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Abstract. In this paper, we develop two algorithms for finding a directed path of minimum
rank-two monotonic cost between two specified nodes in a network with n nodes and m arcs.
Under the condition that one of the vectors characterizing the cost function f is binary, one
yields an optimal solution in Q(n®) or O(nmlogn) time if f is quasiconcave; the other solves
any problem in O(nm + n?logn) time.
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1. Introduction

A number of global optimization problems encountered in real-world applications have
some special structures which enable us to design efficient algorithms [7]. One of the
most favorable structures is the low rank monotonicity studied by Tuy et.al. [11, 13,
14]. The nonlinearity of any rank k& monotonic function f is located in a subspace of
dimension k even if f is defined on a subset of much higher dimensional space than .
Functions of this kind appear in multiplicative programming [10, 18], facility location
[15], multilevel programming [17] and certain variants of minimum concave-cost network
flows, for which even polynomial algorithms have been developed [9, 6, 16]. Especially
in multiple objective decision making, they play an important role [3, 3]. In fact, when

k2 without a common scale, a handy

a decision maker has k linear objectives c'z, ..., ¢
approach to optimizing them simultaneously is to optimize a rank ¥ monotonic function
such as f(x) = [I%,(c'x + ;) or f(x) = max{a;c’z |i =1,...,k} for some constants
;8.

In this paper, we consider a minimum rank-two cost path problem, i.e., a problem of
finding a directed path which minimizes a rank-two monotonic cost function f between
two specified nodes in a given network with n nodes and m arcs. Recently, in-car

navigation systems using artificial satellites have made it possible to find a way to
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a destination without road maps. The present systems, however, only provide several
candidates, among which a driver have to select a short and comfortable route by himself,
while driving a car. Therefore, efficient algorithms for minimizing rank-two monotonic
functions will be helpful in reducing the driver’s burden.

The organization of the paper is as follows. In section 2, we will describe the problem
formally and show that it is a A"P-hard problem. In sections 3 and 4, we will concentrate
on a class that one of the vectors characterizing the rank-two monotonic cost function
f is binary. We will develop two algorithms for solving the class: one yields an optimal
solution in O(n®) or O(nm log n) arithmetic operations and O(n?) evaluations of £ if the
cost function f is quasiconcave; the other solves any problem in this class in O(nm +
n?logn) arithmetic operations and O(n) evaluations of f. In section 5, we will briefly

discuss an application of these algorithms to the general class of problems.

2. Minimum rank-two cost path problem

Let G = (N, A) be a graph consisting of a set N of n nodes and a set A4 of m directed
arcs. Qur purpose is to determine a directed path of minimum cost from a specified
node s to another specified node ¢ in G. When the number of times the path traverses
each arc (i,j) € A is z;j, it costs f(a), where @ € Z™ is the vector of x;;5. We assume
that the cost function f : R™ — R is continuous on some open convex set D, which
includes the set X of all > O satisfying

1 fori=s
:Eij — Z xji = —1 fOI‘ i=t (21)
{ilG.5)eA} {ilGHeA} 0 foreachie N\ {s,t}.

We further assume that f is rank-two monotonic on D with respect to two nonnegative
vectors ¢' and ¢? € Z™ [12, 18]. Namely,

(i) the vectors ¢' and ¢? are linearly independent;
(ii) if 2,y € D and c*(z — y) > 0 for k = 1,2, then f(z) > f(y).

As will be seen later, f can be a convex function; but the class also involves nonconvex
functions such as multiplicative functions fi{x) = ('@ + o;)(c’*x + ;) on D, = {z €
R™ | ¢*¢ + a4 > 0, k = 1,2} and fractional functions fo(x) = c'a/(as — c*) on
Dy ={x € R" | c'e >0, a3 — c*x > 0}. For other examples of nonconvex f, see a
recent textbook of structured nonconvex optimization by Konno, Thach and Tuy [11].
We call the problem described above a minimum rank-two cost path problem, which

can be formulated as follows:

(MR2P) minimize{f(z) |z € X NZ™}.
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Under conditions (i) and (ii), an optimal solution #* to (MR2P) is given by an elementary
path P if nodes s and ¢ are connected. For suppose that P contains a directed cycle C.
Let

T} otherwise.

