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Abstract

Many distributed computing applications are based on a graph whose
nodes and edges correspond to computations and communications. The
self-navigation of autonomous objects is attractive to solve such graph-based
problems in parallel, because of (1) the inherent parallelism by object prop-
agations over network and (2) the encapsulation of graph algorithms inside
objects. However, most autonomous-objects-based systems have put their
paramount focus on new computation paradigms or aimed at network ser-
vice tasks not requiring the performance. Among them, MESSENGERS is
the first autonomous-objects-based system aiming at general-purpose dis-
tributed computing, thus addressing the performance issues. It has demon-
strated its competitive performance with other message-passing systems in
terms of coarse-grain computations, which are yet too large to solve funda-
mental graph problems in parallel. However, the software demands for large-
scaled graph generations and analyses are increasing drastically. We expect
that it is feasible to apply autonomous objects to parallel graph computa-
tion on workstation cluster systems with high-speed switchs or distributed-
memory supercomputers, using the following schemes: (1) applying a thread
migration technology, (2) reengineering navigational autonomy appropriate
to graph computation, and (3) realizing static and dynamic load balancing
of logical nodes. This report presents those three schemes in detail.
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1 Introduction

The structure of many distributed problems is a graph whose nodes and edges cor-
respond to computations and communications. Thus, one of the requirements to
distributed systems is their ability of constructing graphs over the systems and exe-
cuting fundamental graph algorithms in parallel.

Recently, mobile agents or autonomous objects are receiving popularity due to
their navigational autonomy which enables them to roam over physical network and
perform tasks at each node they visit. The navigational autonomy is also attrac-
tive to solve graph-based problems in parallel. This is because (1) objects propagate
themselves through graphs mapped to LAN or WAN, which in turn explores inher-
ent parallelism, and (2) they can better encapsulate algorithms, thus narrowing the
semantic gap between distributed algorithms and their implementation.

Several computational paradigms based on autonomous messages/objects have
been proposed, focusing on parallel graph-based computations. Echo [Cha82] is the
paradigm that explores a given graph’s property by propagating a wave of autonomous
messages from a client node. These messages repeatedly navigate themselves along
the incident edges until they visit all nodes. BPEM [BL87] views the knowledge
semantic net as a graph and each query as a graph template. The autonomous
objects carry and use the template as a “road map” to navigate the underlying graph.
Wave [SB94] permits its objects to perform arbitrary computations, replications, and
network propagations. Wave is the one actually implemented, emphasizing on its
unique computational paradigm. It consists of daemon processes interpreting objects
and having individual processes perform tasks, and therefore the performance was
out of consideration.

“Intelligent” mobile agents are another related work based on autonomous objects.
However, most systems developed so far, have focused on network service tasks ir-
relevant to performance, such as information retrieval and electronic commerce over
WAN’s. While they claim their potential performance advantages such as the inher-
ent parallelism and the reduction of network communication, their current speed of
interpretation and task invocation is still too slow to address the performance issues.
In addition, they navigate directly in the physical network but do not have capability
of creating logical graphs.

MESSENGERS [BFD96] is an autonomous-objects-based system developed at Uni-
versity of California, Irvine, not only permitting objects to construct logical graphs
dynamically but also addressing the performance, thus aiming at general-purpose dis-
tributed computing on a LAN. It is the first system to provide objects with a virtual
time environment. MESSENGERS has demonstrated its competitive performance with
and better programmability than message-passing systems such as PVM in several




computation-oriented applications: matrix multiplication, convex hull, and madelbrot
generation [Fuk97]. However, the granularity of computation is still coarse, requiring
approximately 10,000 floating-point operations per each network navigation, due to
the nature of interpretation, the simple logical network implementation, and slow
physical communication. Many fundamental graph algorithms such as shortest path
and minimum spanning tree searches do not involve such a large amount of compu-
tation at each node. Thus, only a limited number of graph-based applications obtain
the advantage of parallel executions from MESSENGERS.

However, practical graph-based applications may sometimes need extremely large
graphs, which are sometimes impossible to be constructed on a single workstation
only. For instance, the analysis of stochastic Petri Nets needs the deduction of all
reachable global states from a given initial state. The graph obtained from this
state deduction is called a reachability graph and normally too large to be stored
in a single workstation. Another example is the individual-based simulation that
computes interactions among numerous different simulation entities behaving in a
virtual world normally represented by a large graph [LS95]. Even the growth of large
graphs is the final goal of applications. One such example is simulating the growing
process of living organisms [PL96].

One of the recent popular system configurations is the workstation cluster con-
necting a large number of workstations with a high-speed interconnection switch,
thus ameliorating physical communication cost. Also, distributed-memory supercom-
puters are available for MIMD-based parallel computing.

From these software demands and hardware improvements, we feel the necessity
and possibility of constructing a new distributed environment that achieves parallel
computing of graph-based applications, as maintaining the better programmability
of autonomous objects. The performance is our main concern and addressed by the
following three research challenges:

1. Replacing interpretive objects with threads that achieve full native-mode execu-
tion

2. Reengineering the navigational autonomy for fast graph construction and navi-
gation

3. Realizing new schemes for logical node distribution and remapping

The rest of this report is organized as follows: Section 2 gives the overview of
MESSENGERS. Section 3 discusses how autonomous objects are managed with thread
migrations. Section 4 introduces a new navigational calculus suitable for graph-
based computations. Section 5 discusses a load balancing scheme which both initially
distributes and dynamically remaps logical nodes over the system. Finally, Section 6



clarifies the implementation plan and concludes the discussion.

2 Overview of MESSENGERS

We start with the overview of MESSENGERS that is a basis for further discussions on
three research challenges: thread migration, navigational calculus, and load balancing
for parallel graph computation.

2.1 Execution Model

To allow Messengers ! to navigate autonomously through the network and carry
out their tasks, the MESSENGERS system is implemented as a collection of daemons
instantiated on all physical nodes participating in the distributed computation. A
daemon’s task is to continuously receive Messengers arriving from other daemons,
interpret their behaviors, described as programs carried as part of each Messenger,
and send them on to their next destinations as dictated by their behaviors.

