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Abstract

In the so-called geometric approach, the notion of generalized (C, A, B)-pair is introduced for uncer-
tain linear systems and its properties are investigated. Further, the robust disturbance-rejection problem
with dynamic compensator is formulated and some sufficient conditions for the problem to be solvable are
presented.
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1 Introduction

The notion of (A, B)-invariance was first studied independently by Basil and Marro[1] and Wonham([6],
respectively and various control problems have been studied. Further, the notion of (C, A)-invariance was
studied by Basil and Marro[1], and then the notion of (C, A, B)-pair was first introduced by Schumacher[5] and
this concept has been successfully studied to design dynamic compensators.

After that, simultaneous versions of (A, B)-invariance, (C, A)-invariance and (C, A, B)-pair were investigated
by Ghosh[3] and disturbance-rejection problems for uncertain linear systems in the sense that system’s matrices
are represented as convex combinations of given matrices were investigated. Further, the notions of generalized
(A, B)-invariance and generalized (C, A)-invariance were studied by Bhattacharyya[2] and the present author[4],
respectively and robust disturbance-rejection problems with state feedback and with output feedback were
investigated.

In this paper, the notion of generalized (C, A, B)-pair is introduced and its properties are investigated.
Further, a robust disturbance-rejection problem with dynamic compensator for uncertain linear system which
was investigated by Bhattacharyya[2] and Otsukal[4] is formulated, and some sufficient conditions for the problem

to be solvable are presented. Finally, an illustrative example is given.

2 Generalized Invariant Subspaces

First, we give some notations used throughout this investigation. For a linear map A from a vector space
X into a vector space Y and a subspace ¢ of Y the image, the kernel, the inverse image and the dimension
are denoted by Im(4), Ker(A4), A~l¢ := {z € X | Az € ¢} and dim(p), respectively. Further, the direct sum,
the orthogonal complement and the identity operator on R" are denoted by @, (:)* and I, respectively. For
vectors {vy,---, v} span{vy, -+, v;} means the linear subspace generated by the vectors {vy, -, vg}.

Next, consider the following linear systems defined in an Euclidean space X := R" :



d
S(a,8,7) : { 250 = Al@)z() + B(B)u(),
y(t) = C(7)z(t),

where z(t) € X,u(t) € U := R™,y(t) € Y := R’ are the state, the input and the measurement output,

respectively. And coefficient matrices A(«), B(f) and C(v) have unknown parameters in the sense that

Ala) = Ao+ a1Ar + -+ apdy = Ag + AA(a) € R™"
B(8) = Bo+ B1B1 + - + B, B, := Bo+ AB(B) € R™*™
C(y)=Co+1C1+- -+ 7Cr = Co+ AC(y) € R™™,

Where Q= (a’ly"';ap) S Rp: :8 = (ﬁl;"’)ﬂq) S Rq) Y= (71:"':77‘) € Rr-

In system S(a,f3,v) (Ao, Bo,Co) and (AA(a), AB(B), AC(v)) represent the nominal system model and a

specific uncertain perturbation, respectively.

2.1 Generalized (A, B)-invariant Subspaces
In this subsection, a generalized (A4, B)-invariant subspace and its properties which were investigated by

Bhattacharyya[2] are summarized.

Definition 2.1  Let V, 2 (C X) be subspaces.
V is said to be a generalized (A, B)-invariant if there exists an F € R™*" such that

(Ale) + B(B)F)V CV

for all (o, 8) € R x R?. Further, define
F(V):={F e R™*" | (A(a)+ B(B)F)V C V for all (o, 8) € R® x R?} and
V(A,B;2):={V(C 2)|? F e R™*" s.t. (A(e)+ B(B)F)V CV for all (o,8) € Rf x R'}. m

For a subspace V of X define a subspace Ry of R™ and a linear map Qv on R™ by

g
Ry := ﬂB[lV and Qv := R™ — R™, a projection map onto Ry along (Ry )", respectively.

i=1
Then, the following lemma was proved.

Lemma 2.2 [2] The following three statements are equivalent.

(i) V € V(4, B; ). '

(ii) There exists an F' € R™*" such that (Ag + BoF)V CVand BiFV CV (i=1,---,¢9),and 4,V CV C
R3GE=1,---,p).

(i) AoV C Im(BoQy)+V and AV CV CR2(i=1,---,p). m

The following lemma gives the computational algorithm of a unique maximal element of V'(4, B; 2).