_{ i —1 if (i,j) €C
Yij =
Then we have ¢*(z* ~y) = ¥(; jjec ¢ > 0 for k = 1,2, which implies that. f(2*) > f(y).
The cost does not rise even if C' is discarded from P.

Problem (MR2P), though simple looking, is intractable from the viewpoint of worst-
case complexity; and in fact it belongs to the class N'P-hard. To see this, let us consider

the following recognition problem:

SHORTEST WEIGHT-CONSTRAINT PATH (SWCP) [4]

INSTANCE: Graph G = (N, A), positive length [;; € Z, positive weight w;; € Z for
each (i,7) € A, specified nodes s, t € N, positive integers K, W.

QUESTION: Is there a path in G from s to ¢ with total weight W or less and total
length K or less ?

The recognition version of the 0-1 knapsack problem, well known to be N"P-complete,
can reduce in polynomial time to this problem (see e.g., [1]); and hence (SWCP) is an
N'P-complete problem.

Choosing any instance of (SWCP), let us define a convex function:

fs(x) = max{le — K,we — W},

where | and w are the vectors of ;s and w;;s, respectively. If I and w are linearly
dependent, the instance is equivalent to an ordinary shortest path problem and can be
solved in polynomial time; therefore, we can assume condition (i) for I and w without
loss of generality. Moreover, we can see that f; satisfies condition (ii) on R™ with respect
to I and w. In other words, f3 is a rank-two monotonic function. The instance has the
‘yes’ solution if and only if G' contains an s-t path with nonpositive f3(x), which can be
verified by solving (MR2P) with f = f;. Consequently, we have

Proposition 2.1. Problem (MR2P) is N'P-hard.

In the rest of this paper, we concentrate on a class of (MR2P) where all the nonzero

components of ¢! or ¢?

are the same value. Since f is rank-two monotonic with respect
to are' and aye? for any positive ays, we can assume either of the vectors to be binary.
We then show that this class can be solved in polynomial time. Certainly, it covers only
part of (MR2P), but is substantial in practical applications. For example, in navigation
systéms, we may wish to find a route that is short in length and simultaneously has

few intersections to a destination. We will have a reasonable route by minimizing a
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rank-two monotonic function, say (dx + a4 )(ex + ;) or max{de, azex}, where a;s are
appropriate constants, e is the vector of ones, and each component of d represents the
distance between two adjoining intersections. |

Let {Ap, A, } be a partition of the arc set A, i.e., 4NA; =0 and 4g)UA, =A. In
the sequel, we assume that

) { 0 for each (i,5) € Ay (2.2)

%=1 for each (i,7) € Ay

Note that A, # (; otherwise, condition (i) is not satisfied. Also, we assume for simplicity
that network G contains a directed path from node s to node ¢. We can easily check it
by solving an ordinary shortest path problem. Under these conditions, we will discuss
the following two cases:

Case 1. f is a rank-two monotonic and continuous quasiconcave function on D;

Case 2. f is a rank-two monotonic and general continuous function on D.

3. Parametric cost algorithm for Case 1

We first show that (MR2P) satisfying condition (2.2) can be solved in polynomial time
if the cost function f is quasiconcave on D, i.e., for any @, y € D, we have

fl@ = N + Ay] > min{f(x), f(y)} for any A € [0,1]. 3.1)

The functions f; and f, given in Section 2 satisfy this condition on D, and Ds, respec-
tively [2].
Whenever f satisfies (3.1), we can omit the integrality constraint @ € Z™ and write

the problem simply as follows:
minimize{f(x) | ¢ € X}. (3.2)

The minimum of f is achieved at some vertex x* of the polyhedron X. The total
unimodularity of the incidence matrix of G guarantees that x* is an integral vector and
provides an optimal s-t path [1]. We also have the following regardless of condition (2.2):

Theorem 3.1. If f is quasiconcave on D, there is some constant X\ > 0 such that any
optimal solution to a problem

[PC(X)] minimize{c'z + A’z |z € X}
is an optimal solution to (3.2).

