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Abstract

It is well known that inefficiencies occur in the use of resources of computer,
telecommunication and traffic networks when routing decisions are taken by the
users. The famous Braess paradox which was originally identified and observed
in road traffic context, showed that it may happen that by adding capacity
to the network, the performance of all users degrades. This paradox has long
been known in a framework called the Wardrop equilibrium, in which there are
infinitely many individuals (such as car drivers) and in which the decision of
one single individual has a negligible effect on the performance of the other
indivuduals. Another framework in which such a paradox may occur is that of
the Nash equilibrium in which there are a finite number of players, and in which
the decision of each player has nonnegligible effect on the other players. It is
known that the Nash equilibrium converges to the Wardrop equilibrium when
the number of users becomes large. It is thus natural to expect the same type of
paradox in the Nash equilibrium context (for a large number of players), whenever
it occurs for the Wardrop equilibrium. In this paper, we present cases where a
paradox similar to that of the Braess appears in a Nash equilibrium but does
not appear in a Wardrop equilibrium in the same environment. We consider the
model of load balancing in distributed computer systems. We further establish
the uniqueness of the Nash equilibrium for this problem.

Keywords: Braess paradox, Nash equilibrium, Wardrop equilibrium, performance op-
timization, distributed computer system, load balancing.

1 Introduction

In many systems including communication networks in distributed computer systems,
transportation flow networks, etc., we have several distinct objectives for performance
optimization. Among them, we have three typical objectives or optima:
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(1) the system-optimum, overall optimum, or social optimum, where a certain overall
and single measure like the total cost or the overall average response time is to be
optimized. We call it the overall optimum here.

(2) the individual optimum, Wardrop optimum, or user optimum by some people;
where each of infinitely many individuals, users, or jobs cannot receive any benefit by
changing its own decision. We call it the individual optimum here.

(3) the Nash noncooperative optimum, class optimum, or user optimum by some other
people, where each of a finite number of users, classes, or players cannot receive any
benefit by changing its decision. We call it the class optimum here.

Actually, (3) is reduced to (1) when the number of players reduces to 1 and ap-
proaches (2) when the players are symmetric and the number of players becomes in-
finitely many [4].

We can think that the total processing capacity of a system will increase when
the capacity of a part of the system increases, and so we expect improvements in
performance objectives accordingly in that case. The Braess paradox tells us that this
is not always the case; i.e., increased capacity of a part of the system may sometimes
lead to the degradation in the benefits of all users in a Wardrop equilibrium [1, 2, 3, 4].
As it is known that the Nash equilibrium converges to the Wardrop equilibrium as
the number of users becomes large [4], it is thus natural to expect the same type of
paradox in the Nash equilibrium context (for a large number of players), whenever it
occurs for the Wardrop equilibrium. Indeed, Korilis et al. found examples wherein the
Braess-like paradox appears in a Nash equilibrium with symmetric user classes where
all user classes are identical as well as in a Wardrop equilibrium [10, 11].

On the other hand, it has been observed that the increased capacity of a part of a
system may lead to somewhat awkward behavior in terms of a system wide measure
[5, 6, 17]. In particular, Kameda et al. found a seemingly anomalous case where in a
Nash equilibrium each of two processing nodes (servers) forwards the same type of jobs
mutually to be processed by the other node, thus incurring additional communication
delays [6].

In this paper, we consider a load balancing problem for distributed computer sys-
tems and give examples wherein the increased capacity of a part of a system would
degrade the benefits of all classes in a Nash equilibrium whereas it should not degrade
the benefits of all classes at the same time in a Wardrop equilibrium in the same en-
vironment. Our model has asymmetric classes; i.e., classes are not identical. In doing
so, we have established the uniqueness of the Nash equilibrium for the new class of

problems.