Lemma 2.3 [2] V(4, B; ) has a unique maximal element V*({2) which may be calculated from the following

algorithm.

Stepl. Vp := £2.



q
Step2. Ry = ﬂBi_le (C R™), where B[ 'V, := {u € R™ | Biu € Vi} (k > 0).
i=1

Step3. Qi := R™ — R™, a projection map onto Ry along (Rx)* (k > 0).
Step4. Box := BoQr (k > 0).

Step5. Vi1 := Vi N A7 (ImBog + Vi) NAT'Ve N - N A Vi (k> 0).
Step6. V*(2):=V,. m

2.2 Generalized (C, A)-invariant Subspaces

In this subsection, a generalized (C, A)-invariant subspace and its properties which were investigated by the

present author[4] are summarized.

Definition 2.4 Let V,e (C X) be subspaces.
V is said to be a generalized (C, A)-invariant if there exists a G € R™* such that

(Ale)+ GC(y))V CV

for all (o,v) € R? x R". Further, define
G(V) :={G e R | (A(a) + GC(y))V C V for all (a,7) € R? x R"} and
V(C, Aje) = {V(De)|P Ge R st. (A(a)+GC())V CViorall (a,7)E RPxR'}. m

,
For a subspace V of X let Py be alinear map on R’ satisfying Ker Py = ZC;V and V = ¢®(VNKer(Py o))
i=1

for some subspace ¢. Since, CogpNKer Py = {0}, we can define a projection map Py : R — R’onto Cood I
along Ker Py = ZC,'V for some subspace I' satisfying V = ¢ @ (V N Ker(Py Cy)).
i=1

Then, the following lemma was proved.

Lemma 2.5 [4] The following three statements are equivalent.

(1) Ve V(C, 4;¢).

(ii) There exists a G € R™* such that (Ao + GCo)V C V and GGV CV (i =1,---,r), AV CV (i =
' 1,---,p)and e C V.
(iii) Ao(V NKer(PyCo)) CV, 4V CV (i=1,---,p)ande CV. m

The following lemma gives the computational algorithm of a unique minimal element of V'(C, 4;¢).

Lemma 2.6 [4] V(C, 4;¢) has a unique minimal element Vi(¢) which may be calculated from the following
algorithm.

Stepl. Vp 1= €.
Step2. P, := R* — R, a projection map onto Co¢y @ Iy along Ker P for some I such that

KerPy = Y _CiVi and Vi = ¢1 © (Vi NKer(P:Cy)) (k > 0).
i=1
Step3. Cox := P Co (k > 0).

Step4. Vi41 = Vi + Ao(KerC()k n Vk) + A Ve+---+ Aka (k > 0)
Steps. Vi(e) := V5. m '



3 Generalized (C, A, B)-pair

In this section, the notion of generalized (C, A, B)-pair which is a generalization of (C, A, B)-pair inves-

tigated by Schumacher[5] is introduced and its properties are investigated.

Consider the system S(e, 8, v) in Section 2.
Now, introduce a compensator (K, L, M, N) defined in W := R" of the following form :

(1)

B owtty = Nu(®) + My(@)
u(t) = Lw(t) + Ky(t),

where N € R¥*¥ M € R***, L € R™*¥ and K € R™*%.

If a compensator of the form (1) is applied to system S(«,f,7), the resulting closed-loop system with the
extended state space X ¢ := X @ W is easily seen to be

a =@ | _
dt | w(t) -

For the combined system (2), define

M®+me@h)BWM}[dﬂ}. : @
MC() N e ’

®)

A(e) + B(B)KC(y) B(B)L
MC(v) N o]

zé(t) .= z(t) and A%(« =
(1) [w(t)} (e, 8,7)

Now, the difinition of a generalized (C, A, B)-pair is given.

Definition 3.1 Let Vi and V5 be subspaces of X. A pair (V4, V2) is said to be a generalized (C, A, B)-pair if

the following three conditions are satisfied.
(i) V4 is a generalized (C, A)-invariant.
(ii) V5 is a generalized (A, B)-invariant.
()cve. m
For a closed-loop system (2) with (3), we give the following definitions.