The MESSENGERS system involves three layers of network. The lowest is the
physical network (a LAN or WAN), which constitutes the underlying computational
resource. Superimposed on the physical layer is the daemon network which involves
selecting an arbitrary subset of the physical nodes to run the interpreter daemon on
and specifying arbitrary inter-daemon links. On the top of the daemon network is the
logical network specific to each application. Multiple logical nodes may be created
on the same daemon node, thus runing on the same physical node, and they may be
interconnected by logical links into an arbitrary topology.

Messenger programs, referred to as Messenger scripts, are written in a subset of
C and are compiled into a form of byte code for more efficient transport and parsing
[Bid96]. Each script is carried in its entirety by the Messenger as it propagates
through the network and is replicated each time the Messenger needs to follow more
than one logical link.

2.2 Language Specification

Messenger scripts distinguish three types of variables. Messenger variables are private
to and carried by each Messenger as it propagates through the logical network. Node
variables are resident in logical nodes and shared by all Messengers visiting the same

IThe individual autonomous objects are denoted by mixed case (Messengers), while the system as a whole is
denoted by small capitals (MESSENGERS).



logical node. Network variables are predefined at each logical node and give each
Messenger access to the network information local to the current node.

A Messenger script consists of variable declarations followed by a sequence of
statements, which can be one of the following types: (1) Computational statements
enable the Messenger to perform arbitrary computations. They include all standard
C assignment and control statements, involving arbitrary variables and constants;
(2) Navigational statements distinguished as create(), delete(), and hop() endow the
Messenger with mobility, permitting it to create and destroy logical nodes and/or
links, and to move within the logical network; (3) Function invocation statements
permit the dynamic loading and invocation of precompiled C functions to be executed
in native mode. The ezec() statement spawns a separate concurrent process for the
invoked function, while the func() statement invokes the function as part of the
current Messenger’s behavior and returns its results to it.

For further discussion on navigational calculus in Section 4, we will here concen-
trate on only the navigational statements: hop, create, and delete.

The hop Statement.

The hop statement permits a Messenger to move around the logical network. Its
syntax is as follows:?

hop(ln = n;ll = I;ldir = d)

where In stands for “logical node”, Il stands for “logical link”, and Idir stands for
the link’s direction. Together, the triple (n,l,d) is a destination specification in the
logical network where n can be an address, a variable, a constant (including the
special node INIT), or a wild card (x) that matches any name; [ can be a variable,
a constant, a wild card, or a “virtual link” (corresponding to a direct jump to the
designated node); finally, d can be one of the symbols +, —, or *, denoting “forward,”
backward,” or “either,” respectively. The default for all three parameters is * and
thus may be omitted.

The semantics of the hop statement are as follows: From the current node c,
replicate the Messenger to all nodes that match n and are connected to ¢ by links
matching ! and d. The Messenger executing the hop in node ¢ then ceases to exist.

Examples (showing the complete syntax and the equivalent default forms):
e hop(ln = a;ll = z;ldir = %)

= hop(ln = a;ll = x)
from the current node c replicate the Messenger to all nodes a connected to ¢ by

2The syntax shown here is slightly simplified. In its full generality, a single hop statement supports multiple hop
specifications, similar to the create statement discussed below.



link 2 (regardless of link direction)

o hop(in = ;ll = x;ldir = —)
= hop(ldir = —)
from the current node c replicate the Messenger to all nodes connected to ¢ by
a backward-oriented link

o hop(ln = *; 1l = ;ldir = %)
= hop() ,
from the current node c replicate the Messenger to all nodes connected to c, ie.,
all neighboring nodes

The create Statement.

The create statement permits a Messenger to create new logical nodes and/or links.
Its syntax is as follows:

create(in = ny, ..., np; Ul = 1y, ..., I; Udir = dy, ..., di;
dn = Ny, ..., Ng;dl = Ly, ..., Ly;ddir = Dy, ..., Dy
[ALL)])

where each triple (n;, [;, d;) specifies a new logical node, n;, connected to the current
node by a (possibly directed) link, /;. The node n; is created on the daemon node
specified by the triple (V;, L;, D;), which is a destination specification in the daemon
network.

The semantics of create are then as follows: For each destination specification
(N;, L;, D;) determines the set of daemon nodes that match the given daemon name
(NV;), daemon link (L;), and the daemon link direction (D;). If the optional parameter
ALL is omitted, choose one of the possible daemons and create the logical node n;
on it. (The choice is made by a set of rules that are beyond the scope of this report
[FBDM98].) The newly created logical node n; can be named (using a variable or
constant) or unnamed (~), and can be connected to the current node ¢ by the link
l;, which could be named (using a variable or constant) or unnamed (~). When
the optional parameter ALL is included, the new node n; is created on all the dae-
mons matching the destination specification and a copy of the Messenger continues
executing in each of the newly created nodes n;.

The defaults for the logical network parameters n;, l;, d; are “~” and those for the
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daemon network parameters N;, L;, D; are “x”.

Examples. Assume that a MESSENGERS is executing in alogical node ¢ mapped
onto a daemon node C.



o create(ln =~;ll =~;ldir =~; dn = %;dl = *;ddir = *; ALL)
= create(ALL)
create an unnamed node connected by an unnamed and undirected link to ¢ on
all neighboring daemons, i.e., those connected to C' by any daemon link.

o create(ln = a,b;ll = z,y;ldir =~, ~; dn = *, %;dl = *, %; ddir = *, %)
= create(ln = a, b;ll = 1,y) _
create a connected to ¢ by z on a neighboring daemon, and create b connected
to ¢ by y on another neighboring daemon

The delete Statement.

The delete statement has the same syntax as hop and performs the same naviga-
tional operations. However, in addition to moving among nodes, it also deletes all
logical links it traverses. If a node becomes a singleton, it is also deleted.

