ lior £ Sp_1 R f Ly, snmlp,rt, B
:>Efﬂ e fli,simly,. . e, rat, E=*0

such that j > 0 and k = j + n. Then k > n. ]
Lemma 15 If A € LNC is of the form

A:G=at, =z, E =y oz{oma t,} Bo =50
where n > 0 then there exists a refutation:

A G = a tn ~ :L',E :>[i],0'1={xr-—»z1 z2} (a tn_]_ ~ a:l’tn ISR E)O’l
:>[V];02={$1Ha tp—1} (tn ~ :EQ,E)O'IO-Z
5[V]"’3"—“{’32"“"1n} Eci0303 =>; |
such that As1 = AL 3 and 010203fy,.(g) = 0-

Proof. From the applicability of [v] to the equation a t, ~ z we infer that
z ¢ Var(a t,). Let 1,z be fresh variables and o3 = {23 > t,}. Because z, zi,
z2 & Var(a t,) we can construct an LNC-derivation:

A:G =i,o @ tn-1 ™ xl,tn R 2, B0y =)0, tn = 22, Eo102 =y),0, Eo10203

Let G1 = t, = 22, Ec102. Note that we can apply a [V]-step (with n = 0) to Gy:
G1 2{v},0; 010203

We have 010203 = {2 — @ tp, 21 — a th_1,22 — tn} Then Ulazasrvar(c) =
o because z1,22 € Var(G). Since Var(E) C Var(G), we have Eoi10203 = Eo.
Therefore, we can replace the second [v]-step of A with a [V]*step and obtain the
(mlxed) refutation A’. [ ]
4.3 The Structure of Well-formed LNC-refutations for ATRSs

Lemma 16 Let A: G = a sy, t, ~ ¢ u,, E =4 O € WF. If [0] is never applied
to an a-descendant of a s,, t, ~ = u,, then there exists an LNCA-derivation
B:G =% Gy and A’ : G1 =%, O € WF such that |A'| < |A] and § = o6’ [Var(G)].

Proof. Because [0] is never applied to a-descendants of a s, t, ~ & u, of G, the
first n LNC-steps of A must be [d]-steps. Hence, A can be written as:

A:G=asp tn:xun,Eéﬁ]asmzz,tlzul,...,tn:un,E:ZD

We distinguish the following situations:

(1) a = z. We prove that in this case we must have m = 0. Assame m # 0. Then
the only possibility is to start As, with an [i]-step. We note that in this case all
the subsequent LNC-steps are [i]-steps and A is non-terminating. Therefore m = 0
and the first step of A5, is a [t]-step: :

Asp o, iU, ..t 2 Uun, E Dty 2 ur,. ..ty 2 us, E=4 0
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We note that we can replace the first n + 1 LNC-steps of A with a [dv]-step:
B:G3uvh ~up, ...t ~u,, B =50

We can take A’ = A5 41 with & =0, 0 = ¢.

(2) a # z. Then the only possibility is to start A, with a sequence of ¢ [i]-steps,
where 0 < ¢ < m, followed by a [v]-step. There are two possibilities:

(2a) i =0. In this case As, can be written as:
aSm 2,0 XU, ...t X Un, B =), (b2 U, .ty X U, E)o =9 O

with o = {z + a s,,}. This implies that 2 ¢ Var(a s,;,) and therefore we can
perform the [V]-step:

B: G%[V],O’ (‘tl MU, ..,y un,E)a

In this case we can choose G1 = ({1 > u1,...,t, 2 up, F)o and A’ = Aspyg.
(2b) 7> 0. In this case Ay, can be written as: '