Definition 3.2 Let V* be a subspace of X°¢. V© is said to be an A%(«, B, v)-invariant if A°(e, B,y)Ve C V®
for all (o, 8,7) E RF x R* X R". m

Definition 3.3 Let V* be a subspace of X¢. The following two subspaces are defined:

w

[g] eve},

where Px is the projection map from X onto X along W. m

€ [V¢] for some w € W} - Px([V¢]) and

V;,::{:EEX

Vszz{weX

The following lemma is used to prove Lemma 3.5.

Lemma 3.4 If a pair (V;, V2) of subspaces of X is a generalized (C, A, B)-pair such that

q r
ZImBi cWicW.C mKerCi,
i=1

i=1



then there exist G € G(V1), G(B8) € R™**, F(y) € F(V2), Fo € R™*™ and K € R™** such that

G = B(B)K + G(8), TmG(B) C V4
F(y) = KC(y) + Fo, KerFy D V; for all (8,y) € R? x R".

Proof. Suppbse that a pair (V1, V2) is a generalized (C, A, B)-pair satisfying the stated above conditions. Since
q
ZImBi C V3, it remarks that V3 + ImB(f) = V2 + ImBy.

=1
Claim 1: GC(y)Vi C Va4 ImBy for all G € G(V;) and v € R,
To prove Claim 1, choose an arbitrary element x € V7. Then,

(A(@) + GC(7))z — A()z
Vi + V2 + ImB(B)

Vo +ImB(8),

V2 + ImBy,

GC(y)x

m M

which proves Claim 1.

Next, the following two Claims 2 and 3 hold.
Claim 2: There exists a G € G(V7) such that ImG C V, 4+ ImBo.
To prove Claim 2, choose a G € G(V;) and z (= y+ z) € R’ such that y € ZCiVl and z € (ZCiVl)J‘. Define

=0 =0

a linear map G € R™"*¢ by Gz := Gy. Then, for some z; € V;

G = Gy= Zécixi
i=0
€ Va+ImBj, (by Claim 1)

which proves Claim 2.

Claim 3: There exists a K € R™*¢ and G(8) € R™** such that G = B(8)K + G(8), ImG(B) C V.
To prove Claim 3, let {y1,--,ys} be a basis of R’. Then, it follows from Claim 2 that there exists an z; € V5
and u; € R™ such that

Gy = z;+ Boy

¢ g
T — ZﬂiBwi + Bou; + > _B:Biu;

i=1 . i=1

(s — ZﬂiBiUi) + B(B)u;.

i=1

Il

Define linear maps K € R™*¢ and G(8) € R™** by

q
Ky, :=v; and G(B)y; = x; — ZﬁiB,-ui,respectively.

i=1

Then,
Gy = G(B)y: + B(B)Ky; and G(B)y; € Va,

which proves Claim 3.



Claim 4: (A(a) + GC(y))V2 C Vo + ImBy for all (a,y) € RP x R'.

In fact,
(A(@)+ GC(MV2 = Ala)Va+GC(7)V2
C Vea+ImB(B) +ImG
C Va+ImB(B) + V2 + ImBy (by Claim 2)
= I/2 + ImBO)
which proves Claim 4.
Now, choose parameters oy =ag =---=ap =71 =72 = -+ =7, = 0 in Claim 4. Then,

(AO -+ GC())Vz C Vz + Il’l’lBo,
which means V» is ((Ag + GCy), Bo)-invariant. Hence, there exists an F' € R™*" such that
(Ao + GCy + BoF)V, C Vs . (4)

Now, let {vy,---,v,} be a basis of Vi and {v,41,---,v;} be a basis of Vo N V;*. Then, define a linear map
Fo € R™*" astisfying

F0v¢=0 (i=1,~--,s),
Fov; = Fv; (i=s+1,---,1).

Then, the following claim holds.

Claim 5: (A(a) + GC(v) + B(B)Fo)Va C Vy for all (o, B,7) € RP x R x R" and V} C KerFp.
Since V; C KerFj is obvious, we prove the first one. Choose an arbitrary element 2 (= y+2)€Vy (ye W,z €
Va N Vi), Then, '

(A(e) + GC(7) + B(B) Fo)z
(A(@) + GC(M)y + (A(@) + GC(v) + B(B) Fo)=

P r g
= (A(a)+GC())y + Aoz + Z%’Aiz + GCoz + GZ%’CzZ + BoFoz + ZﬁiBiFoz

i=1 i=1 i=1

P q r
(A(e) + GC(7))y + (Ao + GCo + BoF)z + Y _oidiz + Y BiBiFz (by V2 C [ |KerCi)

i=1 i=1 =1

m

q
Va (by G € G(V1),AiVa C Vi (i =1,---,p), > ImB; C Vi and (4)),

=1
which proves Claim 5.
Finally, define F(v) := KC(y) + Fo.
Then, the following claim holds.
Claim 6: F(y) € F(V3).