Proof: See Theorems 9.1 and 9.2 in [11]. |



This theorem holds true even for the problem without network structures so long as
f is rank-two monotonic with respect to ¢!, ¢?> and bounded from below on X. Tuy
and Tam [18] have used it and proposed a parametric simplex algorithm for minimizing
a rank-two monotonic quasiconcave function over a general polytope. Since (3.2) is a
special case of their problem, we can solve it in the same way as in [18].

Note that, in our case, [PC(A)] is a shortest path problem with nonnegative arc
length ¢! + A¢? for any A > 0. We can compute an optimal solution () to [PC())] in
O(m + nlog n) time, using Dijkstra’s algorithm [1]. Let

X*={x e R" |z=2(})), A >0}.
We see from Theorem 3.2 that an optimal solution to (3.2) is given by
" € argmin{f(z) | ® € X*}.

It will be time-consuming to obtain the whole of X* if we use Dijkstra’s algorithm to
compute &(A) for each A > 0. We can, however, accomplish it in polynomial time using
algorithms by Karp and Orlin [8]. To solve parametric shortest path problems just like
[PC())], they have developed two algorithms: an O(n?) algorithm based upon dynamic
programming and an O(nm log n) network simplex algorithm. Both generate a partition
{I',...,I'} of the interval [0,00) and a set {P?,..., P"} of s-t paths in G such that P*
is a shortest path, with respect to the arc length ¢! + Ac?, for all A € I*. Using either of
them as a subroutine, we can tailor the algorithm by Tuy and Tam for problem (3.2).

algorithm PARAMETRIC_COST
begin
using one of the algorithms in [8], compute a partition {I*,...,I"} of the interval
[0,00) and a set {P!,...,P"} of paths in G such that P, is a shortest path from
node s to node t for all A € I*;
v = 400;
for k=1,...,r do begin
let ¥ denote the vector corresponding to P*;
if f(xf) < v then v := f(z*) and 2* := «*
end
end;

For each k =1,...,r, the vector ¥ is an optimal solution to [PC(\)] for all A € I*.
Since US_,I* = [0,+400), the set {&!,...,x*} can be thought of as X*; and a* refers
to an optimal solution to (3.2) at the end of the algorithm. The number r of paths
P!, ..., P is known to be at most n? [8]. Therefore, PARAMETRIC_COST requires
O(n?) evaluations of f in addition to O(n®) or O(nmlog n) arithmetic operations. This
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Figure 3.1. The network G of problem (3.3).

result is rather satisfactory compared with those for ordinary shortest path problems.
Since network simplex algorithms are very efficient in practice, PARAMETRIC_COST
would be as well when it uses the O(nmlogn) subroutine. Unfortunately, however,
the algorithm PARAMETRIC._COST only works on problems with quasiconcave cost
functions. Unless the cost function is quasiconcave, the algorithm can fail even in a toy

problem.