2.3 Node Mapping Algorithm

MESSENGERS supports both explicit and implicit mapping of the logical network
structure onto the daemon network and thus on the physical network. Explicit map-
ping is accomplished by specifying in each create statement the daemon node on
which the new logical node is to be mapped. Implicit mapping is performed by the
system, but the user can control the mapping through appropriate use of the following
parameters and constructs:

e The size of the daemon network: This determines the number of physical nodes
potentially involved in the computation and hence the degree of parallelism.

e The topology of the daemon network: This controls the fan-out during logical
node creation, i.e., the number of separate physical directions into which the
logical network extends.

e The creation threshold value for each daemon: This determines the number of

logical nodes created by the same Messenger (and its replicas) in any given
daemon before it must move onto a neighboring daemon. Hence the threshold
controls the clustering of the computation.
The exact rule is as follows. After N logical nodes have been created on the same
daemon node (where N is the threshold value), the interpreter forwards the next
new logical node to one of its neighboring daemon nodes. The threshold counter
is then reset to zero. The neighboring daemon nodes are selected in round-robin
fashion.
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Figure 1: Mapping of a toroidal grid structure
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e The order in which the nodes are created by the application: This, in conjugation
with the threshold and daemon topology and size, determines the actual mapping
of logical to daemon nodes.

To illustrate the above concepts graphically, consider the mapping of an n X n
toroidal grid as illustrated in Figure 1. A Messenger can create this grid one row at a
time. The first row is created by creating the node (1, 1), then (1,2) (along with the
link from (1,1) to (1,2)), then (1, 3), (along with the link from (1,2) to (1,3)), and
so on. After (1,n) is created, the Messenger creates the link from (1,7) to (1,1). It
then creates the node (2,1), along with the link from (1, 1) to (2,1). The remaining
rows are created in a similar manner. The final step is creating the remaining vertical
links. The mapping control parameters interact with this creation scheme as follows.
If the threshold value is set to n, all logical nodes in a given row will be mapped onto
the same daemon node. If the threshold value is set to 1 and there are n daemon
nodes, each logical node in each row will be mapped onto a different daemon node,
and all logical nodes in a given column will be on the same daemon node. It is also
possible to (1) cluster multiple columns or rows, or (2) cluster any portions of rows
or columns.
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2.4 Data Structure of Messengers and Logical Nodes

Each Messenger is managed in a Messenger Control Block (MCB) as shown in Fig-
ure 2. The MCB includes the Messenger’s ID local to the current daemon, the file
name containing the Messenger’s binary code, and several pointers specifying the
code area, the messenger variables area, and the current logical node’s data structure,
called Node Control Block. The messenger variables area is allocated with a static
size to each Messenger, and thus dynamic memory allocations are not permitted for
the messenger variables.

Each logical node is maintained in an NCB. It includes the node address, the node
name, and pointers to the node variables area and a chain of logical links emanating
from this logical node. When a new node is created, its node address is given by the
system as a two-integer value which consists of the IP address of and the positive
integer unique inside the corresponding physical node. Similar to the messenger
variables area, the node variables area is allocated with a static size to each logical
node.

The same NCB is accessible from Messengers residing on the same logical node
node, and thus its node variables are used as communication media among Messen-

gers.

3 Using Threads

This section discusses one of our research challenges: instantiating autonomous ob-
jects with threads.

3.1 Why Threads

Autonomous objects are generally programmed in network-independent, interpretive
scripts. The main drawback is their interpretation cost, which can be however ame-
liorated by performing most of the computation in native mode. The interpreter
process facilitates such native-mode computation by loading precompiled code dy-
namically or generating native code from scripts through a just-in-time compilation,
and thereafter executing it as a part of interpreter itself or having another process
execute it.

However, the native code must be coarse enough to hide the overhead incurred from
dynamic linking operations, new process generations, and compilations. For instance,
we have obtained the following empirical data for MESSENGERS’ func statement:
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1. The func is approximately 40-times slower than an ordinary C function call.

2. It always causes the context switch of Messengers, which costs 50% more than
that of threads if the number of execution instances is below 2,000 per worksta-

tion.

In addition to the function invocation cost, another performance concern is the
concurrency of script interpretation. The script interpretation for each object is in-
terleaved in a time slice or a certain block of the script. For instance, Wave [SB94]
switches objects to be interpreted statement by statement. MESSENGERS divides a
object into function blocks [WBDF98], each containing a code between any two of
MESSENGERS-unique statements, (i.e. navigational or function-coordinating state-
ments), and initiates a context switch block by block. Since those interpreters work
as a process in a single thread, they are blocked when encountering an I/O opera-
tion in scripts. Some other systems such as Agent TCL [Gra96] and Tacoma [JvS95]
spawn an independent interpreter shell process for each autonomous object and thus
emulate the context switch with that of conventional Unix processes upon an I/O
operation. However, the process context switch is extremely slow. Java [GM95] pro-
vides multithreading, which is however available inside each Java program, (i.e. each
applet), but not among different applets.

As a solution to those performance concerns, we instantiate autonomous objects
with threads. Each autonomous object is programmed in C language with some
special library functions realizing navigational autonomy, and then directly executed
by a thread. Therefore, we can avoid the switching overhead between interpretive
and native modes, and maximize the concurrency among autonomous objects. In the
following, we discuss the details of our strategy to realize autonomous objects with

threads.

3.2 Self-Migrating Threads

To begin with, we assume the following environments when using threads.

3.2.1 Assumptions

Since a thread executes a given function code in native mode, the executable code
must be provided at any destination nodes to which the thread migrates. The Dis-
tributed Shared Memory (DSM) system has no problem, since such an executable
code is accessible from any nodes. The homogeneous system not supporting a DSM
but a Network File System (NFS) has no problem, either. This is because the same
executable code can be loaded at any nodes. However, the homogeneous system
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supporting no DSM nor NFS needs a help to load a given function code at a desti-
nation node. We assume that the executable image has been transferred by mobile
“interpretive” agents such as MESSENGERS prior to thread migrations.

The heterogeneous system falls into a more sever problem, since each workstation
has a different instruction set. For this system, we again assume that mobile agents
transfer function source code to destination nodes, where they compile it into the
executable.

We assume the same layered networks as the current MESSENGERS system uses,
namely physical, daemon, and logical networks. Similarly, we provide three distin-
guishable types of variables: Messenger, node, and network variables. Threads resid-
ing on the same logical node can share its node variables but not those on different
nodes.