In fact,

(A(2) + B(BYE(7)V2 (A(e) + B(B)KC(7) + B(B)Fo)Va

{A(e) + (B(BK + G(8))C(7) = G(BYC(7) + B(B) Fo}Va

I
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= {A(@)+GC(7) + B(B)Fo — G(B)C(1)}V2  (by Claim 3)
(A(@) + GC(7) + B(B)Fo)V2 + ImG(B)

c
C V2 (by Claim 3 and Claim 5),

which proves Claim 6.

This completes the proof of Lemma 3.4. m
The following lemma is used to prove Theorem 4.2.
Lemma 3.5 If a pair (V1, V») of subspaces of X is a generalized (C, A, B)-pair such that
g r
> ImB; C Vi C Vo C (|KerC; and A;Va C Vi (i=1,--+,p),
i=1 i=1

then there exist a compensator (K, L, M, N) on W := R" and a subspace V°® of X° such that V1 =V,, Va =V}
and V¢ is A*(«, B, v)-invariant, where w := dimV, — dimV;.

Proof. Suppose that there exists a pair (V;,Vs) of subspaces satisfying the stated abové conditions. Let
{v1, -, vs}, {v1, -+, Vs, Vs41, -+, Vs4w } and {y1, - -, yuw } be bases of Vi, V2 and W = R", respectively. Define
a linear map R from V; to R by

{ Ru;=0 (i=1,---,s),

Ry, =y, (i=s+1,---,5+w).

Then, Ker R = V;. Define a subspace V¢ of X & R” by

Ve::{[ .’B |1:€V2}
Rz

Then, it is obvious that V, = V; and V; = V. Since (Vi,V3) is a generalized (C, A, B)-pair, it follows from
Lemma 3.4 that there exist G € G(11), G(8) € R™*¢, F(y) € F(Vs), Fo € R™*™ and K € R™ such that

G = B()K + G(8), ImG(B) C Vs
F(y) = KC(y) + Fo, KerFo D V; forall (8,y) e R* x R'.

Let Fy |y, be a restriction of Fy to Va. Then, since KerR = V; C KerFy |v, there exists a linear map L € R™*"
such that LR = Fy |y, . Further, for all (o, 3,7) € R x R x R"

(A(@) + B(B)Fo + GC())Vi = (A(a) +GC(y)W
c W

and

(A(e) + B(B)Fo + GC(7))V2 (A(a) + B(B)(Fo + KC(7)) + G(B)C(7)) V2
C (A(@) + B(B)F(1)Va+G(BC(1)V2
C

VZ)

which imply (Ao + BoFo + GCo)V; C V; (1 = 1,2).



Then, since KerR (= V1) C Ker{R(Ao + BoFo + GCh) |v,}, there exists an N € R¥*¥ such that

NR

R(Ao + BoFy + GCo) v,
R(Aq + BoF(0) + G(0)Co) v, - (5)

Now, noticing that ImG(0) C Va, define a linear map M € R*** by M := —RG(0).

Then, we have the following Claim.
Claim 1 R(A(a)+ B(B)F(v))x = R(Ao + BoF(0))z for all z € V3 and (o, ,7) € RP x R x R".

To prove Claim 1, let z be an arbitrary element of V5. Then,

R(A(@) + B(B)F(7))z — R(Ao + BoF(0))z
= R(A(e) = Ao+ B(B)F(7) — BoF(0))=
= R(e1di+ -+ apAp)z + R{B(B)(KC(v) + Fo) — Bo(KCo + Fo)}z
= R{B(B)KC(y) — BoKCo}z + R(B(B) — Bo)Foz (by A;Va C Vy = KerR (i =1, D))
q T
= 0 (by Y ImB; C V; =KerR and V; C [ |KerCy),
i=1

i=1
which proves Claim 1.
Next, we have the following Claim.
Claim 2 (MC(vy)+ NR)z = R(A(a) + B(B)F(y))z for all z € V5 and (e, 8,7) € R* x R X R".