Aspiasy >zt >~ uy,... 1, :'un,E
?fﬁ],&l,,,ai (@ sm—i = z:n—-i+1) Sm—itl N Tm—itl,---,5m = T,
tiur, ...ty X us, B)or .. .0y
=[v],o! Gi = (Sm-i+1 R Em—itly--- ,Sm R T,
ti U1, ...ty > Up, E)oy .. .oy0) =5, 0
where o1 = {& — 2], T}, ..., 00 = {x;n—i-l—2 > Tl i1 Tmoiy1} and of =
{Zm—ig1 ¥ @ Smoi} With T ip1,20, 01,0, Zm, 2, € V — Var(G) fresh
variables. By applying Lemma 15 m — ¢ times to the first [v]-step of A, we
obtain:
A G:>E:i] a Sy, =2z,t 2uy,...,ty 2u,, E
iﬁgrf—;)m (arzl, 512 z1,...,5m & T,
iU, ...t 2 Uup, E)o1 .. O
:>[V],a;n (51 R Zi,.-.,5m = T,
- h MUy, .ty X Uy, B)oy . Lo ol
' E"\Hf, G1 = (Sm—it1 B Tm—itl,.--,5m = T,
' ti Uy, ...ty 2 Uy, E)oy ... 050)
=4 O
where o' = {z1 > s1,..., @m—i > Sm-i}, O1...0mOLOlyar@) = 01...0i0),

and A3, 14m—i = Asnyit1. We have o1...onop, lyang) = {2 — a x5}
We let p = {& > a x,} and the LNCA step:

a Sm tn >~z un;E 3[1],/] (31 "Xy, .- "7571’1 ~ zﬂhtl = U, .- :tn I un;E)p
replace the first n+m+ 1 LNC-steps of A”. Now we can choose:
B:G 2m,= . O
and A’ = Asntit1- By 2., we have 8 = po’¢’ [Var(G)]. [ ]

The following lemma is of importance when lifting a well-formed LNC-refutation
to an LNCA-refutation requires the introduction of an [i]-step.
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Lemma 17 Let A € WF be of the form A : G = (B, 7 & 21,5 & &2, E2)o = 0,
where o = {z — 21 23}, such that: .

(i) z1,z2 €V —Var(r,s, z, E1, Ea),

(i) if z € Var(E1,r,s) then zof is normalized.

Then there exists A’ € WF of the form: A’ : G' = (E1,r s & ¢, E3) =}, O such
that o6 = ¢’ and |A'| < |A] + 1.

Proof. We distinguish two cases:

1. A has a sub-refutation (z1 z2 ~1¢, ], 7 = 21,5 = &3, E2)ofy =* O which does
not start with a [v]- or an [o]-step applied to ¢,
2. A does not have such a sub-refutation.

First we prove case 1. Let
A”:A>i1 : Gy, (:L‘]_ zo ~ 1, EI,TN.fCl,SNxz,Eg)O'Gl =*0

be the longest sub-refutation of A which does not start with an [o]- or a [v]-step.
Then obviously z € Var(E1) and, according to our hypothesis, o is normalized.
This implies that (z; 2)@ is a normal form.

We note that the only way a term of the form z; z2 is decomposed in the sub-
derivation B : G =3, Gi, of A is by applying a [d]-, [i]- or [o]-step to an equation
of the form z; z2 ~ w where w is any term. From the definition of A” we deduce
- that such steps do not appear in B and therefore the following conditions hold:

— z1,22 & D(01),

— if 2, and z2 appear in Zm(f;) then they appear in subterms of the form z; z».
As a consequence (z1 z2)of; = x; z3. Because A € WF, from Corollary 3 we
obtain by contraposition that A” does not start with an [o]-step applied to z; z2.
_If A” starts with an [i]-step then we must have to6; = z € V and A” is of the form:

A" x>z, E =il,0’ %1 Nyl,:z:QNyg,Eo- é[v] o G " =* [

with G = (B}, r & z1,s ® 23, E2)oth and o/ = {z >y y2}. Since this contradicts
the assumption that A” is well-formed, we have that A” does not start with an
[i]-step. Hence the next step of A must be a [d]-step. In this case to6y = vy vs for
some terms v1, v an Ey is of the form EJ, x ~ ¢, E; such that we can write:

A: G; (Eo,x ~t B vz, s R T, Er)o
o Gil =21 Tz 2 vy V2, (B, 7 & 21,5 R &g, By)ob
é[d} Ty v, T2 2 ve, (B, TR &1, R L2, Fa)oby
:>3922 (B, 7= 1,8 ™ 23, E2)00,02
=g Girtiztis+1 = (1 = 21, S & 2, F3)00,0205
14 D
Startmg from A, we construct A’ as follows Let By € EN C be of the form:
By : (T‘ s Ty xz,E2)0'916'203 ﬁ[d] G,1+32+13+1 =>04 O
such that (Bs)>1 = A>(i1+i2+i3+1)- Then By € WF because A (s, 4in+is+1) € WF.
Let B} € LNC be of the form:

/. ‘ ! ~ totiztia+1
B; iz~ V1, T2 vo, (B, 7 s & &1 €2, E2)oby =g a7 O

such that:
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— The first 4 + i3 steps of B} coincide with the first iy + i3 steps of Asi, 41,
- (Bé)>(i2+i3) = Bs.
Then B} € WF. From Bj we construct
B3 :v =& L1,V R Ty, (E&, SR T T, Ez)o‘al :}zi-gjzji4+l O
by permuting, if necessary, the sides of the first two equations and applying the
same inference steps in the same order at corresponding positions. Since Bj € WJ-"
from Lemma 6 we obtain that By € WF.

Since z1,z3 ¢ E1 we have that z;,z3 ¢ E]. We already noticed that z;,z2 ¢
D(6:1) and if z; and z2 appear in Zm(f;) then they appear in subterms of the
form 21 2. Therefore we can remove all occurrences of z; and z5 from Zm(6;) by
replacing all the occurrences of z; z2 by z. Assume that by this transformation we
obtain §; from ;. Because 0f; = 610 we can consider the LNC refutation

G = (a: =t B, rsxz BE)h
=i],o V1 R T1, V2 R Ty, (Elyr § R 1 T2, Ep)oby

:>‘zqz;+:a;l-u+1 O
where (B})s1 = Bs. Then 2610020304 = z06,0:0304 = zo6 is normalized. The
only case when B} ¢ WF is where the first [i]-step is followed by two [v]-steps. In
this case we define By as the LNC-refutation obtained from Bj by replacing the
first three steps by a [v]-step. Otherwise we assume Bz = Bj. Then By € WF and
|B2| < i3 + i3 + 14 + 2. We finally define:

:G' = (E1,r s~ , Ey)
:>z1 G" = (Z’N‘Ul 'Uz,El,T’SN z Ez)(sl

e‘2+33+14+2
:>0'029394 EI

where the first 4; steps coincide with those of A and are applied in the same order
at the same positions, and AL; = B. Then A’ € WF and |4'| = iy + |By| <

th+ia+iz+ia+2= A+ 1
We now prove case 2. In this case A can be written as:

A:G=(E,rnmy,sm xz,EZ)a :>9 = (r= 21,5~ 22, E2)ob :>2.2 O
such that 1,23 ¢ D(0601). From A we construct the LNC-refutation B as follows:

A:G =>’911_ (rmzy, s m 2, Ex)od =5 O

=)o

B:G=} G =(Bi,rs=~z)s

where 81 is defined like in case 1, the first ¢; steps of B coincide with the first
i1 steps of A and are applied in the same order and at the same positions, and
Bsj41 = Asy,. If Ay, starts with two [v]-steps then we define A’ to be B in
which the sequence =>;=>[v]=>[s] of steps to G}, is replaced by a [v]-step. Otherwise
A = BThenA'EW]-"and|A’|<zl+zz+l—|A|+1 [ ]

Lemma 18 Let A: f s, & t, £ =} 0 € WF such that:

(i) There exists a first [o]-step of A which is applied to the LHS of an a-descendant
of f s, ~ t, ‘

22



(i) All [i]-steps before the first [o]-step are applied to the LHS.
Then there exists a fresh variant f u,, — r of a rewrite rule such that:

(a) The last [o]-step to an a-descendant of f s, =t is of the form
Ay (f Sm %t')a, E = f upm—r (f Sm—1 R f Wpn_1,5m R U, T Sm41,n R t’;El)o'

where m < n,
(b) There exists A’ € WF of the form

Al sy UL, S R U, T S L E =5 0

such that |A'| < |A].

