An Approach to Mobile Software Robots
for the WWW

Kazuhiko Kato ~ Yuuichi Someya  Katsuya Matsubara
Kunihiko Toumura  Hirotake Abe

Technical Report ISE-TR-98-154
Institute of Information Sciences and Electronics
University of Tsukuba

June 4, 1998



An Approach to Mobile Software Robots for the WWW

Kazuhiko Kato™ Yuuichi Someya! Katsuya Matsubara!
Kunihiko Toumura! Hirotake Abet

T Institute of Information Sciences and Electronics
: University of Tsukuba
Tenoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
I Japan Science and Technology Corporation Email: kato@is.tsukuba.ac.jp
URL http://www.softlab.is.tsukuba.ac.jp/ kato/

Abstract

The paper describes a framework to develop mobile software robots in the Web environ-
ment through using the PLANET mobile object system we developed. Among the many recent
proposals of mobile object systems, the system is characterized by language-neutral layered ar-
chitecture, the native code execution of mobile objects, and asynchronous object passing. We
propose an approach to implement mobile Web robots by fully utilizing the characteristics. We
verify and discuss its effectiveness based on experiments conducted in the Internet environment.
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1 Introduction

The recent widespread use of the Internet and the Web has had a significant effect on the whole
of human culture. People who like to provide information can easily publish their information by
just putting it on the Web server, and the users can easily access the information by requesting
it to the servers through the use of comfortable Web browsers. The procedures to provide and
access information on the Web are extremely easy, but, from the viewpoint of network resource
management, the Web is not an efficient system since it is an uncontrolled system?', although the
freedom has contributed to the evolution of the Web as well as other services on the Internet.

If all the users of the Internet and WWW were human, their uncontrollability might not be so
serious with the exception of ethical issues. In reality, however, the users are not limited to human
beings. Typical instances of non-human users are WWW search robots. A Web robot is a computer
program that traverses the Web’s hypertext structure, recurrently retrieving all documents that are
referenced [17]. Web robots can request data access to servers without the constraints of biological

!The Web is an uncontrolled system in the sense that nobody can control the Web.



properties, so Web robots have the potential to exhaust the network bandwidth of the Internet and
the computing power of Web servers.

Software robots (sometimes called “agents”) play a very important role in the Web environment.
One of the most important tasks of these robots is resource discovery. A lot of useful data is stored
on Web servers throughout the world, but to access it the user has to specify the URL (universal
resource locator) of the information. To obtain these URL’s for information, indexing functionality
are necessary. As a method of automatically building the indices, software robot technology is used.
Example systems are the WWW Worm [21], WebCrawler [23], Lycos [20], Harvest [3], AltaVista
(24] and WISE [27]. Furthermore, software robot technology is used on the Web to manage server
and client machines, to analyze statistics, to maintain the consistency among hypertext documents,
to mirror data, etc.[17, 6].

Software robots in the Web are sometimes called crawlers, spiders or wanderers. As Koster
discussed [17], these names, while perhaps more appealing, may be misleading, as the term “spider”
and “wanderer” give the false impression that the robot itself moves, and the term “worm” might
imply that the robot multiplies itself, like the infamous Internet worm [17]. In the engineering
field a robot is assumed to be a mobile machine which is programmed to automatically perform a
number of tasks instead of humans, but so far in the Web, “robots” are automatic but not mobile.

(* The next column *)

We claim that mobile software robot technology is a key technology to make the Web environ-
ment controllable without losing the virtue of freedom. This claim can be illustrated for a case
~ of resource discovery on the Web as follows. Conventionally almost all Web indexing robots are
nonmobile and they connect with target Web sites directly from robot base sites through using
.the application layer protocol, HTTP. A robot connects with a Web server, requests an HTML
document, receives it, analyzes it, makes indices from it, extracts URLs that it should visit, and
visits Web sites according to the extracted URLs. If we could use a mobile Web robot, the robot
would move to a target Web site first. At the site, the robot would obtain and analyze HTML
files, prepare indices, and extract URLs. The process would be repeated until the extracted URLs
references files at the site were exhausted. Then the mobile robot would move to another Web
site to obtain more Web data. The robot would continue to move until some specified predicate
was satisfied. In the middle of moving, the obtained data would be sent back to the robot base at
appropriate times.

The mobile robot is advantageous at least in the following respects. First, the source HTML files
are not necessarily transferred via the Internet since in some cases it is sufficient to transfer only
portions of HTML files or the results of some computing. Second, the HTTP server can schedule
the time to process the robot’s request by scheduling the execution of the visiting mobile robot.