3.2.2 Design Strategy

The main hurdle to implement thread migrations is how to capture and migrate the
state of each thread. The state includes a CPU state, a stack, I/O descriptors, and
dynamic memory spaces associated with the migrating thread. We must also prevent
race conditions among multiple threads. The following shows our strategies to realize
thread migrations:

e Migration at top level of execution:

Upon an invocation, a thread is given four pointers specifying messenger, node,
network and argument variables areas. The thread is prohibited to use any other
local variables in its top level function, while allowed to use any variables in the
lower level functions. We also permit thread migrations on “only” the top level of
execution [WBDF98]. In addition, I/O descriptors are restricted to be declared
in node variables only, and thus need not be transferred to remote nodes. With
these four restrictions, the thread state to be captured is the initial four pointers
given to the thread and the data pointed by them.

e Dynamic memory salvation:
The contents of pointers are private to each workstation and thus no longer valid
after a thread migration. However, pointers are necessary to allocate dynamic
memory spaces. We provide library functions to keep track of dynamic mem-
ory spaces and pointer contents. Each logical node has a pointer table which
registers the size, base address and pointers in use of the node variables area.
Similarly, each autonomous object has a pointer table for its messenger variables
area. Also, upon a dynamic creation of a new memory space, a pointer table is
attached to this space. Such tables are handled by our library functions. When
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leaving the current node, an autonomous object carries all memory spaces and
the corresponding tables attached to them. Upon an arrival to the destination,
it looks through each pointer table, allocates the required space, and recovers
each pointer registered in the table by computing the displacement from the
base address to this pointer. The final implementation may have the language
processor analyze all pointer operations and insert the library functions in the

code automatically.

e Non-interruptibility:
Threads share I/O descriptors and node variables. Since I/O operations can
be serialized by the flockfile() POsIX/SOLARIS thread library function, node
variables are only ones to which accesses must be serialized. This is performed
by activating only one thread per logical node. In other words, we guarantee
that multiple active threads are not residing on the same logical node, and thus
never compete the same node variables. They may cause a context switch upon
an I/O or memory heaping operation. However, I/O operations can be serialized
as explained above and the memory allocation is guaranteed to be thread safe on
the POSIX/SOLARIS environment. Therefore, we can permit threads on different

" logical node to run concurrently, while serializing the thread execution per each
node. A context switch among threads on the same logical node occurs only
when each one migrates somewhere. For inter-threads communication via node
variables, threads must voluntarily relinquish a CPU by migrating to the same

node.

3.3 Implementation Details

In the following, we give the implementation details of our thread management strate-
gies.

3.3.1 System Components
The system consists of three components shown below:

1. Daemon: Each processor runs a daemon process which maintains a logical
network and schedules threads running on it. It is also in charge of handling
thread migrations with other daemons.

2. Preprocessor: Each autonomous object is described in C. A language prepro-
cessor inserts into this source code additional library functions that maintain
pointer contents and migrate the thread state. Thereafter, a conventional C
compiler generates the executable module from the modified source code.
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3. Library: Two libraries are provided: one for pointer maintenance and the other
for thread migration. The former keeps track of pointer contents and maintains
a pointer table for each memory space allocated to the calling thread. The latter
captures and migrates the calling thread state: its program counter, messenger
variables, dynamic memory spaces and their pointer tables.

3.3.2 DPointers

A pointer table is assigned to a new memory space upon its dynamic allocation.
The table records the memory size, the base address, and pointers in use. All table
operations are handled by the following library functions:

new_my_tbl(size, addr) attach a new table to the calling thread upon a malloc()
free_my_tbl(my_tbl_id) free the table from the calling thread upon a free()
new_node_tbl(size, addr)  attach a new table to the current node upon a malloc()
free_node_tbl(node_tbl_id)  free the table from the current node upon a free()

to_node_tbl(my_tbl_id) attach a copy of the table from the thread to the node
from_node_tbl(node_tbl_id) ~attach a copy of this table from the node to the thread
reg_ptr(ptr, tbl_id) register the specified pointer to the table

free_ptr(ptr, tbl_id) erase this pointer from this table

Figure 3 shows the code of a thread which allocates a dynamic memory space,
attaches it to the current logical node, and departs for somewhere. Several library
functions (shown on the right side) are appended to the original source code (listed
on the left side).

(1) thread_ A () { // library function to support pointers

(2) msgr.p = malloc(size); msgr.my_tbl_id = new_my_tbl(size, msgr.p);

(3) *msgr.p = data; reg_ptr(msgr.p, 1);

(4) node.p = msgr.p to_node_tbl(msgr.my_tbl_id); reg._ptr(node.p, 2);
(5) if (msgr.x > 0)

(6) msgr.p = NULL; free_my_tbl(msgr.my_tbl_id);

7) thr_move();

8}

Figure 3: Exchanging a dynamic space between two threads

Figure 4 describes how this thread code handles pointer tables associated with it.
The thread A in the figure has a pointer table for its messenger variables area, which
has a preassigned table ID #1. Similarly, the current node has a pointer table for its
node variable area, accessible with the table ID #2. When the thread A allocates a
new memory space dyn0 (line 2), it attaches a new pointer table for dyn0 and obtains
its table ID. Since the thread uses the messenger variable, msgr.p as a pointer (lines
2 and 3), it registers this variable in the pointer table #1, (i.e., the one for the
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messenger variables area.) Thereafter, the thread records the address of dyn0 into
the node variable, node.p (line 4). Therefore, a copy of the table for dyn0 is made
and attached to the node. In addition, node.p is registered in the table #2, (i.e., the
one for the node variables area.) Depending on the content of msgr.z (line 5), the
thread A nullifies the msgr.p (line 6), which requires the thread to free dyn0’s pointer
table. Upon a thread migration (line 7), the thread A duplicates and carries dyn0’s
contents if it has not freed the pointer table by bypassing line 6.