To prove Claim 2, let z be an arbitrary element of V5. Then,

(MC(y)+ NR)x = (MCo+NR)z (by Vo> C ﬂKerCi)
=1

(=RG(0)Co + R(A¢ + BoF(0) + G(0)Cy))z (by (5))
R(Ao + BoF(0))=
R(A(a) + B(B)F(7))z (by Claim 1),

which proves Claim 2.

Hence, for an arbitrary element |: v of Ve
Ale)+BBKC() BBL ][ « | _ [ (Al@)+B(B)KCH))z+ B(8)LRe ]
MC(y) N Rz | (MC(y)+ NR)z
_ [@@rBEEem s me ]y o
R(A(a) + B(B)F(7))z

[ (4(e) + B(O)F(7))z ]
| R(A(a) + B(B)F(7))z

Ve for all (o,8,7) € R x R! x R,

m

which proves that V¢ is A°(«, 8,7)-invariant.

This completes the proof of this lemma. m



4 Robust Disturbance-Rejection

In this section, the robust disturbance-rejection problem with dynamic compensator is studied.

Consider the system S(a, 3,7) in Section 2 with the controlled output z(¢) and disturbance £(¢) as follows.

3 2(t) = Ale)e(t) + B@() + B@ED),
S0 By, 8,0) 4 y(t) = C(n)at),
£(t) = D(9)2(0)

where z(t) € X := R",u(t) € U := R™,y(t) € Y := R’ and z(t) € Z := R* are the state, the input, the
measurement output and the controlled output, respectively, £(t) € R" is the disturbance which can not be

measured by controller. It is assumed that coefficient matrices have the following unknown parameters.

Ale) = Ao+oardr+- - +opdp = Ao+ AA(a) € R,
B(f) = Bo+p1Bi+--+p,B,:=Bo+AB(f) € R™,

Cr) = Co+mCi+-+7%Cr:=Co+AC(y) € R, ;
D(6) = Do+6.D1+ - +8D, := Do+ AD(8) € R**",
E(c) = Ey+01E + .-+ 0:E; = Ey+ AE(0) € R™™7,

where a := (al)"':ap) S Rpa 16 = (ﬂl)"')ﬁq) € Rq) Y = (71"")77') € Rr, 6 = (61;"‘163) € Rs)
o:= (01, -+,0¢) € R". '

In system S(«, 8,7,6,0) (Ao, Bo, Co, Do, Ep) and (AA(a), AB(B), AC(y), AD(§), AE(c)) represent the nom-
inal system model and a specific uncertain perturbation, respectively.

Now, we apply to system S(«, 8,7, 6,0) a compensator (K, L, M, N) in Section 3. Then, the closed-loop system

Se(e, B,7,6,0) is given by
d| =@ | _ | A+ B(BKC() B(BL z(t) + E(o) £)
dt | w(t) MC(y) N w(t) 0 ’
)= D) 0] [ =(t) ]

w(t)

The robust disturbance-rejection problem with dynamic compensator (RDRPDC) for system S(«, 3, v, 6,
o) is stated as follows : Given matrices A;, B;, C;, D;, E; for system S(«, 3,7, 6, 0), find if possible a dynamic
compensator (K, L, M, N) such that the closed-loop system S.(a, 3,7, 8, o) rejects the disturbances £ from the
controlled output z for all parameters (a, 3,7,6,0) € R x R x R" x R’ x R'.

For convenience, define

ge.— | @)
0

and D*:=[ D(5) 0].

Then, the problem can be rephrased as follows.



Problem 4.1 (RDRPDC) Given matrices 4;, B;, Ci, D;, E; for system S(a, 8, v, 8, o), find if possible a
compensator (K, L, M, N) such that

< A%a,8,7)ImE® > := ImE®+ A%(a,B,7)ImE® + - + (A%(e, B,7))" ¥~ ImE®
C KerD?®

for all parameters (o, 3,7,6,0) E R x R x R x R°* x R'. m

Now, some sufficient conditions for the RDRPDC to be solvable are given.

Theorem 4.2 If there exists a generalized (C, A, B)-pair (V1, V) such that

q t r 8
(D ImB; + Y ImE;) C Vi C Vo C ([ |KerCi N[ |KerD;) and A;Va CVy (i=1,--+,p),

i=1 =0 i=1 =0

then the RDRPDC is solvable.
Proof. Suppose that there exists a generalized (C, A, B)-pair (V1, V2) satisfying the stated-above conditions.