This paper describes a framework to develop mobile software robots in the Web environment
by using the PLANET mobile object system we developed. The most notable feature of PLANET
is that it was designed as middleware; that is, PLANET is in the middle layer between operating
systems and programming language systems and is independent of both, though some porting
efforts are required to run on a typical operating and programming system [14, 12, 19]. Another



notable feature of PLANET is that it implements mobile objects by the direct execution of native
codes, not by interpreting bytecodes. These two features distinguish PLANET from other mobile
object systems, since most other mobile object systems such as Emerald [10], Telescript [26], Aglets
[18], Voyager [8], Obliq [4] and Messengers [2] take a language-centric and bytecode interpretation
approach.

The rest of the paper is organized as follows. Section 2 describes the logical and Section 3
describes the physical structure of the PLANET mobile object system. Section 4 explains how
mobile Web robots can be implemented with PLANET and discusses emerging issues. Section 5
discusses the results of doing experiments on mobile Web robots. Section 6 is the conclusion.

2 Logical Structure of the PLANET Mobile Object System

This section describes the background and basic concepts of the PLANET mobile object system.

2.1 Basic Approaches

Currently much research has been expended on creating Web robots [6] and creating mobile objects
[25] and the advantages expected by combining the two seems to be obvious as discussed in Section 1.
But why has not the combination become popular so far? The reasons are as follows.

e Administration issue. The Web is composed of a large collection of independent and au-
tonomous computer sites and it constitutes an open distributed system, but most mobile
object systems previously designed here assumed that objects are passed within a closed en-
vironment. By “a closed environment” we mean that the whole system is managed by an
administrating person or group (here, simply called an administrator) and is operated under
a single administration policy, and that all the services, service providers, and service clients
(end-users) are well known to the administrator. Assuming a closed environment simplifies
many technical issues. Also, the system and the users can assume that all the users and
mobile objects are malice-free, so the mechanisms and policies of protection do not need to
be so sophisticated.

o Security issue. Needless to mention the infamous Internet worms, it is very dangerous to
permit software robots to operate in a uncontrolled and open environment such as the Internet.
Thus, the mobile object system used in the Internet environment must have sophisticated
mechanisms and policies for protection and security.

e Performance issue. The performance of execution is very important in practical Web robots
since it must access as many Web servers as possible within a limited time. Most other
mobile object systems are implemented based on the interpreter-based language processing
technique, since it is well suited to mobilizing objects, to controlling protection and security,
and to dealing with hardware and platform heterogeneity. To offset these advantages, the



interpreter-based systems are inferior in execution performance. If a mobile robot runs slower
on the Web server, the advantage of mobility may be canceled out.

The PLANET mobile object system has been designed to resolve these issues. The basic ap-
proaches of the PLANET can be summarized as follows.

e Layered architecture. PLANET has been designed to be middleware located between the op-
erating system layer and the programming language layer. This contrasts with the language-
centric approach that has been taken by most other mobile object systems. In these systems,
the supported language, which is often brand-new, is fixed and the user cannot choose his
favorite. PLANET is designed to be language-neutral and virtually any programming language
can be selected so that PLANET can be used as a runtime system.

e Native mobile objects. PLANET premises that the execution of the mobile code is performed
in the form of native codes. PLANET protects the system resources by using a virtual memory
mechanism that is available for almost all modern operating systems such as Solaris, FreeBSD,
Linux, and WindowsNT. PLANET regards a virtual address space as a protection domain.
Any number of mobile objects can be loaded in one protection domain, and the objects loaded
there can directly access each other since they are in the same domain. All attempts to operate
computer resources located outside a virtual address space must be done by issuing system
calls from inside the virtual address space. PLANET captures the issues related to system
calls with the help of the functionality of operating systems, it validates these with respect
to the policy settled beforehand, and it only permits the validated issues to continue.

e Asynchronous object passing. If a synchronous object passing style has to be used, the sender
side must first probe the current state of the destination side whenever the sender wants to
pass an object to the destination. This makes programming complex and inefficient. This can
be understood by considering a situation where an Email can only be sent when the destination
side is ready to receive it. In a practical Email system, we can send Email anytime, and the
mail spooling system essentially implements asynchronous mail (object) passing. PLANET
has adopted asynchronous object passing as the basic object passing scheme.

2.2 The System Model

The system model for PLANET can be described using five basic abstractions: (mobile) object, place,
protection domain, distributed shared repository, and object port (Fig. 1).

Objects. An object is an entity that may encapsulate data, the program, and computational
state (so-called thread). As illustrated in Fig. 2, objects are classified into four types according
to the data segments included in the objects. A basic type segment includes data for basic data
types such as integers, floating point numbers, strings, bitmap image data, etc. A structured data
segment includes references (pointers) to data within the same segment. A program code segment
includes codes that manipulate data in the objects. A computational state segment includes all the
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Figure 1: Logical overview of PLANET.

information required to maintain the state of computation, i.e., a program counter, CPU registers
and other CPU-state materials, and a stack.