Thread Control Block ade Control Block
id id

file name name

func name node

node ynamic —

msgr

ynamic
msgr var area

node var area

msgr pir t nade ptr ta :
data — data —
ptr in use: msgr.x ptr in use:

msgr.p node.p

dynQ ptr table
]

user-defined space data

__.>
user-defined ptr

ptr in use:

dynO space

Figure 4: Pointer maintenance tables

3.3.3 Migration

Thread migrations over logical network is performed through library calls. The def-
inition of the library functions are given in Section 4. The network navigation is
distinguished into two types: the intra- and inter-daemon navigations. The former
migrates a thread between two logical nodes, both located inside the same daemon.
The arguments given to a thread are always four pointers to messenger, node, net-
work, and argument areas. Therefore, the intra-daemon navigation only switches the
second pointer, (i.e., the node poitner), from the source to destination node variables
areas. No state capturing occurs.
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The latter, (i.e., the inter-daemon navigation), migrates a thread between two
logical nodes, both located on different daemons. The state to be captured includes:

its Messenger variables area
all dynamic memory spaces
all pointer maintenance tables

its executable file name and function name

oUW e

the displacement from the function entry point to the current program counter,
(which we refer to as a “function displacement”)

The daemon’s work, when receiving a thread, includes:

1. updating the contents of all the pointers in Messenger variables and dynamic
memory areas according to the pointer maintenance tables,

2. copying into a new function stack four pointers to Messenger, node, network and
argument areas,

3. locating the appropriate function entry point from the executable file name and
function name,

4. computing the thread-resuming point by adding the “function displacement” to
the entry point, and

5. jumping to that point

3.3.4 Thread Scheduling

Each logical node has its own lock variable, for which all threads residing on it compete
with each other. In other words, the logical node is regarded as a monitor. Only a
thread to acquire the lock is allowed to run and access the node variables. Whenever
it navigates itself somewhere, it releases the lock to resume another thread. Each
daemon gets prepared for a priority queue maintaining runnable threads, which reside
on different logical nodes.

For inter-daemons communication, we have obtained a good performance by mul-
tithreading, where a daemon instantiates for each remote daemon a thread that main-
tains a TCP/IP socket permanently and exchanges data whenever the socket is ready
to be read or written [WBDF98]. To avoid a confusion, we refer as “socket threads”
to those in charge of TCP/IP communication, while referring as “user threads” to
those instantiated to execute autonomous object code.
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the main thread | spawns all other threads and controls the daemon
user threads execute a user’s autonomous object code
socket threads communicate with each remote node

Table 1: Types of threads running inside the daemon

The daemon itself works with the main thread that not only spawns these user
and socket threads but also maintains a logical network and takes care of thread
migrations. In summary, we have three types of threads to be scheduled, as shown in

Table 1.

3.4 Related Works

Thread migrations have been studied for the purpose of the alleviation of remote
memory accesses by dispatching such threads that frequently refer to remote mem-
ory. In the following, we differentiate our self-migrating threads from other major
multithreading systems, in terms of navigational autonomy, state capturing, paral-
lelism, and dynamic data transfers.

e Navigational Autonomy: In most existing systems, the migrations are rather
passive and triggered when threads refer to remote data. To avoid thread mi-
grations from thrushing between nodes, the compiler need be smart enough to
decide upon which remote access a thread must be migrated. Such decisions usu-
ally depend on each application, and may need some compiler directives given
from users.

e State Capturing: It is quite expensive to capture the entire stack of a migrated
thread. Therefore, Olden from Princeton [RCRH95] transfers only the current
layer of stack, while Nomadic Thread from USC [JG96] manages a thread in
a simple activation flame and always dispatches this flame to a remote node.
Upon a termination, Olden has a remote thread merge its termination value into
the original stack. Nomadic Thread has a child thread consult with a special
"result” thread in order to locate the parent thread possibly migrated somewhere
and return the termination value to it.

e Dynamic Data Transfer: The shared-memory-based thread migrations such
as Olden has no problem in accessing dynamic data structures such as lists and
trees, since pointers are visible at any processors. In Nomadic Thread, pointers
to dynamic data consists of two fields: the ID of a CPU containing this data
and a memory address where it is located. Thus, when a thread accesses data

“through a pointer, it is migrated to the CPU specified by the pointer and refers
to the data at the given address.
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Figure 5: Thread migrations in a divid-and-conquer algorithm

However, pointers do not always address efficient accesses to dynamic data struc-
ture. Consider a merge sort, based on the divide-and-conquer algorithm where
a sequence of data is recursively divided into two sub sequences until it has only
two data items, (i.e., a divide phase), and those sub sequences are merged back
to a single sorted data, (i.e. a conquer phase), as shown in Figure 5. Assume
that two threads are migrated to two nodes, containing lift and right child sub-
sequences respectively in a divide phase. They return only the pointers to their
sorted subsequences to the parent in a conquer phase. The problem is that those
two sorted subsequences still remains on remote nodes and thus remote accesses
occur upon when those two results are unified. This problem is resolved in our
self-migrating threads with the idea of pointer table.

The distributed-memory-based thread migrations have been studied in UPVM
[CKO+94], Ariadne [MR96], and Emerald [RTL*91]. David Cronk et al. re-
viewed pointer operations in these systems and proposed the use of pointer table
[CHM97]. Our pointer table management is different in permitting threads to
move dynamic memory spaces from their private space, (i.e. the messenger vari-
ables area), to the shared space, (i.e. the node variable area), or vice versa.
Therefore, it is even possible for different threads to exchange their dynamic
spaces.

Parallelism: In addition to the occurence of I/O blockings or timer interrupts,
a thread may be switched to another one when it needs data provided from
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remote threads. For instance, Nomadic Thread provides split-phase operations
to access I-structures and causes a context switch whenever a thread is blocked
to read an I-structure from remote threads. Olden switches a thread to another
one till it can receive a return value from its children through future and touch
operations. Our self-migrating threads initiate a context switch upon every
migration including a dummy hop to the current node.

In summary, our self-migrating threads navigate over network with user’s full in-
tention, and simplify the state capturing with a few restrictions to stacks, while sup-
porting pointers necessary to use dynamic memory space. They maintain fine grain
parallelism with their context switches upon I/O operations and network navigations.

4 Navigational Calculus for Graph Constructions

This section discusses a new navigational calculus to facilitate a large-scaled graph
construction on parallel and distributed machines.

4.1 Problems in Current Logical Network Constructions

Most mobile agents and thread migrations are generally based on the explicit address-
ing, in which they enumerate destinations with IP or memory addresses [BDF98]. In
contrast to this addressing is the implicit addressing, in which Wave and MESSEN-
GERS propagate their objects to multiple nodes that meet the selection criteria they
indirectly enumerates. Their objects navigate over physical network as generating
application-dependent graph or logical network on it. This addressing gives a great
flexibility to construct and navigate over various graphs. For instance, [#a in Wave
or hop(node = a;link = 1) in MESSENGERS propagates the calling object to all ver-
tices named “a” along all edges named “1” from the current vertex, thus without
enumerating all such the destination vertices explicitly.