Example 3.1. Consider the following problem with a rank-two convex cost function:

minimize f(x) = max{c'z, *z}

subject to T13+ T13 — 241 =1, Toa+Tos — 212 =0

z36 — z13 = 0, ZTa1 + Tag — T2 =0 (3 3)
Ts7 — Tos = 0, Te7r — T3 — Tae =0
—Zgr — Tey = —1

©;; : nonnegative integer for each (3, 5),

where
Ch=cu=Cp=cy=1, cg=cig=c}h =cjg=cg =0
ch=cy=ch=ch =0, G=cs=ch=cly=c§; =1.
Figure 3.1 shows the network G associated with this problem, where the fine and bold
lines represent the arcs in 4y and A, respectively.
It is easy to see from Figure 3.1 that an optimal path is P* = (1,2,4,6,7) of cost

max{cl, + cly, i + &} = 2; but the algorithm PARAMETRIC_COST only generates

I'=1[0,1], P'=(1,3,6,7), max{0, ¢, +c +c%} =3
I’ =[1,+00), P?=(1,2,5,7), max{c?, +cZ +cZ, 0} =3

and misses P*.




This example suggests that we have to device another algorithm to solve more general
class of (MR2P).

4. Parametric right-hand-side algorithm for Case 2

Without assuming f to be quasiconcave, let us consider the class of (MR2P)
minimize{f(z) |z € XNZ™} (4.1)

which satisfies condition (2.2) and contains an s-t path in the underlying network G.
To solve (4.1), we again introduce a parameter A > 0 but in a way different from
[PC(N)):
minimize{ f(x) | £ € X NZ™, ¢’z =\, X > 0}. (4.2)

Since the value of c?x is always nonnegative on X, this problem is equivalent to (4.1).
We also see from condition (ii) of the rank-two monotonicity that once the value of A is
fixed, (4.2) reduces to a shortest path problem with a side constraint

[PR())] minimize{c'z |z € X NZ™, ¢’z = A}.

Let @()) be an optimal solution to [PR(A)] if it exists, and let g(A) = fz(A)], where
fl&£())] is understood to be +oo if [PR(A)] has no optimal solutions. Then (4.2) amounts

to a minimization of the univariate function:
minimize{g(A) | A > 0}.

While an optimal path of (MR2P) is elementary and contains at most n — 1 arcs, the
path corresponding to @(\) contains at least A arcs. Therefore, to locate a minimum
point A\* of g, we need only to solve [PR())] for each A € [0,n — 1]. An optimal solution
x(\*) to [PR(A*)] solves the target problem (4.1).

Whether f is quasiconcave or not, this approach never misses an optimal solution
to (4.1); but it seems no good from the computational viewpoint — for shortest path
problems with a side constraint are in general intractable, as is (SWCP). Under condition
(2.2), however, we can show that the total computational time needed in this approach
is polynomial in n and m.

4.1. AUXILIARY NETWORK

Let d*(i, ;) denote the distance, with respect to the arc length ¢!, from node i to node j
along a shortest path that contains exactly A arcs in Ay. If such a path does not exist,
then d*(i,j) = +oo. Naturally, d*(s,t) is equal to the optimal value g(A) of [PR(})].
Now, suppose that a path P = (s = ig,41,...,i,41,%, = j) provides d*(i,j) < 400
for A > 1. Let (i4,i44+1) be the last A, arc that we pass when going along the path P
from node s. In other words, a subpath (ig41,...,¢,) of P consists of only arcs in A,.
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Figure 4.1. The auxiliary network G(X) associated with problem (3.3).

We then see that paths (ig, 41, ...,i5) and (ig41,- .., %) provide d*~1(s,4;) and d®(iz41,5),
respectively. Otherwise, P cannot be a shortest path containing exactly A arcs in A,.

The following is an immediate consequence:

Lemma 4.1. For each A > 1, we have
d*(s,§) = min{d* (s, k) + ck, + d°(£,5) | (k,€) € Ay} for every j € N. (4.3)

Using this relationship, we can successively generate d°(s,t), d'(s,t), ..., d"7(s,t),
among of which is the minimum value of g, i.e., the length of an s-t path optimal for
[PR(A\*)] and hence for (4.1). To carry out this in a systematic and efficient way, we
introduce an auxiliary network G(X).