Places. Place is an abstraction for computational resources, through which objects do their
computation. A very simplified example of a place would be a computer host with one or more
CPUs and memories. Another simplified example of a place is a LAN that has several computer
hosts. A place, however, does not necessarily have persistent storage, such as magnetic disc devices,
to store objects, since persistency is provided by the distributed shared repository as is described
in the following.

Protection Domains. Since a place may be visited by a number of inherently enigmatic or
malicious objects, it must have a protection mechanism. The protection mechanism should have at
least two functionalities: the computational resources of a place must not be affected by accidental
or intentional violations of access rights, and the objects and activities in a place must be protected
against illegal access by each other. A protection domain is an abstraction for controlled object
accesses. When an object is loaded into a place, at least one protection domain has to be specified;
then, if no access right violation is determined by the system, the object is attached to the protection
domain. Any number of objects can be attached to a protection domain provided that enough
computational resources are available for it. The system grants access rights on a protection-domain
basis, and the access rights granted to a protection domain are shared by all the objects within
it. The level of protection is uniform within a protection domain, so object interaction within a
single protection domain does not require domain-switching and thus it can be efficiently executed.
Sometimes we are required to give different access rights to certain objects in a protection domain.
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Figure 2: Object types.

For this purpose, PLANET has a functionality that allows an object to be attached to several
protection domains simultaneously, maintaining the coherency of the attached object with simple
one-copy semantics.

Distributed Shared Repository. The distributed shared repository (DSR for short) [13] is an
abstraction for the worldwide persistent object store, and it plays the central role in our object-
passing mechanism. The DSR can be considered as a virtual medium spread over the world. Objects
put on the DSR become accessible from places all over the world and they are guaranteed to persist
until they are explicitly removed.

Object passing via DSR differs greatly from the object passing of other mobile-object systems
such as Emerald [10], Telescript [26] and Obliq [4]. In these systems, object-passing is synchronous
in the sense that both sender and receivers have to be aware that object passing is taking place,
thus the success of object sending depends on the state of the receiver. In PLANET, on the other
hand, object-passing is asynchronous; the sender and the receiver can send and receive objects
independently of the other’s state or lifetime.

Object Ports. An object port is a named and access-controlled queue for objects on DSR (Fig. 3).
When a sender (object) unloads an object to DSR, the sender must specify the object port into
which the unloaded object is to be placed and have a write-access right for the object port. Similarly,
when a receiver (object) loads an object from DSR, the receiver must specify the object port from
which the loaded object is to be obtained and have a read-access right for the object port. The
name given to an object port is location-independent and it must be unique. It is the PLANET
system’s responsibility to find the physical location of an object port for the specified name.
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Figure 3: Object passing through an (persistent) object port in DSR.
3 Physical Structure of the PLANET Mobile Object System

The logical structure of PLANET is fairly simple, but the physical structure of our current imple-
mentation is rather sophisticated. The current implementation runs on SPARC workstations and
the Solaris 2.5.x operating system. It is written in 40,000 lines of C programs and two hundreds
lines of the SPARC assembly programs. The rest of the section briefly explains the essence of the
implementation, which is necessary in order to understand the sections which follow.

3.1 Rémbte Memory-mapping Architecture

As described in Section 2, all the object passing is done through DSR, thus it is centric to the
implementation of PLANET and its efficient implementation affects the overall performance of the
system. After careful consideration, we reached the conclusion that the adoption of a remote
memory-mapping mechanism would be the best solution to implementing DSR and the object
passing mechanism done via it. The reasons for this are as follows. First, remote memory-mapping
is a technique to implement persistent object in a network environment, so it is well suited to
the concept of DSR. Second, with the remote memory-mapping mechanism, the system can only
send the pages referenced by the clients, and only the modified pages can be returned to the DSR
server. Thus the amount of transferred data can be minimized. Third, the remote memory-mapping
mechanism enables implicit data transfer; that is, data transfer can be done in the middle of page
fault handling, thus the programmer does not have to describe explicit data transfer. Empirically
this dramatically reduces the number of program codes.

Figure 4 shows a typical structure for PLANET. A place consists of one or more client sites and
a client site has protection domains, an object cache, and a name cache. A protection domain is
implemented by a virtual address space. The object cache is used by the remote memory-mapping
mechanism as will be described later. The name cache is used by the system to efficiently map the
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Figure 4: Physical system structure.

logical names of object ports to the corresponding physical names.

DSR is logically one space, but it is implemented by multiple servers. In Fig. 4, one DSR server
is connected to the LAN of Place A and the other two DSR servers are connected to the Internet.
Since the name space for DSR is unique and location-independent, the connection topology of the
client sites and DSR servers do not affect the name specifications.