2 The Model and Assumptions

We consider a model consisting of two nodes (hosts) and a communication means that
connects both nodes. Nodes are numbered 1 and 2. Each node consists of a single
exponential server with service rate p; (1 = 1,2). Node 7 has the external Poisson
arrival with rate ¢;, out of which the rate z;; of jobs are processed at node 7. The
rate z;; (¢ # j) of jobs are forwarded through the communication means to the other
node j to be processed there, and the results of those jobs are returned back through
the communication means to node :. Then we have z;; + z;; = ¢; (¢ # j), zi; > 0,



2,7 = 1,2. We denote the vector (z1;, 212, Z21, Z22) by . We denote the set of ’s that
satisfy the constraints by C and let & = ¢; + ¢,. Within these constraints, a set of
values of z;; (¢,7 = 1,2) are chosen to achieve optimization. Thus the load on node
¢ is i + 24 (¢ # j) and is denoted by ;. Then, the expected processing (including
queueing) time of a job that is processed at node ¢, is 1/(u; — ;) for B; < w; (otherwise
it is infinite).

As to the communication means, we consider two alternatives.

(A) The one is a single-channel communication line that is used commonly in for-
warding and sending back of jobs that arrive at both nodes. We assume that the
expected time length of forwarding and sending back a job is to be

t
1 — (212 + 291)1
if 13 + 291 < 1, and is otherwise inifinite, where A = x5 + x9; is the network traffic.
That is, we assume the communication channel is modelled by a processor sharing

server with service rate 1/¢; i.e., the mean communication (without queueing) time is
t, and, thus, the capacity of the communication line is t.

G(\) =

B, B,

D) X1

H,

I node 1 node 2

0, P,

Figure 1: The system model. (case (A))

(B) The other consists of two-way communication lines 1 and 2. One two-way line 1
is used for forwarding of a job that arrives at node 7 (and for sending back the processed
result of the job). The assumption on the line is the same as (A) except that there are
two lines each of which is used only for jobs arriving at one node and is not used in
common by two nodes. Thus the expected communication (with queueing) time of a
job arriving at node : and being processed at node 7 ( # ¢ ) is expressed as

t
1- .’Eijt

Gi(zi;) =

if z;jt <1 (and is otherwise infinite). For case (A), (1/t) — z;; (1 # j) is the amount
of the line capacity left to be used by node 7 in forwarding the jobs arriving at node 3.
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Thus, clearly, the communication capacity for case (B) is greater than or equal to that

for case (A).

B, B,

X2

M,
X1

I node 1 node 2

0, P,

Figure 2: The system model. (case (B))

We refer to the length of time between the instant when a job arrives at a node and
the instant when a job leaves the node, where it has arrived, after all processing and
communication, if any, are over as the response time for a job arriving at the node.

Thus the expected response time of a job that arrives at node ¢ is

Ti(xz) = % ; i Tik(2),

where
B 1
pi — P
if B; < p; (and it is otherwise inifinite), and for j # ¢,
1 L t
pi =B 1= (2 + 2t
1 t
+ , for case (B).
pi—B; 1 —wit ®)

(The above expressions hold, again, only for positive values of denominators, and are
otherwise infinite.)
Then, the overall expected response time of a job that arrives at the system is

T(@)= 5 4T

Ti(=)

Tij(z) = for case (A),

We have three optima, the overall, the individual, and the node.
(1) The overall optimum is given by such Z as satisfies the following,

T(Z) =minT(z) with respect to z € C.

4




The solution Z is characterized by the Kuhn-Tucker condition or the following vari-

ational inequality,
{(z)(z—z) >0 forall zeC

where #(z) = ( 0 oT 0 oT 0 oT 0 OT') as seen from [7].

8$11 ’ 821312 ’ 811321 ’ 03322

(2) The individual optimum is given by such Z as satisfies the following for all ¢,
Ti(z) = l’gél;’l{Tm(i), T.;j(®)} such that ze€ C
The solution Z is characterized by the following variational inequality,
TZ)(z—z)>0 forall z€C
where T(z) = (T11(z), T12(x), To1(x), Toa(x)) as seen from [7].

(3) The node optimum is given by such & as satisfies the following for all 7,
T:(®) = minT;(z), with respect to x4, z;; (7 #4), suchthatze C.
The solution Z is characterized by the following variational inequality
z)(z—%) >0 forall z€C
where
i) =

We are sure of the existence and the uniqueness of the overall, individual, and node
(class) optima for the model given here. For the existence and uniqueness of those

optima see Section 5.