Given d*~(s,7) with A > 1, we construct G(A) from G = (N, Ay U A,) as follows.
We make a copy N’ of the original node set N, and replace each arc (i,7) € A} by
an arc (i',7) of length ¢j; from node i € N' to node j € N. We further introduce
an artificial node s’ and connect it and each node i’ € N’ with an artificial arc (¢, ')
of length d*~!(s,i). Figure 4.1 illustrates the resulting network when we apply this
transformation to the network in Figure 3.1.

It follows from the above construction of G(A) that any directed path from node s
to node j € N consists of three parts: the first part is an artificial arc (s, k') of length
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d*~1(s, k); the second is an arc (k',£) of length c}, substituting for an arc (k,€) € Ay;
and the third is a directed path from node k to node j in a subgraph (N, Ap) of G.
Hence, from Lemma 4.1, the value of d)‘i(s, J) is given by the shortest path distance from
node s’ to node j € N in G(X). Since the length of each arc in G()A) is nonnegative, we
can apply Dijkstra’s algorithm to G()) in order to compute d*(s, j) for every j € N.

4.2. DESCRIPTION OF THE ALGORITHM

We are ready to present the algorithm for solving problem (4.1).

algorithm PARAMETRIC_RHS
begin
determine the shortest path distance d°(s, ) from node s to each node j € N in the
network (N, A) with arc length ¢!;
if d°(s,j) < 400 then let P} denote the path of length d°(s, 5);
if d°(s,t) < +oo then
let ©* denote the vector corresponding to P? and v := f(z*);
else v := +o0;
for A=1,...,n —1 do begin
construct the auxiliary network G(\);
determine the shortest path distance d*(s, j) from node s’ to each node j € N in
G(A);
if d*(s, j) < 400 then begin
replace the first two arcs (s, k') and (¥',£') in the path of length d*(s, ;) by
P} and (k,0) € Ay;
let Pj)‘ denote the resulting path in G
end;
if d*(s,t) < +oo then begin
let «* denote the vector corresponding to P}
if f(x*) < v then ¢* := * and v := f(a*)
end
end
end;

Theorem 4.2. The algorithm PARAMETRIC_RHS yields an optimal solution =* to
(4.1) in O(nm + n®logn) arithmetic operations and O(n) evaluations of function f.

Proof: The algorithm generates n distances d°(s,t), d*(s,t), ..., d""!(s,t) between
nodes s and {. Some of them might be +00; but at least one, as we have seen already, is
provided by an optimal s-t path of (4.1). At the end of the algorithm, a* refers to the
s-t path.



Let us turn to the computational complexity. For every node j € N, the distance
d®(s, j) can be computed in O(m+ nlogn) arithmetic operations if Dijkstra’s algorithm
is applied to the network (V, Ap). In the Ath iteration (A > 1), there are two major
tasks: to construct the auxiliary network G()) and to compute d*(s, j) for every node
J € N. The former requires O(n + m) arithmetic operations in the first iteration; but
afterwards only the lengths of at most m arcs need updating for each iteration. The
latter can be done in O(m + nlogn) arithmetic operations, using Dijkstra’s algorithm,
since G(A) contains 2n + 1 nodes and n + m arcs. Therefore, the total number of
arithmetic operations is O(nm +n?log n). In addition to this, the algorithm evaluates f
at most once for each iteration. Hence, the total number of evaluations of f is bounded

by O(n). n

Example 4.2. Let us try to solve problem (3.3) in Example 3.1, using the algorithm
PARAMETRIC_RHS.
To begin with, we determine the shortest path distance d°(1,j) from node s =1 to

each node j = 1,...,7 in the subnetwork (N, 4y) (see Figure 3.1):

i |t 2 3 4 5 6 71
@1,5)] 0 1 400 2 2 4oo 3

Since a path P = (1,2,5,7) provides d°(1,7) = 3 < 400, we initialize the incumbent:

, '={ 1 if (4,5) € {(1,2),(2,5),(5,7)}

g 0 otherwise
vi= f(&") = max{cy, + 35 + ¢57, 0} = 3.