In PLANET, objects are loaded to protection domains and unloaded to object ports in DSR
through the use of a remote memory-mapping mechanism. The mechanism has several advantages
in the implementation of mobile objects. First, communication between a place client and a DSR
server is implicit; once an object stored on a DSR server site has been specified to be loaded to a
virtual address space that implements a protection domain at a place client site, each portion of the
object is transferred when the portion is accessed by the CPU on the virtual address space. The
transfer is done automatically by PLANET’s runtime system, and it is not necessary for programmers
to control the transfer. Second, network communication is minimized, since the portions transferred
to a client site are locally cached, and subsequent access to the portions does not require data
communication. Furthermore, only the modified portion is written back to the DSR server. Third,
the same representation of objects can be used both when an object is loaded to a protection
domain and unloaded to DSR. Finally, the double buffering problem between a user address space
and the kernel space is avoided as a result of the local memory-mapping mechanism.

Figure 5 shows our implementation of the remote memory-mapping mechanism. The numbers
in the figure indicate the sequence for the process to resolve the first access to a portion of a loaded
object. At the place client site, a first reference (1) to a page that has not been locally cached
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Figure 5: Implementation of remote memory-mapping mechanism.

causes a page fault (2). The page fault is detected by the MMU hardware and the event is caught
by the protection domain supervisor. The protection domain supervisor sends a page request to the
local cache manager of the client site along arrow (3). The local cache manager at the client site
manages sharing and local caches of objects. When the local cache manager does not have the most
recent copy .of the requested page, it forwards the page request to the file store manager in the DSR
server that manages the object port containing the processed object by using the communication
line (4). The file store manager reads the requested page from persistent storage which is managed
by a Bf-tree structure. After the completion of read operation (5), the file store manager sends
back the page to the local cache manager in the client site by using the communication line (6).
Step (7) will be explained in the next paragraph. The local cache manager stores the received page
in the local object cache (8), then it acknowledges the completion of the page transfer along the
arrow (9) and the protection domain supervisor resumes the execution of the object code.

To improve the speed of communication, we incorporated a data compression technique into
the remote memory-mapping mechanism. An object is divided into several fragments (a fragment
consists of several virtual pages), and each fragment is compressed just before being stored in
the B-tree structure. When a portion of an object is first required by a client, the compressed
fragment containing the required portion is transferred from the DSR server to the client, and it
is expanded just before the fragment is stored in the local object cache at the client site. This
expansion timing is designated by (7) in Fig. 5.



4 Implementing Mobile Web Robots with PLANET

We will now describe how the mobile Web robots are implemented within the PLANET mobile
object system. Section 4.1 describes PLANET/C++, a tool to describe mobile robots executed in
native codes, and Section 4.2 concentrates on mobile Web robot issues.

4.1 PLANET/C++: A Tool to Describe Mobile Robots

PLANET/C++ is the language mapping of C++ to the PLANET mobile object system. Please note
that C++ language was originally not suited for mobile object computing in an open environment
such as the Internet for several reasons. First, C++ has pointer arithmetic and any data in a
virtual address space can be potentially accessed, thus the object encapsulation concept cannot be
guaranteed at runtime. Furthermore, C++ ordinarily does not have dynamic loading and linking
mechanisms. These unsuitable characteristics were a crucial part of the motivation to design a novel
object-oriented programming language, e.g., Java [9]. PLANET gives any programming language
the capabilities of performing mobile object computing in an open network environment. The
above-mentioned unsuitability of C++ can be overcome by porting a C++ language processor to
PLANET, and our PLANET/C++ is such an implementation. PLANET/C++ adds the following
functionalities to the C++ language.

(a) Dynamic loading and unloading of objects via DSR

The programmer can declare that a class is used to instantiate mobile objects by adding mobile
qualifier before the class declaration. Figure 6 shows a class definition example that is actually
used in the experiment in Section 5. In the example, objects instantiated from the WebRobot class
become mobile. A mobile object can be loaded from DSR to a protection domain and unloaded
from the protection domain to DSR. As described in Section 3, the loading/unloading mechanism
is implemented using the remote memory-mapping technique, thus only the accessed portion of a
mobile C++ object is physically loaded and only the modified portion is physically unloaded.

A mobile object may contain address references (so-called pointers). In the above example,
member variables server, location, unsolved, point and next contain address references. The
address references must refer to either addresses within the object itself or addresses of the mobile
heap area associated with each object. The runtime memory management module of PLANET/C++
allocates and associates an individual heap area for each mobile object. When a mobile object is
moved, the associated heap area is moved with it. The runtime system manages the location of
address references in mobile objects and it automatically adjusts the references according to the
address into which the object is loaded.