0

81‘11

P11, 0 o1y, 0 P15, i@ﬂ) as is shown similary as above.
019 Oza 0y

Remark 2.1 Note that, there should be no mutual forwarding in overall and individ-
ual optima. That is, in overall and individual optima, either one of «;; (¢ # j) must be
zero in case (A) due to [16] or to Section 2.2.2 of [5] and in case (B) due to [12]. And
thus, when one of z;; (1 # j) say z;; is non zero, T;(z) decreases and 71}(z) increases
with the increase of ¢ as shown in Theorems 2.5 and 2.7 of [5].

3 The Numerical Experiments

We examined the cases of the following parameter values of the model given in Section

2.

¢, = 100(jobs/sec), &2 = 20(jobs/sec)
w1 = 120(jobs/sec),  pa = 25(jobs/sec)

The value of the communication (without queueing) time parameter ¢ is varied from
0 (sec) till 1 (sec) in steps of 0.005 (sec), i.e., ¢ = 0, 0.005, 0.010, 0.015, - -- , 1.

The algorithms used to obtain the overall and individual optima are based on the
algorithms given in [8, 9]. The algorithm for the node optimum is obtained similary as
above.



4 Results and Discussion

Figures 3 and 4 shows the overall mean response time with various values of the mean
communication time parameter ¢ for overall, node (class), and individual optima for
cases (A). Note that the overall and individual optima must be identical for cases (A)
and (B). Only node optima for cases (A) and (B) may be different from each other.
Figures 5 and 6 show the values of node optimal 77 (Figure 5) and 73 (Figure 6) with
various values of ¢ for the cases (A) and (B). We can observe the Braess-like paradoxes
for node optima in three ways.
(I)  For case (A) with the decrease of ¢.
(IT)  For case (B) with the decrease of t.
(ITT)  With the increase of the line capacity from case (A) to case (B).
That is, there are chances that both 7} and T3 increase with the increase of the com-
munication line capacity as in (I), (II) and (III).

Paradox (I) for case (A)

In Figure 6, for 0.08 < ¢ < 0.12, we see that there are sets of two values of ¢ for
which 77 and T, with the smaller value of ¢ are greater than T} and 7, with the larger
value of ¢, which looks paradoxical. For example, consider the case with ¢ = 0.08. Then

T11 = 0058, T12 == 0299, T21 = 0228, ng = 0128,
z11 = 98.060..., 10 =1.939..., zg9 =4.707..., 39 = 15.292....

Therefore, by noting that Tl = ($11T11 + $12T12)/¢1, T2 = ($21T21 + $22T22)/¢2,
Ty =0.0627..., T, =0.1522....

Furthermore, consider the case with ¢ = 0.11. Then

T11 - 006(), T12 - 0294, T21 - 0236, T22 - 0118,
11 = 1000, Ti9 = 00, To1 = 3405, ZTog = 16.594....

Therefore
Ty = 0.0602..., T, = 0.1389....

Paradox (II) for case (B)

Similary as above, in Figure 6, for 0.08 < ¢ < 0.12, we see that there are sets of
two values of ¢ for which T and T, with the smaller value of ¢ are greater than 77 and
T, with the larger value of £, which looks again paradoxical. For example, consider the
case with ¢ = 0.08. Then

T11 = 0056, T12 = 0249, T21 = 02147 T22 - 0135,
i1 = 96238, L1 = 3761, L9l = 61617 Tog = 13.838....

Therefore
Ty = 0.0640..., T, =0.1596..., for ¢ =0.08.

Furthermore, consider the case with ¢ = 0.11. Then

T11 = 0060, T12 - 0228, T21 = 0236, T22 = 0118,
T11 = 1000, L1 = 00, T91 = 3405, oo = 16.594....



Therefore
T, = 0.0602..., T, =0.1389..., for ¢ =0.11.

Paradox (IIT) between cases (A) and (B)

We can see for 0.06 < t < 0.1, both 77 and 75 of case (A) are smaller than T}
and Ty of case (B), respectively. Clearly, this looks paradoxical. That is, although the
system in case (B) has a larger communication capacity than in case (A), the expected
response times in case (B) for both nodes are larger than the corresponding values
in case (A) at the same time. We show the details of some case as an example. For
example, consider the case where ¢ = 0.08. Then as given (I) and (II) in the above.

We have
For (A) : Ty = 0.0627..., T, =0.1522...,

For(B): Ty =0.0640..., T, = 0.1596....