However, for parallel graph generation, the implicit address still has several func-
tional problems yet perfectly addressed by none of the systems we discussed so far.
Furthermore, of importance in parallel computing is the efficiency, which contradicts
the flexibility. In the following, we show such functional and performance problems
to be solved for the network navigations.

1. Edge Connections
The implicit addressing cannot always locate a single logical node, since logical
nodes and links may have the same name. The easiest solution to this problem
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is allowing the explicit addressing as an option. Generally, the explicit address-
ing locates each logical node with the system-unique machine name and the
intra-machine sequential number. For instance, Wave and MESSENGERS use IP
address as their system-unique machine names. In such naming, the system but
not the user has an authority to give each logical node a system-unique address
upon its creation. Therefore, when creating a new link to an existing node, an
autonomous object must previously visit this node to obtain the address from
the system.

Figure 6 gives such examples. Figure 6 (A) shows that a Messenger must first
create a new node, “d” whose address is 0x8765432100000001 prior to establishing
a link connection from a node “c” to the node “d”. This in turn means that
two Messengers, residing on nodes “b” and “c” respectively, cannot create a new
link to the same new node, “d” in parallel. Figure 6 (B) shows a problematic
construction of a mesh. One of mesh construction algorithms is generating hori-
zontal links first and then vertical ones. During the horizontal links construction,
the Messenger must memorize all the addresses of grid points, so that it can con-
nect vertical links to appropriate grids. The larger mesh to be created the more
addresses to be memorized. Therefore, using node addresses is not appropriate
to construct large graphs.

Hence, we need an efficient addressing that permits autonomous objects to give
a unique address to a new node by themselves.

©
, ferm-q---- o

2~ create(node = addr) -~

addr = 8765432100000001 i P

Figure 6: Edge connection

2. Simultaneous Executions of Different Navigational Statements
Wave provides two distinct navigational commands, create and hop, each repre-
sented as # and CR(#), which in turn means that a network can grow but not
shrink. MESSENGERS gives one more navigational command, delete to permit
a network to change freely. Currently, those distinct commands must be exe-
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cuted separately, while each of them can be applied for multiple link creations,
propagations, or deletions. This may be still a restriction to parallel network
modifications. Figure 7 gives a problematic example. Given a line segment AB,
assume that an autonomous object resides at the end A and wants to delete the
segment AB and to create a new one AC. Unless the object were permitted to
perform the link deletion and creation in parallel, it would have to first delete
AB, hop back from B to A, and then create AC in sequential. In summary, the
navigational calculus must support simultaneous executions of different network
operations such as create, hop, and delete.

Autonomous
Object

Figure 7: Simulataneous graph modificaitons

. Atomic Modifications

Graph applications may need to change not only the topology of their graphs
but also the attributes of their graph vertices and edges. Since those attributes
are shared among autonomous objects, references and modifications to them are
critical sections. For instance, given a link with the weight W, assume that two
objects residing on the different ends of the link need to increment this weight
W respectively. The expected value should be W + 2, while it may be W + 1 if
the system does not guarantee the atomicity for a sequence of operations: read,
modify and write. Thus, operations to logical nodes must be atomic. Since
links may be created over different workstations, such atomic operations require
distributed synchronization among them.

. High-Speed Navigations

Navigations along links use only local information, (i.e. the name and weight
of links emanating from the current node). The advantage is that autonomous
objects can be programmed to navigate over a logical network without the knowl-
edge of its global topology. On the other hand, the disadvantage is that string
and integer comparisons must be achieved for each of all links incident to the
current node in order to find the links matching selection criteria. This incurs a
large amount of overhead for network navigation.

Autonomous objects may want to locate a link with its identification local to

the current node other than its link name and weight, which may not be unique
even among links incident to the same node. Figure 8 shows such an example,
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where an autonomous object quickly locates one of four links emanating from a
given node with its local link ID #4 other than its link name, “xyz”.

hop(link = "ijk");

hop(link_id =4)

link=
(link_id=

Figure 8: Fast link navigations

4.2 Language Specification

In this subsection, we propose a new navigational calculus which addresses all prob-
lems mentioned above, and thereafter demonstrate its efficiency using several exam-
ples.

4.2.1 Definitions

The new definition is based on our initial definition of navigational calculus [FBDM98].
Given a logical network N, our calculus finds the subset of all logical nodes n €
N that match the destination spec or DEST = {n|match(n, dest_spects)}, where
dest_specs = (daemon, addr, node, src_id, dst_id, link, weight). Table 2 shows the
meanings of destination spec keywords. ‘

The destination nodes are the ones residing on a given daemon, addressed with
addr, having a name specified in node, and accessible along links that have src_id and
dst_id as their link IDs at the source and destination node as well as a string link
name and an integer weight. Table 3 lists arguments available for each navigational
keyword.

Table 4 summarizes the meaning of arguments in each keyword.

In addition to the destination specs DEST(), we also define a set of navigational
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keywords | meanings

daemon | decides destination daemons

addr decides a destination node with the system-unique address
node decides destination nodes with the name in its argument
sre_td decides a link with the ID unique to the current node
dst_id decides a link with the ID unique to the destination node
link decides links with the name given in its argument

weight decides links with the weight given in its argument

Table 2: Keywords used in our navigational language

keywords | arguments
daemon | ~ | @symbol | string

addr ~ | integer
node ~ | string
srcid ~ | integer
dst_id ~ | integer
link ~ | string

weight ~ | integer | @symbol

Table 3: Keywords and their arguments to decide the destination criteria

actions or ACT(). The ACT accepts the arguments summarized in Table 5.

ACT() receives the pointer to a function, which computes and returns an new
weight of the link being traversed. The function is given four arguments: the value of
the current weight and pointers to the messengers variables area, the node variables
area of the source node and the arguments area.

Using the above calculus and actions, namely DEST and ACT, we define a new
navigational statement as shown in Figure 9.