(b) Orthogonal inter-protection-domain communication

PLANET/C++ supports a notable functionality that many other mobile object languages do not
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mobile class WebRobot { // ‘‘mobile’’ is a syntax extension to C++.
public:
int urli(char *);
int url2(char *, char *, char *);
int web_robot_main(dsrobject_t );
int solve(char *);
char *hashchecker(char *);
void hashin(char * , char *);
int hashfunc(char * );
void resultprint();
private:
char server [URL_BUFFSIZE];
char location[URL_BUFFSIZE];
LIST *unsolved;
int position;
staticistruct _hash {
char *point;
struct _hash *next;
} HASH[HASH_ENTRYSIZE];

};

Figure 6: Class definition example in PLANET/C-++.
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support but which is very useful in practical mobile object computing. There are two possible cases
when two mobile objects communicate with each other in a place: the first is where two mobile
objects are loaded into the same protection domain, and the second is where they are loaded
to distinct protection domains. If the programmer is required to write different codes for the
two cases, this decreases the reusability of mobile objects. To solve the problem, PLANET/C++
supports orthogonal inter-protection-domain communication functionality. When programming,
the PLANET/C++ programmer only notices the object encapsulation barrier of object-oriented
programming, and he/she does not have to be concerned about the protection domain barrier
provided by the PLANET runtime system. Thus the slogan is: write once, compile once, and run
in both cases.

Support of the orthogonal protection domain is expected to contribute to both the software
productivity and execution efficiency of a mobile object system. The same program code can be
used regardless of the protection domain setting at runtime. When two mobile objects communicate
within the same protection domain, they can interact with each other in a lightweight way through
the omission of safe execution checking and the elimination of context switching overheads. When
two mobile objects in distinct protection domains are required to communicate with each other,
execution speed decreases slightly but object interactions are rigorously checked by the policy
modules associated with each protection domain.

(c) Implementation of orthogonal inter-protection-domain communication

Figure 7 illustrates our scheme to implement orthogonal inter-protection-domain communication.
The lower part of Fig. 7 is a case where two interactive objects are loaded into the same protection
domain. Dynamic linking is required to establish the “relevance” of the interacting objects in a
protection domain. The dynamic linking mechanism resolves the pair exporting and importing of
symbols declared as external entries in each object [13]. ‘

For interacting objects loaded into different protection domains, we provided a mechanism
whereby the objects interact as if the protection domain barrier did not exist, and we also provided
a policy module which can validate each inter-protection-domain interaction operation. To achieve
this, PLANET takes advantage of its remote memory-mapping architecture, the object passing mech-
anism, and an advanced RPC technique. The upper part of Fig. 7 shows a typical case where two
interacting objects are loaded into different protection domains. The two objects cannot communi-
cate with one another directly since the protection domain has been implemented by using a virtual
address space. In such cases, PLANET loads the sender and receiver proxy objects as Fig. 7 shows.
The proxy encapsulates the interprocess communication primitives and marshalling/unmarshalling
(sometimes called argument serialization) routines. All the side effects on the outside of the pro-
tection domain must be done through system calls in PLANET, so for each protection domain a
protection domain verifier including a user- or administrator-supplied policy module monitors the
issuing of system calls, and it interrupts the execution of the protection domain being monitored
when some protection policy violations are detected.
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4.2 Describing and Executing Web Robots

By using the PLANET runtime system presented in Sections 2 and 3 and the programming tool
described in Section 4.1, we can implement a mobile Web-searching (or -indexing) robot system
on both the Internet and an intranet environment as shown in Fig. 8 shows. We call a site that
ships a mobile Web search robot the Web robot base. We call a site that receives the visits of a
mobile Web-searching robot the Web server. We assume that the Web server and the robot base
have object-receiving access rights of object ports a and b, respectively.

In the following description,kthe numbers correspond to the arrows in Fig. 8.
(1) The Web robot base obtains an object-sending right to its corresponding object port a of the

target Web server. (a could be an open name declared by each Web server place.) Then the
robot base send a Web-searching robot to the object port a.

(2, 2") When the Web server wants to provide a Web search service, it receives a Web search robot
from the object port of name.a. There are two possible schemes to organize a protection
domain to receive a mobile Web robot: a Web robot and Web search object are either

14



(3, 3)

(4)

separated by protection domains (Arrow 2 in Web server place A in Fig. 8) or are not (Arrow 2’
in Web server place B). The former scheme is adopted when the administrator of the Web
server cannot trust the visiting Web robots, and the latter is when he can. The latter case is
common when both the Web robot base and the Web server place are on an intranet. The
former is more secure since each visiting Web robot is executed under the protection-domain
control of its own policy. The latter is more efficient since the robot and the Web search
server can directly communicate without protection-domain switching.

The Web robot communicates with the Web search server object to ask it to provide useful
information in a place. With Web search place A (Arrow 3) the communication is indirect, and
with Web search place B (Arrow 3’) it is direct, yet the robot program remains completely the
same due to the orthogonal inter-protection-domain communication functionality described
in Section 4.1.

The Web search server can be considered to be an abstraction of the Web search services on
the Web server. Some intelligent Web search servers might cache the searching information
to accelerate searching, or they might know of a clever way to efficiently obtam the required

information.