Note again that the communication line capacity for each node in case (B) is greater
than or equal to the communication line capacity for the node in case (A). In the overall
and individual optima, there are no differences between cases (A) and (B). Recall what
we noted at the end of the previous section. Only in the node optimum, the mean
response time of each node (class) in case (A) is worse than that of the node (class) in
case (B).

As we saw in the last few statements given in Section 2, for individual optima,
such a Braess-like paradox as given here would not occur. Figure 7 shows the values
of individual optimal 7} nad 75 with various values of {. Those values are identical
for both cases (A) and (B). And we can see that 77 and T3 for a value of ¢ cannot be
greater than for another value of ¢ at the same time, which is not paradoxical.

5 The Uniqueness of the Optima

As described near the end of Section 2, the model given here has the unique values for its
overall, individual, and node optima. The uniqueness for overall and individual optima
has been given in a more general setting [7], and in Subsection 5.1, we show how the
uniqueness for this model can be derived from the general setting. The uniqueness of
the node optimum for this model has not been shown yet, and we show it by extending
the result of [13]. Thus we present the proof in the setting as general as possible here in
Subsection 5.2. We also give some properties of the node optimum that can be derived
theoretically in Subsection 5.3.

5.1 The Uniqueness of the Overall and Individual Optima

We show in this subsection the uniqueness of the overall and individual optima for
cases (A) and (B). Optimization in the models of this paper is regarded as optimal
static routing in open state-independent BCMP queueing networks as defined in [7] in
the following way.

Case (A): In the open BCMP network corresponding to the model of this paper, there
are three single-server service centers, node 1, 2 and communication channel ¢, and
two sets of an origin and a destination which are service centers with zero service time.
Jobs arriving at node : of the model arrive first at origin ¢ of the BCMP network, 4
= 1, 2: From origin i, each job passes through one of two paths: the one is ‘origin 1

7



— node ¢ — destination ¢’, and the other is ‘origin 7 — communication channel ¢ — node
J (J # 1) — destination 7’. (We can make the latter path to look more realistic by
changing its part ‘node j (j # ¢) — destination 7’ to ‘node j (5 # ¢) — communication
channel ¢ — destination ¢’, but this is no essential change in modelling.) The rate of
jobs passing through the one and other paths are ;; and z;; (7 # 1), respectively.
Thus we can apply the theorems 3.4 and 4.4 of [7] and show that the utilization

factors py, p2 and p. of nodes 1, 2, and communication channel ¢ are unique in both
overall and individual optima. Since we have two independent variables z,; and z,
and two independent equations.

T11 + Pg — Taz = p1pa,

$1 — T + Py — To = pe/1,
we see that z is unique in both overall and individual optima in the model.
Case (B): We can show the uniqueness similarly as in Case (A).

5.2 Uniqueness of the Node Optimum
5.2.1 Extending the Model

We show in this subsection the uniqueness of the node optimum or Nash equilibrium
for both case (A) and case (B). We shall consider a more general cost, and the more
general topology.

More precisely, let there be K sets of classes: K; 1 = 1,..., K where K; contains k;
classes of jobs. The set K; corresponds to the classes that send jobs originally to node
¢. Each of these classes can decide to route part of his flow to node 7, 7 # 1 through
a communication line. We consider the problem of uniqueness of the equilibrium in
which each one of the classes minimizes its own average delay. Denote K = UL K,.

We extend the notation from the previous section in the natural way as follows:

") the input arrival rate of class r.

azg) the flow originating at node ¢ by class r that is processed at node .

xf;) the flow originating at node ¢ by class r that is processed at node j.

x the set of all flows, i.e. x = (w(’f) rekKyi=1,.,.K,j=1,..,K).

iy
x;; the set of flows through link (z,7), i.e. x;; = (:v,(-;), r € K;)).

0B; the total load on node 17, i.e. §; = Zfil 2orek; xgz)
Ai; the total flow forwarded from node z to node j.
A the total network flow, i.e. A = 3K Dt Aig-

In case (A) we assume that there is a single communication bus through which
all network traffic flow, whereas in case (B) we assume that every two processors, say
¢ and j, communicate through two links: ¢7 and j:. ¢ corresponds to jobs that are
forwarded from processor i to be processed at processor j (and are then returned to
processor ¢ through the same link once processed).