Then we proceed to the iteration process.

Iteration 1: We construct the auxiliary network G(1), as shown in Figure 4.1, and
determine the shortest path distance in it from node s’ to node j =1,...,7:

i 1 o2 3 4 5 6 71
&5 2 3 0 4 4 2 5

We obtain P} = (1,2,4,1,2,5,7) from a path (s',4,1,2,5,7) of length d'(1,7) = 5 in
G(1); but it costs \

f(ml) = max{2ci2 + 6%4 + C%s + Cé% Cil} =95>v.

Iteration 2: We update the auxiliary network G(2) and determine the shortest path

distance in it from node s’ to each node j =1,...,7:

i |1 2 3 4 5 6 71
d(1,5) | 4 5 2 6 70 2
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We obtain P? = (1, 2,4,6,.7_) from a path (s',6',7) of length d?(1,7) = 2 in G(2); and it
costs

f(wz) = max{ciz + C%u Cia + ‘357} =2<w.

Therefore, we update the incumbent:

. {1 if (i,4) € {(1,2),(2,4), (4,6),(6,7)}

v Y 0 otherwise (4.4)
v:= f(x?) = 2.
Iterations 3, ..., 6: In the same way as above, for each A = 3,...,6, we compute

d*(1,4) for j =1,...,7 and f(=*):

j 1 2 3 4 5 6 7

Bl 6 7 4 8 8 2 0 |f@=)=3
A1) 8 9 6 10 10 4 2 |f(z)=4
S, 10 11 8 12 12 6 4 |f(a¥)=5
d(1,7)] 12 13 10 14 14 8 6 |f(x%=6

Since f(x*) > v for each A = 3,...,6, the path P? is optimal; and (4.4) is an optimal
solution to (3.3).

Thus, we succeeded in solving problem (3.3). Even if f is nonconvex in (3.3), the
algorithm PARAMETRIC_RHS will generate the same sequence d*(1,7), A =0, 1,...,6;
but possibly the output will be different from (4.4).

5. Concluding remark

In the previous sections, we have developed two parametric algorithms to solve a class
of minimum rank-two cost path problem (MR2P) in which ¢?, one of the vectors char-
acterizing the rank-two monotonic cost function f, is a binary vector. The algorithm
PARAMETRIC_COST yields an optimal solution in O(n*) or O(nmlogn) arithmetic
operations and O(n?) evaluations of f if the function f is quasiconcave. The algorithm
PARAMETRIC_COST solves any problem in this class in O(nm + n’logn) arithmetic
operations and O(n) evaluations of f. Using these algorithms, we can solve the general
class of (MR2P) in gseudopolynomial time.

For a given problem in (MR2P), we first transform the underlying network G =
(N, A) as follows (see also Figure 5.1). For each (i,7) € A with ¢; > 1, we install ¢}, —1
nodes on arc (4,7) and divide it into ¢; directed arcs. Let A;; denote the set of arcs
generated on arc (i,5) € A. We then associate with each arc (p,q) € A;; two numbers

1 fp=1
&1 = ch _ np , 62 =1. 5.1
Pe 0 otherwise Pa (5:1)
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Figure 5.1. (a) arc (,;) in the original network G; (b) arc set 4;; in the resulting network G.

The resulting network, denoted by G, contains at most n + C nodes and m + C arcs,
where C' = 32 hea cfj The original network G' contains a path P from node s to node
t if and only if G contains a path P between the same nodes. For each arc (i,7) € P,
the path P contains all the arcs in A4;;. Therefore, from (5.1), we have

Z ci-“j= Z 6’;1 fork=1,2,

which implies that the costs of P and P are identical. Since the vector & of & & s is binary,
we can apply our algorithms to the network G. The time needed in this approach is
polynomial in n, m and C, since the numbers of nodes and arcs in G are linear in them.
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