The Web search server may communicate with a conventional (non-PLANET) Web server.
Thus the Web search server plays the role of “gateway” between the PLANET system and the
ordinary Web system.

After the Web robot collects sufficient information (or some precondition is satisfied), it is
unloaded and written to object port b (the robot knows the name).

The robot base receives the robot with the search mformatlon from object port b when it is

ready to.

The mobile Web search robot scheme with PLANET has several advantages as follows.

Efficiency. With the scheme, the network between a Web robot base place and a Web server
place is only used when the robot is moved (unloaded to and loaded from DSR). The situation is
analogous to long distance calls in business; a client phones a service provider only for a request,
he/she switches offline until the requested job is finished by the prov1der then he/she accepts call
back from the prov1der to save telephone charges.

Asynchronism. The asynchronous style of sending and receiving robots is invaluable, since if
such a functionality was not supported by the system, the Web robot base would first have to check
whether the target Web servers were in a state that could accept the mobile search robot and it
would have to support functionality to manage a robot queue and to probe the state of target Web
servers. PLANET provide functionalities in a systematic way.

15



Protection and productivity. In an open network environment such as the Internet, a Web
robot cannot be trusted in general and each Web server place has to protect itself individually. In
an intranet environment, a visiting robot might be very trustworthy. The situation differs case by
case, and the administrator of the Web server place should have the capability of setting a proper
protection policy. PLANET has this capability. Also, without knowing the policies, the programmer
can write the robot’s program.

5 Experiments

We will begin this section by showing the actual activity of conventional nonmobile Web robots in
Section 5.1. In Section 5.2 we will show the experimental results for mobile Web robots implemented
with PLANET. Finally, in Section 5.3 we compare mobile Web robots implemented with a native-
code execution approach (PLANET) and with a bytecode interpreter approach (Java).

5.1 How much is a Web site accessed by conventional nonmobile Web robots?

In order to observe the actual behavior of conventional Web searching robots, we analyzed the log
file of our Web site. We directed our attention to accesses to the “robots.txt” file by the Web
robots. In the Web world, a Web robot should first read “robots.txt” when it accesses a Web
site [16, 15, 6]. Webmasters can advise robots which pages may be accessed by specifying these in
the file. Figures 9(a), (b) and (c) were created by plotting the access to the "robots.txt” file of
our non-famous Web server (http://www.softlab.is.tsukuba.ac.jp) for one week (1998/3/25-
1998/3/31), one month (1998/3/1-1998/3/31) and one year (1997/4/1-1998/3/31), respectively.
Thus one plot in the figures designates the beginning of a series of accesses by a Web searching
robot. The horizontal axis represents the time periods. The vertical axis represents the site names
at which nonmobile Web robots reside (the first part of each site name is substituted by its initial).

Since not all Web robots are following the “robots.txt” rule, the figures show a minimum access
pattern for Web robots accessing our server. We can see some interesting aspects of conventional
Web robots from the figures. First, a few robots accessed the Web site repeatedly for a whole year.
Second, about half the robots came from domestic (Japanese) sites, and the other half came from
U.S. sites. In the near future, the more Internet technology spreads throughout the world, the
greater frequency of access will be. Third, on average, active robots accessed our server about 2.7
times per week. We think that this number is a practical tradeoff between the indexing performance
of Web robots, the load each Web server can endure, and convenience of information providers and
consumers.

These observations support the motivation for our work; Web robots constantly consume the
network resources, and improving the efficiency of Web robots is important to the Internet infras-
tructure.

16




N.cojp
lLorjp |
K.go.ijp
M.ad.jp |
G.neljp
l.eojp
W.ac.jp |-
Jorjp
H.com
l.ecom
Acom [
F.de [
W.com [-
l.com F
l.com -
D.com
A.com
E.com
L.com +

aa

1998/03/25

1

(a) One week.

998/03/31

N.cojp -
Lorjp

oo @ °

KgojplF @8 o m o @ o a a o} [a}c] a [} a

M.adjp - x
G.nejp
l.cojp
W.acjp -
Joorjp
H.com |
f.com -
Acom
Fde | =
W.com
l.com
l.com |-
D.com |- x
A.com &
E.com -
L.com |

aa  a

B E 3 * K * X

1998/03/01

1

(b) One month.