We define £4 and Lp to be the set of system elements for cases (A) and (B)
respectively; £, contains the set of nodes as well as the communication bus £, =
{1, ..., K, c} (where c stands for the communication bus). £p contains the set of nodes
as well as the set of links L ={1,...,K,(17),1 =1,..., K,5 #1}.

Associated with each system element [ and each class r, there is a cost J, (- )( ).

We allow for a more general cost J(")(x) for each class r. We make the followmg
assumptions on the cost, which ensure the existence of an equilibrium.

G1 J® is the sum of the local processing cost and the communication cost for class
r where the latter are only functions of their local flow rate; i.e. in case (A) we
have

K
JO) =2 J7 () + I (x)
i=1

and for case (B) we have for r € K;

= i (J(T) (x) + ZJ(T)(XJ, ) .

J=1 £y

G2 J,(r) are continuous functions whose range is the nonnegative quadrant and their
image is [0, oo].

G3 Jl(r) are convex functions in the rate sent by class r over the system element [.
For example, if [ is a processor and r € K; then Jl(r) is assumed to be convex in

s

G4 Whenever finite, J;" ™) s continuously differentiable in the flow sent by class r to
system element [. We denote by K l(r)(x) the partial derivative of Jl(r)(x) with
respect to the flow sent by class r to system element /.

G5 If not all classes have finite cost and one of the classes has infinite cost then it
can change its own flow to make this cost finite.

G5 ensures that any equilibrium has finite costs for all players.
Lemma 5.1 Under conditions G1-G5 there exists an equilibrium.

Proof: The proof follows from Theorem 1 in [14] (see also [13]). ]

We introduce the following further assumptions on the cost that will be used to
establish uniqueness.

(11y) ]’( ") is a function of two arguments: (i) the total flow on the system element [,

and (ii) the flow that class r sends to node element /. Kl(r)

in each of its two arguments.

is strictly increasing

We note that the costs in the previous section indeed satisfy conditions (II;) and

G.



5.2.2 Uniqueness for Case (A)

For a fixed assignment of the other classes, class r is faced with a constrained mini-
mization problem. Its associated Lagrangian is given by

A (x) = JO(x) — o) Zx(") ).

x* is thus an equilibrium if and only if it satisfies the Kuhn Tucker conditions (see [15]

pp. 158-165): There exist some real numbers o), r € K such that for r € K;, 7 =1, 2,
G4

Ki(r)(x*) > ol and K(T)( )=o) if 2l > 0, (1)

KDY+ KD x> o and KOx)+ KV (x) =a® itz >0, (2)

o0 20, 3 o) = 40, (3)
j=1

We shall consider in the rest of this subsection only the case of two nodes (i.e.
K = 2) and a single bidirectional communicating link between them. (We allow for
several classes to arrive at each one of the two nodes.)

Theorem 5.1 The node optimization has a unique solution under assumptions (Il;)

and G1-Gb.
Proof: Let X and x be two equilibria such that

A > (4)
Let ¢ be such that ,é, > ;. We shall show that for all r € K;, 7 # ¢,
A(T) > xg J), or equivalently, ;%g:) < 3:52) (5)

(the equivalence follows from the constraint (3) on the sum of the flows.) (5) holds
trivially if :1;( ) = = 0, and so we have to check only the case x( ) > 0. To do so, fix some
r € K; and con51der the following two subcases. Assume that

(a) &) > o). Note that ,@Z > (; is equivalent to Bj < B; (the equivalence follows from
the constraint (3)). Hence
K@D, 85) > a0 > o) = KD 8;) > KD (@0, B). (6)

JJ’

The equality as well as the first inequality follow from the Kuhn Tucker conditions,
whereas the last inequality follows from the monotonicity assumption (II;) . Using
again the monotonicity assumption (Hl) this time for the first argument, we conclude

from the fact K(T)( N), %) > K (r)( g;), ;) that (5) holds.
Thus we try instead of (a):
(b) &) < o). (5) holds trivially if x( ") = 0. So it remains to check the case ig) > 0.
We then have for r € K; (7 # 1)
KO3, 2) + K (e, 5)

> o) >a0) = [{(T)( 5(7) j\) + K(r)( 5:)7 AZ)
> KOG N+ kD@D, 8).
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Here, the first inequality and the equality follow from the Kuhn Tucker conditions,
whereas the last inequality follows from the monotonicity of K (property (1I;) ).
Using again the monotonicity, we conclude that (5) holds in case (b) as well.