The first p_int, which does not follow a keyword, specifies the number of navi-
gational operations issued in parallel. For instance, thr-move(3; action = @create,
@hop, @jump; node = “a”, “b”, 15) involves three individual navigations, which are
a network creation, a propagation, and a direct jump. Each individual navigation
receives arguments appearing at the same position from each keyword. In the above
example, the actions @create, @hop, and @jump receive “a”, “b”, and 15 respectively
as their argument in the node keyword. The calculus has the abbreviation rule shown

below:

e The N repetitions of the same argument, arg, can be simplified in arg x N.




daemon
arguments | meaning
~ don’t care, (a daemon chosen by the system)
@n one of neighboring daemons
Q. the current daemon
Q@a each of all daemons
Qe each of all neighboring daemons
string the daemon with this string as its name
addr
arguments | meaning
~ don’t care, (a node name/address not given nor tested)
0 the init node
integer the node with this integer as its address
node
arguments | meaning
~ don’t care, (a node name/address not given nor tested)
string the nodes with this string as its name
src.id/dstid
arguments | meaning
~ don’t care, (a src_id/dst-id not given nor tested)
integer the link with this integer as its source or destination ID
‘ link
arguments | meaning
~ don’t care, (a link name not given nor tested)
string the links with this string as its name
weight
arguments | meaning
~ don’t care, (a weight not given or tested)
@> links whose weight is the maximum at the current node
Q< links whose weight is the minimum at the current node
Q@+ links with a positive weight
Q@-— links with a negative weight
integer links with the this integer value as its weight

Table 4: Arguments and their meanings

26
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arguments meaning

Q@create create a new logical link and a new node at the destination
@hop propagate to the destination along links

@jump jump directly to the destination

(*func)()  do the same as hop and modify the traversed links with func()

Table 5: Navigational actions

link_ID = thr_move( p_int

; action = action_argument{[,.., action_argument]}[*[p_int]]
[; daemon = daemon_argument{[,.., daemon_argument]}[*[p_int]]
[; addr = addr_argument{[,.., addr_argument]}[*p_int]]
[; node = node_argument{[,.., node_argument]}[*[p_int]]
[; src_id = id_argument{[,.., id_argument]}[*p_int]]
[; dst_id = id_argument{[,.., id_argument]}[*p_int]]
[; link = link_argument{[,.., link_argument]}[p_int]]
[; weight = weight_argument{[,.., weight_argument]}[p_int]]
);
p_int := positive integer constant | positive integer variable

Figure 9: Navigational Statement

e If the notation, arg x N, is followed by no more arguments, it can be further
simplified in argx.

e The symbol ~ can be simply omitted.
e The notation, ~ *NV is thus equivalent to */V.

e If a keyword has the notation, ~ * or * as its argument, it can be simply omitted.

With this abbreviation rule, we can transform the following three keywords and
their arguments into some simplified forms.

(keyword =~,~,~,a,b,c) = (keyword =,,,a,b,c) = (keyword = ~*3,a,b,c) =
(keyword = %3,a,b,c)
(

keyword = a,b,c,~,~,~) = (keyword = a,b,c,,,) = (keyword = a, b, ¢, ~*)
= (keyword = a,b, ¢, *) = (keyword = a, b, c)

(keyword =~, ~, ~, ~v, o ~) = (keyword =, ,,,,) = (keyword = ~x)
= (keyword = %) = ()
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4.2.2 Creation

The thr_move navigational statement constructs a logical network with the @create
constant. New logical nodes to be created all satisfy a destination spec partially
determined by DEST(daemon, addr, node). Two or more different nodes can share
the same node, while they must have their system-unique address. To enforce this
rule, no more node is duplicated when the addr keyword receives an integer value that
has been already used as a node address over the system. The thr_move statement
propagates the calling thread to each destination node, as establishing a new link on
its way from the source to the destination. The attributes of the link are determined
by src_id, dst_id, link, and weight.

Among them, src_id and dst_id are link IDs dedicated to the source and destination
nodes respectively. For instance, assume that a link has been created from nodes A
to B with the source ID #1 and destination ID #2. At the node B, the link is
identified with the source ID #2 and destination ID #1. The link ID must be unique
to each logical node, which in turn means that no link creation using an existing ID
is successful and terminates the calling thread. Link IDs must be also positive when
they are given by a user. This is because the system automatically gives negative
integer values as a new link’s source and destination IDs when they are not explicitly
given by a user.

4.2.3 Hop

The thr_move propagates the calling threads to destination nodes with the @hop con-
stant. All the destinations must satisfy a complete spec determined by DEST(daemon,
node, src_id, dst_id, link, weight). The propagation must be done along links that em-
anate from the source node and satisfy src_id, dst_id, link, and weight keywords. The
thr_move terminates the calling thread if DEST has no destination at all.

4.2.4 Jump

The thr.move makes the calling threads jump directly to destination nodes with
@jump constant. All the destination must satisfy a spec only determined by DEST(daemon,
addr). This direct jump is performed with regardless of the existence of links. The
thr_move terminates the calling thread if there exists no node with a given address.
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4.2.5 Change

If the action keyword receives a pointer to a function, thr_move propagates the calling
threads in the same manner as the hop operation. However, unlike the hop, it also
modifies the weight of links traversed by the threads. The new weight is returned by
a user function which receives four arguments: the weight of the traversed link and
pointers to the messenger variables, the source node variables, and the arguments
areas.

There is a special case where the action keyword receives a null pointer. This
deletes the links traversed by the thread. When all links from the source node are
deleted and it becomes a singleton, the source node is also deleted.