998/03/31

N.co.jp |
lorjp
K.go.jp |
M.ad.jp |-
G.nejp |
leojp F
W.acijp
Jorjp +
H.com
l.com -
A.com

F.de -
W.com
l.com

l.com +
D.com
A.com -
E.com
L.com |-

WO WO D OO O om 3 00 000 6 o ® o oo

+ 4+t M

og IO COE T BR CROO ORI

X YOI b I o b 3 MK - %

Y Y V'V VY N 'Y & A AsAsLAAABAA A 2D a '

— = ARG K X KT NOWERK X KK N

° ° O am—
+ B =+ o+ EE B + +

(= o] (a]o] s1io)ix o)

X X X »X X X R X

A& ansma a & aa a a a

* * *

O 0000 ® O 00O 000 0® O © 00 O ®OO O BOOCEOOO OO0 OWCOOH

+ + + + + +H+ ++ o HE

2] o [ofui:c iz alcin:afal o 80 m

XOOCKHK DRI XKKXXK XK X X IR XXXHOB XM BROTRC D X MK X XOMOCIIC KON HOMOMEIOENg

OO XOA B L0 AL ZDAA MO M0 AAZMLLAA  MOONA AR & MLA ANSANAANAL A K AL BO ALK

B EEEE KX

W WO O WO B N D  @WOWOE IO @ OINW BOWSEO BT ® WD

o

*

»

4

4+

m 3

-4

AN

ey

1997/04/01

(c) One year.
17

1998/03/31

Figure 9: Access patterns by conventional Web robots.



Table 1: Devices used in the experiments

Web robot base place Web server place
CPU UltraSPARC (167 MHz) | UltraSPARC-II (296 MHz)
Main Memory | 64 MB 128 MB
0S Solaris 2.5.1 Solaris 2.5.1

5.2 Mobile vs. Nonmobile Web Robots

We implemented a mobile Web robot system with PLANET according to the scheme described
in Section 4.2. Using the implementation, we did experiments to verify the éffectiveness of the
proposed scheme. The devices used in the experiments are in Table 1. We assumed that a DSR
server was located at the same site as the DSR client site that implemented the Web robot base.
Note that this is not a limitation of our implementation; both the Web robot base place and the
Web server place may have their own DSR servers. As described in Sections 2 and 3, the logical
name space for DSR is singular, whatever number of DSR servers are running.

Table 2: Nonmobile vs. mobile Web robots with PLANET (in seconds).

Trial # Scheme 1 Scheme 2 | Scheme 3

1 1,117.83 705.12 643.55

2 1,141.59 851.26 783.66

3 1,132.67 865.74 819.42

4 1,135.64 868.50 816.09

5 1,139.88 866.45 818.17

6 1,132.17 866.65 814.04

7 1,139.15 892.86 834.52

8 1,188.18 875.25 843.35

9 1,136.92 886.03 820.03

10 1,157.45 878.32 827.53
Average || (i) 1,142.15 | (ii) 855.62 | (iii) 802.04
Advantage - 25.1 (%) | 29.8 (%)}

1 Relative advantage to the nonmobile case on average and calculated by ((i) — (ii))/(i)-
1 The same as the above and calculated by ((i) — (iii))/(i).

We examined the following three schemes.

e Scheme 1: This is the same as conventional nonmobile Web robots. A robot at the Web
robot base place (University of Tokyo) accesses the Web server at the University of Tsukuba
by using the HT'TP protocol.

e Scheme 2: This is essentially the scheme presented in Section 4.2 (see Fig. 10). The visiting
robot is in the protection domain for visiting robots separated from the Web search server
protection domain. The protection domain verifier associated with a visiting Web robot checks
all the system calls issued by the visiting Web robot so that the robot only communicates -
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Figure 10: Environment used in Schemes 2 and 3 (implemented with PLANET).
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Figure 11: Nonmobile vs. mobile Web robots with PLANET.

with the object in the Web search server protection domain and that all other system call
issues are inhibited.

e Scheme 3: The scheme is the same as Scheme 2 except that the visiting robot is loaded into
the same protection domain of the Web search server (see Fig. 10).

A Web server at the University of Tsukuba, www.softlab.is.tsukuba.ac.jp, was used in the
experiments. At the time of the experiment, the Web server stored about 4,500 files accessible from
the Internet via the HTTP protocol. The size of the files was about 19 MBytes. In the experiments,
the “transitive closure” of HTML pages from the top page of the Web server was computed in a
breadth-first manner.

Table 2 shows the results of the experiments. Figure 10 was created by plotting the data
in Table 2. The advantage of mobilizing Web robots is obvious; on average, the mobile Web
robots have a 25.1% (Scheme 2) or 29.8% (Scheme 3) improvement compared to the nonmobile one
(Scheme 1). The distance between the University of Tokyo and University of Tsukuba is about
60 kilometers and the the widearea network between the two universities is relatively fast. If the
network was slower, there would be greater advantages.

The difference between Schemes 2 and 3 is about 5% on average. The overhead is caused by
interprocess communication, process switching, and verification processing in the protection domain
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Figure 12: Environment used in Schemes 5 and 6 (implemented with Java and Voyager).

verifiers. From the experiments, we-think that the overhead is reasonable. Hence we recommend
that the Scheme 2 setting should be used in an open environment such as the Internet and Scheme 3
can be used in closed environment or so-called intranets.