Proof. We first prove (a). Because of (ii), the a-descendant e’ of f s, = t to
which the first [o]-step is applied is of the form e’ = (f s, &~ t"")o’ where p < n.
Since the a-descendants of ¢/ are descendants of parameter-passing equations and
the conditions Pjo)(A4) and P[;j(A) of well-formedness hold, we deduce that the a-
descendant of e to which the last [o]-step is applied is of the form (f s, &~ t')o
where m < p < n. It remains to prove that the rewrite rule variant employed in
this last [o]-step is of the form f u,, — r. By Lemma 13, it suffices to prove that
m = arity(f). By Lemma 12 for the well-formed sub-refutation A" of A starting
Wlth Ay we have m > arity(f). If m = 0 then also arity(f) = 0 and there is nothing
‘more to prove. If m > 0 then we can write A" as follows:

(fsmNt)a,E':nluk_,r (f Sm—1 R h Uk—1,8m & Uk, T Smpin ST, E')a:> g

where k = arity(h) > 0. Since AY; does not contain [o]-steps apphed to a-descend-
ants of f s;,—1 & h up_1, we can apply Lemma 8 applied to A%, and obtain by
contraposition that f = h and m — 1 = k — 1. Hence arity(f) = arity(h) =k =m

We prove now (b). We prove by induction on n— m the existence a well-formed
LNC-refutation

A s R UL, ... S R U, T Sy S, E =0
that in addition to |A’| < |A4] it also satisfies the condition:

C(AA): It A: e, E =* O then for every ¢’ € F the following implication holds:
if [o] is never applied to the RHS of the descendants of ¢’ in A then [o]
is never applied to the RHS of the descendants of ¢’ in A’.

This condition is used in the proof of case 2., where we construct an LNC—refutatlon

with a new parameter-passing equation.
Case I. Assume n = m. Then we distinguish two subcases:

(a) m = 0. Because property (a) holds, A is of the form A [ REGE g for TR
t,E =30 and we can take A’ = A>1 Obviously, C(As1, A') 1mphes C(AAN).

(b) m > 0. Because of property (a), the first LNC-step of A coincides with the last
[o]-step to an a-descendant of f s,, & t. Therefore, we can write:

A:fsm mE, E=) 5 upor S Sm—-1 R [ Upn1,5m R Um, 7R E =3 D
From Lemma 11 we know that As; contains a sub-refutation:
A sy muy, ..., S5m R Un, PR E = 0

such that |A/| < |As1] < |A| and C(A51, A). Also, C(A51, A”) implies C(A4, A”).
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Case II. Assume n > m. We distinguish the following situations:

1. A starts with a [d]-step. Then ¢ = ¢; ¢, for some terms #;,¢2 and we have:
A:fspmity e, E =g f snaa %tl,s,; rity, E =50

Since As; has properties (i) and (ii), from the induction hypothesis we infer
the existence of B € WF of the form:

B:G{=(s1®u1,...,5m R Um,T Smpin-1 X l1,5, N2, E) =5 0O

such that [B| < |A»1| and C(A51, B) holds. Also, C(As1, B) implies C(4, B).
Let Bs; be the sub-refutation of B such that

B>,‘ : G2 = (T’ Smtin—1 ~ tl,Sn ~ tz,E)ol é‘gg (]
We cohstruct the LNC-refutation

A’:Gl.:sl R UL, - Sm A U, T Smiln Nty by, B
7—‘};1 G' (7’ Sm+ln N 1y ta, E)01
=1[d] Gy = (7‘ Smtln-1 i1, 5, & t2,E)61 b’ O

where the first ¢ steps of A’ coincide with those of B and A>(1 )= = Bs;. Then
A’ € WF and IA’[—"1+J+1— |B| +1 < |As1|+ 1 = |A]. Since B € WF, we
deduce that A’ € WF. Moreover, C(4, B) implies C(A4, A").

2. A starts with an [o]-step to the LHS. Then A is of the form:

A:f8a ®UEh veort [ Sno1 M hvi i, sp o, 7 &t E=3 0

where k = arity(h) > 0. From the induction hypothesis for As;, there exists
B.€ WF of the form

B:Gi=8518U1,...,5m B Un, T Smyin_1 B h Vi_1,8, R vp, 7’ =t, E =5 0

such that [B| < [As1] and C(As1, B). From the validity of property Pj(A>1)
we deduce that [o] is never applied to the RHS of descendants of the equation

 tp, & vp-in Asq. From C(As1, B) we have that [o] is never applied to the RHS
of the descendants of ¢, = v; in B. Let Bs; be the sub-refutation of B such
that By : Go = (r sp—1 ® h Vi_1,5, R vp, 7’ &t E’)Hl :>] 0. We construct
the LNC-refutation:

A’:Glzsl RUL, ..o, Sm R U, T Smpin T, E
3‘91 (1” Sm+1n i E)01
:>[o]hvk—>r’ G2—(r Sm4+1,n— Ithk 1,Sn~’l}k,’l° st E)gl :>] ]

where the first 7 steps of A’ coincide with those of B and A’> G+1) = B>;.
Then |A’| = |B|+ 1 < |451|+ 1 = |A|. From our previous remark that no [o]-
steps are applied to the RHS of descendants of ¢, ~ v we deduce A’ € WF.
From the construction of A’ and the fact that C(As1, B) holds we infer that
C(A, A") holds too. '

3. A starts with an [i]-step to the LHS. Then:

A:f sn 2, E =l o={ors; 23} (f Sn—1® 21,8, B 22, E)o =5, 0
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An application of the induction hypothesis to A1 reveals the existence of a
B € WF of the form:

B (81 UL, ... 5m & Un, T Smiln-1 N L1, 50 R &2, B)o =4, O

such that |B| < |As1| and C(A>1, B). We distinguish two subcases:
(a) =z € Var(f sn). Then zo#’ is normalized because A € WF. We can now
apply Lemma 17 to B and obtain A’ € WF of the form:

A 151U, 8m R U, T Smtin R &, E =0 O

such that o6’ = 6” and |A’| < |B|+ 1. But ¢#’ = 6 and hence 6" = 6.
Also, |A'| < |B]+1 < |As1]|+ 1 = |A|. From the construction of A’ from
B given in the proof of Lemma 17 results that if [o] is never applied to the
RHS of descendants of e € E in B then [o] is never applied to the RHS of
descendants of e in A’. This observation together with C(As>1, B) implies

C(A,A).

(b) = & Var(f sn). Then & & Var(s1 = ui,...,5m & Un,” Sm41,n—1,5n) and
we can again apply Lemma 17 to construct from B the desired A’ € WF
with property C(4, A"). . n

'*Lémma 19 Let A € WF be of the form
CAizs,mt,E=0 ' (3)

such that there exists a first [o]-step of A which is applied to the LHS of an a-
descendant of z s,, & ¢ and all the [i]-steps which precede it are applied to the LHS.
Then there exists.a fresh variant f ugy v, — 7 of a rewrite rule such that:

(a) 0<m <, ‘ ; :
(b) The last [o]-step to an a-descendant of z s, ~ ¢ is of the form

Ay (s = )01, B v
=ol,f ux Vi—r (f Sm—1® f Ut Vi—1,5m R Um, T Smiin R ', El)gl

(c) There exists a A’ € WF of the form:
A (51 RV, 8m R U, T Sy R L, E)o =5 0O )
with ¢ = {z — f u;} such that ¢¢’ = 6 and |A'| < |A].

Proof. We note that the a-descendants of parameter-passing equations are par-
ameter-passing equations. Since the first [o]-step to an a-descendant of x s, ~ ¢
is applied to the LHS then, because of property Pp)(A), all the [o]-steps to a-
descendants of z s, ~ t are applied to the LHS. Also, because of property Ppj(4),
all [i] steps between the first and the last [o]-step to an a-descendant of z s, ~ ¢
are applied to the LHS. Therefore, the last a-descendant of z s, ~ t to which an
[o]-step is applied is of the form (z s,)0 = t'6; with m < n.

We prove now that m > 0. Assume that m = 0. Then from the applicability
of an [o]-step to the LHS of (z sp)01 = t'6; we deduce that z € D(6;). Also,
by Corollary 3, the term z6; is reducible. Since this contradicts property 1.(b) of

" well-formedness for A, we must have m > 0. From Lemma 14 we deduce that the
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variant of the rewrite rule employed in the [o]-step to the LHS of (z s,,)0; = '6;
can be written as f ug vy, — r. Thus, conditions (a) and (b) hold.

We prove now that condition (¢) also holds. Consider the sub-refutation A of A
that starts with an [o]-step applied to the LHS of the a-descendant (z s,, = ¢')6;
of z s, ~ t. This refutation starts from a goal of the form Gz = (2 sm ~ t')01, E’.