We conclude that
S el < Y (#9) (7)

rek; rek;

Combining this with ,@2 > (;, we conclude that

0> Y o0,

rek; rek;

However, since for 1 € IC;, x(r) + :L’ = ¢{") it follows that

S <y el (8)

rek; rek;

Combining this with (7) we conclude that A < X. This contradicts our assumption (4),
unless we have equality in (4).

This implies in particular that (5) holds (as we derived above). Now, if for some
r € K; (5) holds with strict inequality then (7) and (8) would hold with strict inequality,
which would imply that A < A. But since we established that (4) holds with equality,
we conclude that (5) holds with equality. By a symmetric argument we establish (5)
also for r € ;. We conclude that x = x. ]

An interesting property that can be obtained from the above proof is that not only
the Nash equilibrium is unique, but also:

Lemma 5.2 There are unique Lagrange multipliers for the node optimization (that
satisfy the Kuhn-Tucker conditions (1)-(8)) under assumptions (lI;) , GI-G5.

Proof: Assume that there are two sets of Lagrange multipliers, o and & corresponding
to the Nash equilibria x and X (where x = X due to the uniqueness). Assume that
there are some r,j for which &M > o) r € K;. It follows that (6) holds with the
first inequality being a strict one. Since K is strictly monotone in both arguments,

it follows from (6) that :fc(r) > x( ). This contradicts, however, the uniqueness of the
Nash equilibrium. ]

5.2.3 Uniqueness of the Node Optimum for Case (B)

We allow in this section for aibitrary numbers of nodes but assume that each class

corresponds to a single node.
We impose the following restriction on the model:

(IL;) : A class ¢ that decides to ship some flow to a node j # 7 should do it using a

single hop (a single communication link); it is not possible for it to use two hops (¢ to
k and then k to 7), if there is a link that connect nodes ¢ and j directly.

11



Remark 5.1 Assumption (II;) is frequently used in load balancing in distributed
computer systems. See [5].

The proof is done by transforming our problem into the following equivalent routing
problem for which the uniqueness is known.

Consider a network G consisting of two nodes: a¢ and b, and of K parallel directed
links, all from node a to node b. There are K classes of jobs 2 = 1,..., K, all having
node a as the source and node b as the destination. A class ¢ of jobs that arrives to
node a corresponds to the class of jobs that arrives in our original model to processor
7. Hence, the total arrival rate of class 7 is ¢(") as in the original problem.

Let x}r) be the rate at which class r sends over link [ (I = 1,2,...,K). These
quantities satisfy the constraints x?r) >0, =1,...,K and Zixl(-r) = ¢, With
respect to our original problem, x}r) is interpreted as the rate at which jobs of class r
are processed in processor /.

Class r determines (xgr),...,x%)) so as to minimize its cost 7(T)(§), where X =
M lelLrek)

Define x; = 3, cx xl(r). These were denoted in the original model by 3;.

The idea of the equivalent routing model is the following: we eliminate the com-
municating costs between the processors; this transforms the problem into a standard
routing problem between parallel links. In order to compensate for the 77 communicat-
ing cost that was eliminated we now add it to the cost of class 7 at processor j. Since
for any ¢ and j # 1, only class ¢ used the original communication link :7, the cost of
class 7 in link j in the new problem depends only on the total rate at that link, as well
as the rate at which jobs of class ¢ are sent to link 7. This is an assumption of type
() . Hence the results from [13] are applicable.

We now make the above precise. We assume in the new model that T is the sum

of the link cost functions: ) —)
JUX) = ZJI (%),
{

where 75?(2) are expressed in terms of the costs (J;) defined in Subsection 5.2.1 as
follows. For any 7 and any r € K;,

T@E = 1060 %),
TV®) = TP )+ L6 ) for g #.

ij
If the costs for the original load balancing problem satisfy assumption (II;) , it
follows that the costs for the new routing problem also do. The routing problem
has a unique Nash equilibrium under assumption (II;) . See Theorem 1 in [13] (that
theorem states some other assumptions which are not used in its proof). By identifying
the decision variables X in the new routing problem with the decision variables x in
the original load balancing problem, we see that the minimization problems faced by
each class is the same in both cases, and therefore we conclude that the node optimum
in our original problem exists and is unique.
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5.3 Some Properties of the Node Equilibrium

‘We consider node optimization. We use the model, the notation as well as the assump-
tions G and (II;) on the cost, described in the previous subsection 5.2.1. We further
assume (II;) (Introduced in the previous subsection).