First, the following inclusions can be easily obtained.
ImE(s) C V3 C Vo C KerD(§) forall (§,0) € R® x R'.

Further, it follows from Lemma 3.5 that there exist a compensator (K, L, M,N) on W := R" and a subspace

Ve of X¢ such that Vi = V;, Vo =V, and
Ve C V¢, where Ve:={[ 5 ]|“’€V2}'
Rz

cVecKe| D) 0]

A(e) + B(B)KC(7) B(B)L
MC(y)

E
E
Since ImF(c) C Vi = KerR and V5 C ﬂKerDi,Im l éﬂ)

=0

Thus, we have

(

for all (@,8,7,6,0) € R x R! x R" x R’ x R'.

E(o)

c A(a) + B(B)KC(y) B(B)L e
MC(y) N

Aa) + B(B)KC(y) B(B)L | Tm
MC(y) N
c Ve

c Ker[ D) 0],

Thus, the RDRPDC is solvable. m

Corollary 4.3 Suppose that V5' is a maximal element of V(4, B; mKerDi) and Vi is a minimal element

=0

t
of V(C, 4; EImEi). If
1=0 . ,
> ImB; C Vi. C V5 C [ KerCi and AiVy C Viu (i=1,--+,p),

i=1 1=1

then the RDRPDC is solvable.
Proof. The proof follows from Theorem 4.2. m

10




If we assume that («,f,7,6,0) = (0,0,0,0,0), Theorem 4.2 and Corollary 4.3 reduce to the following
cororally which was studied by Schumacher[5].

Corollary 4.4 [5] Assume that (¢, 3,7v,6,0) = (0,0,0,0,0). Suppose that V,* is a maximal element of
V (Ao, Bo; KerDyp) and Vi is a minimal element of V(Co, Ag; ImEy). Then, the following three statements
are equivalent. ’

(i) The Disturbance-Rejection Problem with Dynamic Compensator is solvable.

(i) There exists a (Cy, Ag, Bo)-pair (V1, V3) such that ImFy C Vi C Vo C KerDy.

(i) Vi. C V5. m

5 An Illustrative Example

Consider the following systems given by

l+a; 0 0 —oy 0 ﬁl
0 0 0 0 0 0 0 m
Ala) = . B(B) =  C(y) = -1,
(@) 0 0 0 8 0 () ll L o 0‘}
1 0 1 1
1+0’1
. 0
DE)=[0 0 1+6 & |, B@)=| |
0

First, it remarks that the controlled output of the original system is influenced by disturbances.
Define the following matrices as follows.

_ o © R
o o o o

0
0
0
1

-0 = O
o O O =
o O O O
o O o O
o O
= O O O
— O O O
o O O O
o O O =

0 0 0O 00 01
Co:[ },01:[ ],DO:DIZ 0010],92:[0001 ,

1 1 0 0 0 0 0 O
1
Ey=F 0
0= L1 = 0
0
1 01) 1
2 0 1 L 0
Since ﬂKerDi = span , % and ZImE; = span , 1t follows from Lemmas 2.3 and 2.6
=0 0 0 i=0 0
0 0 1) 0
that
1 0 1
1729 0 1 d V; 0
= span , an « = span ,
2 p 0 0 1 P 0
L L O 0 0
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which satisfy

1 2
(Im31 + ZImE,-) CVi.CVscC ((KerCl n ﬂKerD,») and A1V5' C Vi..

=0 1=0

Thus, it follows from Corollary 4.3 and the proofs of Lemmas 3.4 and 3.5 that the RDRPDC is solvable with
dynamic compensator

(K,L,M,N):([lg _01}[ Eel’[_l 0].0),

where k,f € R are arbitrary elements.

6 Concluding Remarks

»
£y

In this paper, the notion of generalized (C, A, B)-pair which is a generalization of (C, A, B)-pair investi-
gated by Schumacher[5] was introduced and its properties were investigated. Further, the robust disturbance-
rejection problem with dynamic compensator for uncertain linear systems was formulated, and then some
sufficient conditions for the problem to be solvable were presented. The results are generalizations of the results

of Schumacher[5] to uncertain linear systems.
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