Since A € WF, it is of the form:
Z :Ga :>[o],f Wi Vip—r (xal) S;n—l ~ f ur Vrﬁ—lysén R U, TR t,gl;E, =*0

where s, = s;0; for 1 <i < m. Since the first step of this sub-refutation is also the
last one to an a-descendant of z s, &, we deduce that the following m — 1 steps
must be [d]-steps. Therefore we can write:

A:G=p Ga= (z sm = t")01, E’

=olf ux vmor (£01) Sp_1 A W Vim_1, Shy R U, 7 2 101, E' (5)
:>E(’i‘]-1 20 = f ug,|si vl |sh, | ra 6, B =0

The equations displayed within boxes are descendants of the parameter-passing
- equations generated from the equation (x s, =~ t')f; € G2. They are used in
specifying the property Ca(A4, A’) defined below.

We now prove by induction on |A| the existence of A’ € WF. In the proof we
- make use of the property that the condition C(4, A’) = C1(A4, A’) A C2(4, A’) holds
in each induction step. Here, C1(A4, A’) and Cy(A, A’) are defined as follows:

Let A and A’ be the LNC-refutations under consideration of the forms given in (3)
~and (4). Then:

C1(A, A’ :for every ¢’ € E, if [0] is never applied to the RHS of descendants of
e’ in A then [o] is never applied to the RHS of descendants of ¢’ in A’

Ca(A, A’) : assuming A is written in the form (5) described above then for every
i€ {1,...,m} the following implication holds: if [v] is the only LNC-
step applied to a descendant of s; & v; in A then [v] is the only
LNC-step applied to a descendant of s; ~ v; in A’.

First we note that because of assumption (ii) A can not start with a [v]-step or a
[t]-step. We distinguish three possibilities for the first LNC-step of A:

Case I. A starts with an [i]-step. Then ¢ € V. Because of assumption (ii) we must
have n > 0. In this case A can be written as:

A G =0, (too) sp_y & 21,5, & 22, Fog =* 0O

where o9 = {t + @ 22} with z;,22 € V fresh variables, s/ = s;op for 1 < i < n.
We further distinguish two subcases:

1. ¢ = z. Then A is of the form
A:G =0, 21 B2 S,y R T1, 8, N B2, Fog =4, O
where 08" = 0, and the sub-refutation A of A can be written as:

ZZ G2 = (171 9 8y N t')61, E’
DoLf ux vm—r (£1 L2 Smo1 R f Uk Vi1, S & U, & 80, B =* O
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The equation (21 2 s;, & 1')0; is an a-descendant of 2; 3 s],_; & z; obtained
by applying a sequence of [d]-, [i]- and [o]-steps. Since [i}- and [o]-steps of this
sequence are applied only to the LHS, we have Var(z; z3 sji_; = z1)ND(61) =
{z1} and Var(z, z2 sii_; = 21)NIm(61) = 0. Therefore z5 ¢ D(01)UVar(z161).
From Lemma 14 we deduce that £ > 1. Since A € WF, we can write:

A:Gy= (l‘l Lo Sm N t’)gl,E'
7 ' 7 74
=0,/ ur vm—r 1 T2 Spp_1 R Wk V1,5, X U, TR L 6, F

=T 10~ [ upoy, ErRugl|s] R vi) -5 & vm|r & 001, B =0 0

where the equations displayed within boxes are descendants of the parameter-
passing equations generated from the equation (21 2 s, = )61 € Ga. Since
zo & Var(z161 = f ux_1), we can further write

A>m+1 : :c101 ~ f Up—1, (272 U,y 81 RV, Sm R Uy, TR t')gl,E’
?32 To & upbs, (81 R Vye-- ,Sm R U, TR t’)9192,E"92
=>m=>"0

We can now apply the the induction hypothesis to As1 € WF and deduce the
-existence of a well-formed LNC-refutation A" of the form:

(682 Uk, 51 R V1, - .. y8m R Um, T Smgl,n—1 R 81,8, R xz,E)O’oo”l =>Zm a
“where 01 = {21 — f uk-1}; |4”| < |A>1|, and C(451, 4”), and 616" = ¢".
From the assumption Ca(As1, A”) and the observation that [v] is the only step