Assume further that the cost Jl(r) of the [th system element is given by the product
of the rate of jobs that class r ships through that element and the average delay T; in
this element. For example, for r € K; we have

TN @) = 29T(8)).

We further assume that, for each I, the partial derivative of T} with respect to the total
flow through that element is strictly positive. In other words, for every node 7,

OTy(8:)/98; > 0, (9)
with similar expressions for the communication costs.

Theorem 5.2 Consider either case (A) or case (B). Let ) > 0 for all classes.

(i) Assume that at equilibrium, all the traffic of some class r € K; arriving to node i is
routed away from that node (i.e. a: =0).

Let 3 be another node to which some positive flow is routed by class r.

Consider now any s € K;. If s sends some positive amount of flow to node i then it
also processes some positive amount of flow at node j.

(ii) Consider the case of two nodes K = 2, and assume that ¢ > ¢\ r € Ky, s € K.
Assume that class s sends at equilibrium some flow to node 1.

Then at equilibrium, class r sends some strictly positive flow to be processed in node 1.

Proof: We shall prove for case (B); the proof for case (A) is the same except that the
K;; below should be replaced by K..

(i) Using the Kuhn Tucker conditions for class r and the fact that x('-ﬂ) = 0, we have
K )( (r) D) = TyB) = ot K(r (z I O+ K(T)( (r) )

7 227 z_]? J]?]

= KD N) + x£;f OT;(8;)/ 027 + T;5(8)).

¥ z] 3

Combining this with Assumption (9) we conclude that
Ti(B:) > T;(8;)-

Assume that all traffic of source s is routed away from some source s that sends positive
flow to node ¢. By using the Kuhn Tucker conditions for class s we get by the same
arguments as above T;(83;) < T;(0;), which gives a contradiction. This establishes the
proof.

(i) Assume ¢{") > ¢(9) and assume that class r sends all its traffic to node 2. We have
by (10)

Ti(B) > o > KO (), ha) + ¢D0Ty(8:) /025 + To(Be)
> (g)(ﬂﬁ@a A2) + m(s)aTz(ﬁz)/afvgsé) + T5(B2) (10)
= K3 (@), M) + K (@8, 8,) > K28, 8,)
> o) >T(6)
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The inequality (10) follows since ¢{”) > ¢(*) > xg;) and since 07%(8;)/ O:vgg) = 0T5(62)/ 5x§";) >
0. The inequality before the last follows by the Kuhn Tucker conditions. The last in-
equality is obtained similarly to (10) (and using the fact that class s sends nonzero
flow to node 1). We thus obtained a contradiction, which establishes the proof. "]

6 Concluding Remarks

In this paper, we showed the existence of some paradoxical and awkward behaviors of
the Nash equilibrium in a model of load balancing for distributed computer systems.
We secured uniqueness of the overall and Wardrop optima. We extended the previous
results and gave proofs of the uniqueness of the Nash equilibrium for the model. We
saw that the Nash noncooperative and independent decision may sometimes lead to
the degradation of performance for each member. Please note that this class optimum
is with respect to a case of nonsymmetric user classes, whereas symmetric user classes
are treated in [10, 11]. Such a paradoxical behavior does not occur for the overall and
Wardrop optimum in the same setting of the model. That may imply that the Nash
equilibrium may have more complicated characteristics than the overall optimum and

further the Wardrop equilibrium.
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Figure 4: The overall mean response time in node optima (case (A) and (B)).
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Figure 3: The overall mean response time (case (A)).
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Figure 5: The mean response time of a job that arrives at node 1 in node optima (cases

(A) and (B)).
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Figure 6: The mean response time of a job that arrives at node 2 in node optima (cases

(A) and (B)).
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Figure 7: The mean response times, 7 and 75, of a job that arrives at nodes 1 and 2
in individual optima, respectively. They have the same values for cases (A) and (B).
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