5.3 Native Code Execution Approach vs. Bytecode Interpretation Approach

To compare the native-code-based object mobility adopted in PLANET and the interpreter-based
approach adopted in most other mobile object systems, we implemented a mobile Web robot with
Java. Java by itself can only provide mobility of classes (or codes) and it cannot provide object
mobility. For object mobility functionality, we used one of the most sophisticated and easy-to-use
Java-based mobile object systems, Voyager, developed by ObjectSpace, Inc. [22, 8] and implemented
the following three schemes:

e Scheme 4: This is the as same as conventional nonmobile Web robots. A robot at the Web
robot base place of University of Tokyo accesses the Web server at the University of Tsukuba
by using the HTTP protocol.

e Scheme 5: A mobile robot is moved between the Web robot base place at the University of
Tokyo and the Web server place at the University of Tsukuba (see Fig. 12). In the scheme, the
visiting robot is executed under security control by the Java security manager [1, 5], which
hooks each issue of the system resource accessing library and checks the issue with respect
to the policies specified by the administrator of the Web server place. The security manager
checks that the mobile robot only communicates with the Web server.
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Table 3: Nonmobile vs. mobile Web robots with Java and Voyager (in seconds).

Trial # Scheme 4 Scheme 5 Scheme 6

1 1,539.08 1031.06 908.46

2 1,545.04 1038.95 884.85

3 1,556.13 1012.68 858.53

4 1,587.28 1031.07 881.38

5 1,664.99 1068.37 865.79

6 1,617.30 1110.64 886.47

7 1,635.15 ©1047.53 865.51

8 1,847.00 1046.91 872.50

9 1,689.34 1057.99 968.19

10 1,663.66 1047.56 966.51
Average (i) 1,634.50 | (ii) 1049.28 | (iii) 895.82
Advantage - 35.80 (%)t | 45.19 (%)*

T Relative advantage to the nonmobile case on average and calculated by ((i) — (ii)) /(i)
1 The same as the above and calculated by ((i) — (iii))/(i)-

e Scheme 6: This is the same as Scheme 5 except that security manager functionality is not
used.

The execution environment in the experiment was the same as that described in Section 5.2, but
Schemes 4—6 were used instead of Schemes 1-3. Note that asynchronous object passing functionality
was not available in Schemes 4-6, The Java bytecode compiler and virtual machine (VM) we used
were those included in JDK 1.1.5 (the virtual machine does not have a just-in-time compiler for
the SPARC). Table 3 shows the experimental results. Figure 13 was created by plotting the data
in both Tables 2 and 3.

By comparing Schemes 1 and 4, the average bytecode interpreter execution is about 40 % slower
than the native code execution with PLANET. Thus for a nonmobile Web search system, the use
of Java is not attractive.

For a closed network (so-called “intranet”) environment, Scheme 3 or Scheme 6 can be used.
Comparing the averages of the schemes, Scheme 3 is more efficient by about 12%. In an open
network environment such as the Internet, mobile Web robots must be implemented with Schemes 2
or 5. Comparing the two schemes, Scheme 2 is about 23% more efficient than Scheme 5. If these
differences are negligible, using the Java system is an attractive choice since it has a high degree
of multiplatform-interoperability. Currently, PLANET is running on Solaris 2.5.x for the SPARC
platform, but the Java system can run on many more platforms. However, if we can use a platform
on which PLANET is available, we can give several reasons why the PLANET approach should be
selected. First, the performance of execution is significant in the Web search system. The better
the execution performance is, the more the search frequency can be raised. Second, asynchronous
object passing functionality, which is available in PLANET, is not available in the Java system; Java
programmers have to describe the program code for probing the server state or provide a clever
scheduling for object passing.
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6 Conclusion

We presented the logical and physical structure for the PLANET mobile object system. Among
the many recent proposals for mobile object systems, the system is characterized by language-
neutral layered architecture, the native code execution of mobile objects, and asynchronous object
passing via DSR. We proposed an approach to implement mobile Web robots by fully utilizing
these characteristics, We verified and discussed its effectiveness based on experiments conducted in
the Internet environment.

We believe that mobile object computing technology will play important roles in worldwide
networks. The WWW is undoubtly the most important area of application in current worldwide
networks, and we showed how our technology can contribute to the Web.

The design of a mobile Web robot system raises many research problems that need to be solved.
First, a robot base may ship a few robots simultaneously. We should research how to control the
parallelism of Web robots. Second, a Web server may be visited by a few robots simultaneously.
Therefore, we should do research on the effective scheduling of robots on a Web server. Third,
in the experiments described in Sections 5.2 and 5.3, the Web search server objects were not
intelligent; they could be made more intelligent and efficient by caching some information [11] on
the Web server or by providing higher-level abstractions. Fourth, Web robots could interchange
their collected knowledge. DSR. could become an effective tool in achieving such functionality.
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