“applied to an a-descendant of z5 ~ ug in A we conclude that the first LNC-step
to (z2 & ug)ogor = Tz & u must be a [v]-step. Hence:

"o, *
i :(s1Rv1,.. ., 5m R Un, T Smiln—1 R T1,50 R zg, E)ogo1{zs — up} =" 0O

Note that ooo1{z2 — ur} = {z — f ug,z1 — f ur_1,22 — uz}. Because
o = (0001{22 = Ut} [Var(s1mv1,. s mAUm,T Smar,nen E)> WE CBD Write:

" . °
AL, (31' RV, .-y 85m R Um, T Smipln—1 R [ Uk—1,8, ug, E)o
=t (P Smaino1 & f Wpo1, 80 R up, B)or =7, 0

~ 'We perform the following construction of A’ from A%, :

4/ : (51’ RVL, . 5 5m R U, T Smpin R, E)o =2t (rin = f wg, E)on
=a) (7 Smy1,n—1 = [ g_1,80 R ug, B)ony =7, O '

where the first i LNC-steps of A’ coincide with the first ¢ LNC-steps of AY; and
ALy = A%, Then A" is well-formed and satisfies the requirements of our
lemma. The validity of C(A, A’) results from the way in which A’ is constructed
from A” and from the property C(As1, A”).

. t# z. Then A is of the form

A:G =00 T Sp_q N T1, 5, R T3, Eog =50 O

where 000;’ = 6. By the induction hypothesis for A5 there exists a A” € WF
of the form: ' '

", *
A" (51 V1, ..., 5m B U,y T Smpln—1 R 1,50 N Za, B)ogo =5 O
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such that o6y = 0", [A"] < |A>1| and C(As1,A”). Since 690 = oop, we can
write A” in the form

"i(s1 RV, 5m R Um, T Sl N 1,8, N &2, E)oog =5, 0
An application of Lemma 17 to A” yields the desired A’ € WF. .
Case II. A starts with an [o]-step. We distinguish two cases: -

— n = m. Then this step is also the last [o]-step to an a-descendant of z s, ~ ¢.
We have then:
A:zs,~t FE
i[o]f ap Vmor ESmo1 R f U V1,5, R Uy, rREE
:>[d] :czfuk,slmvl,‘..,»smmvm,r%t,E
Dilo={o—s wm} (51 R V1, ..., 5m R Un, 7R 1, E)o =5, 0

and we can choose A’ = A5y
— n > m. In this case we have:

Aizs,mt, E=011, st TSp_r Rl syl P =t E=0
’ [oLhh I2 ) H ] o

By the induction hypothesis for A5 ; we infer the existence of A" € WF of the
form:

(51 ™V, 5 R U, P Spi—1 R, sy g t;E)O' =3 0
such that 60’ = 6, |A”| < |A>1| and C(As1, A”). Let 4 > 0 such that:

(51 RV, S R U, P Smpin-1 R, sy R g, 7 &1 E)o
=0 (rsmyrn—1 R bty & o, 7 &t E)od’ =* 0

We construct:

A (511, 5m R Um, T Smgin R, E)o 20 (P Smyrn & 8, E)od’
:’[o],li Ip—r! (7’ Sm4i,n-1~ h,sp =l 't E)o'a' =0

such that the first ¢; steps of A’ coincide with the first i; steps of A” and
AL, o = AY;, . We notice that [A'| = |A"”|+ 1 < |451]+ 1 = |A]. We must
show that A' E WZF. Because A” € WF, we only have to show that in A’ there
are no [o]-steps applied to the RHS of descendants of the parameter-passing
equation (¢, = I3)oo’. We note that (s, = l3)o is a parameter-passing equation
in Ay and therefore [o]-steps are never applied to the RHS of the descendants
of (t, = l2)o. From C(As1, A”) we infer that in A” [o]-steps are never applied
to the RHS of the descendants of (s, = l)o. From the construction of A’ it is
easily seen that also in A’ [o] is never applied to the RHS of (s, & l3)o¢’.

The validity of C(A, A’) results from C(As, A” ) and the construction of A’
from A”.

Case III. A starts with a [d]-step. Then n > 0, ¢ = ¢; t5 for some terms #1,%» and:
Azs,~t tz,E:>[;i] ZSp_1xX1%1,8n N‘tz,E:>; O

and we can apply the induction hypothesis to A, and obtain a well- formed LNC-
refutation:

"
(51 RV, .., Sm R Um, T Smpin—1 R 1, Sy R lo, E)o = O
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with 08’ = 0, |A’] < |As1| and C(As1, A”). Let 41 > 0 such that:

A (51 RV, - 38m N Unm,y T Smtln-1 ~ tl,sn ~ tg,’l”' r"dt,E)O'
= (r 8,1 ™ 1,5, B iy, B)oo’ =* 0

Then we define 4’ as follows:

A (51 R V1, Sm R Um, T Smyln R L E)T =Y (7 Smy1n Rt t2, E)od’
=[d] (7' Smiln-1 11,5, = tg,E)O‘O’I =*0

where the first 71 steps of A’ coincide with the first ; steps of A” and A'>z-1 41 =
A, .Then A’ € WF and [4"| = |A"|+1 < [A51]|+1 = |A|. Also, property C(4, A')
follows from C(As1, A”) and the construction of A’ from A”. n

4.4 The Completeness Theorem of LNCA

Lemma 20 Let R be a confluent ATRS and G be a goal. For every well-formed
LNC-refutation A : G =} O there exists an LNCA-derivation B : G = G and
a well-formed LNC-refutation A’ : G; =}, O such that ¢’ = ¢ [Var(G)] and
|| < |Al.

Proof. Let G = s ~ ¢, E. We distinguish the following cases:

(1) No [o]-steps are applied to a-descendants of s ~ ¢ in A. We have to consider
the following cases:
(la) s = f sy and t = g t,. According to Lemma 8, we must have f = ¢
and n = m. According to Lemma 9, there exists a A’ € WF of the form
Al:isy =1y, ..., 8, ® iy, E =} Osuch that |A’| < |A|. Then, for:

B:GEfSnzftn,Eé[df]G1
Gi=s1&1t1,...,5, Ry, E,
=0,0=c¢

the conclusion of Lemma 20 holds.

(1b) s = ¢ is of the form a s, = z t, with m > n. This case is covered by
Lemma 16. , ‘ ‘

(1c) Otherwise, s & t must be of the form f s, ~ z u, withm < n. According to
Lemma 10, there exists an [0]-step in A which is applied to an a-descendant
of s &~ t. Since we assumed the contrary, this case is impossible.

(2) The first [o]-step is applied to the LHS of an a-descendant of s ~ ¢. By Lemma 7,
there exists A” € {A, ¢swap(A4, 1)} such that all [i]-steps before the first [o]-step
are applied to the LHS and the first [o]-step is applied to the LHS. According
to Lemma 6, A” € WF. Assume:

A":as,mrE=430

where a € F UV. We distinguish two cases:

(a) a = f € F. Let m = arity(f). From Lemma 18 we infer the existence of a
fresh variant f u,, — r of a rewrite rule with m < n and of an A’ € WF of the
form

Al sy UL, ., 8, R U, P S R E =50
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such that |A’| < |A|. We note that we can choose B to be:
B:fs,~ r',EE[Oﬂ,f U 51 R ULy, S5m R U, T Smtin N v E

(b) a =z € V. By Lemma 19 we can assume the existence of ‘a fresh variant
f u v, — 7 of a rewrite rule such that 0 < m < n and of an A’ € WF of the

form:
A (51 RV, .., 8m RV, T Sy R, E)e =25, 0

with o = {z — f u} such that 06’ = @ and |A’ | < |A|]. We can now consider
the [ov]-step of LNCA:

B:G=(zs,~7,E) ,
_ ’
3[ov],o,f g Vo —T G = (31 RV, -, 8m B Uy, T Sy n T )E)0'~

The first [o]-step is applied to the RHS of an a-descendant of s = ¢. Then
obviously the first [o]-step is not preceded by [i]-steps, and in @suap(A,1) the
first [o]-step is applied to the LHS. This case reduces to case (2). |

Theorem 4 Let R be a confluent ATRS and G a goal. For every normalized
solution § of G there exists a successful LNCA-derivation such that ¢’ < 8 [Var(G)].

Proof. By Corollary 2 and induction on [A] using Lemma 20. |
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