4.2.6 Example

The following thr_mouve function issues four independent navigations. The first nav-
igation is a direct jump to the node identified with the system-unique address #1.
The second one establishes a new link with the source id #5 and the name, “link x”,
navigates the calling thread along this link, and creates a new node “node_a” at the
other end of the link. The third operation finds the link whose weight is the mini-
mum at the source node, and navigates the thread along the link, as incrementing its
weight. The fourth one finds the link with the maximal weight and deletes this link
after navigating the thread along it. Figure 10 describes this network navigations.

int func(int weight; *void p1, p2, p3)

{ return(weight + 1); }

thr_move(4;
action = Qjump, @create, func, 0;
daemon = ~, -, -, s
addr =1, -, -, ~;
node =7, node_a, ~, ~;
src_id = 7, 5, -, -
dst_id = 7, -, -, ~;
link = 7, link_x, 7, ~;
weight = 7, -, Omax, O@min) ;

According to the abbreviation rule, the above thr_move() is simplified into the
following form:

thr_move(4;
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action = Qjump, @create, func, 0;

addr =1;

node =, node_a;

src_id = , 5;

link =, link_x;

weight = *2, @max, @min) ;

Messenger

D
iR

src_id=
weight=

link=

addr= 1 :
node= node_a
¥ v v v
(Messenger) (Messenger) @/Iessenger) (Messengeg

Figure 10: Network navigations by a new calculus

4.2.7 Network Environment Information

The network environment information can be obtained via the following predefined
variables. Those variables are set to point the appropriate network structure by the
run-time system.

$address the system-unique address of the current node

$node the current node name

$nlinks the number of links emanating from the current node
$link[i] the name of the local link with source ID 1

$weight[i]  the weight of the local link with source ID ¢
$neighborli] the neighboring node address accessed from the link with source ID ¢
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4.3 Navigations Using New Calculus -

Now, we demonstrate how the new calculus addresses the functional and performance
problems discussed in Section 4.1.

Edge connection:

With the new calculus a user can assign a system-unique address to each new node.
If the system has no such node specified with a user-defined address, it creates one
with this address. Otherwise, the system simply creates a new link to the existing
node accessible with the given address. Using this feature, four nodes “a”, “b”, “c”,
and “d” in Figure 6 can be constructed with the following code:

thr_move(1l, action = @create; addr = 1; node = ‘‘a’’);
thr_move(2; action = @createx, addr = 2, 3; node = ‘‘b’’, ‘‘c?’);
thr_move(l, action = @create; addr = 4; node = ‘‘d’’);

Different navigations:
Since the new calculus allows different types of navigations in the same thr-move
function, the graph modification in Figure 7 can be performed by a single statement

as shown below:
thr_move(2; action = 0, @create; node = ‘‘b’’, ‘‘c’’);

High speed navigations

The new calculus permits the the thread to select a link with an ID local to the current
node. From the implementation point of view, an appropriate link data structure can
be quickly selected without performing string comparisons for all links emanating
from the source and thus the navigation will be accelerated drastically. The following
statement is a faster navigation along the link “ijk” in Figure 8:

thr_move(action = @hop, src_id = 4);

4.4 Related Works

We focus on two major works related to graph description languages: (1) the one
constructing a computational network with a net list and mapping it over a specific
parallel machine and (2) the other defining the dynamic growth of graphs in L-systems
and presenting it in computer graphics.

e Net-List: Given a set of nodes, the net list enumerates node-to-node static con-
nections for all these nodes. Such node-to-node connections may be represented




32

with some regular expressions. For instance, if there is a regularity in that node
#i is connected to node #i + 1, the connections may be simply described:

edge(i): node(i) => node(i+1)
other than enumerated:

edge(1): node(1) => node(2);
edge(2): node(2) => node(3);

*

Figure 11 shows how a 7-body static graph is described in a net list.

type ring_edge(i) node(i) => node((i+1) mod n);
type chordal_edge(i) node(i) => node((i+(n+1)/2) mod n);

'Figure 11: Describing a 7-body static graph in a net list

The mapping problem arises when the topology of a graph is different from that
of the underlying physical network. However, various static mapping algorithms
have been well studied for net-list graphs. P-prep [Ber87] and Oregami [LRG*95]
are such systems that efficiently map a given graph to a target architecture, as
applying existing algorithms to the graph and following tuning-up instructions
from users.

The main disadvantage is that those systems focus on only the initial static
mapping from logical to physical networks, and thus they are not capable of
dynamic/incremental graph generation nor dynamic graph remapping. Another
disadvantage is the poor programmability and understandability of the net list.
The larger graph we have, the more difficulty we have in tracing.

Lindenmayer-Systems: L-systems [RS74] are based on strings rewriting. Each
alphabet of a base string w is recursively rewritten through a given production
rule p. They introduce a virtual turtle and make it draw a graph, as reading
such growing strings and interpreting each alphabet of the strings as a edge/node
generating instruction. For instance, assuming that F, +, and — mean an edge
creation, right and left turns, respectively, the following L-system description
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w:F-F-F-F;
— pF>F-F+F+FF-F-F+F,

Figure 12: A growing graph descibed with an L-system

starts with a square denoted by w and recursively rewrites each edge into a more
complicated graph through a rule p, as shown in Figure 12

w:F—-F-F-F
p:F>F-F+F+FF—-F—-F+F

The main advantage of L-systems is their ability of generating a string sequence
for a complicated graph through their concise production rules. A graph can
grow with continuous repetitions of string rewriting, and can be therefore used for
simulating developmental processes of natural organisms [PL96]. Furthermore,
each alphabet of a string, (i.e. F in the example above) may be rewritten in
parallel, and thus parallel processing is possible by assigning a portion of a string
to each processor.

On the other hand, L-systems have several disadvantages: (1) a graph is drawn by
the sequential turtle interpretation of a string, (2) a generated graph is acyclic in
general, due to the lack of rule to connect branches, and (3) a graph is maintained
in a string, and thus it is not easy to solve various graph problems such as a
shortest path and a minimum spanning tree.

Our new calculus addresses these disadvantages of both net-list descriptions and
L-systems, except dynamic graph remapping, which we will support with a load
balancing scheme discussed in the next section.

5 Load Balancing

In this section, we first points out problems in IP-oriented node addressing, implicit
node mapping, and user-defined node addressing when we introduce dynamic load
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balancing. Then, we propose a new node mapping and remapping algorithm to
address these problems.

5.1 Research Challenges

5.1.1 IP-oriented Node Addressing

Logical nodes must have their own system-unique address, while they can share the
same name. We showed that such address should be given by users from the program-
ming point of view. This is also true when we introduce a node remapping algorithm.
In other words, nodes should be maintained with logical address. We explain this rea-
son, using the current node addressing scheme in MESSENGERS. The MESSENGERS
system identify each logical node with the IP address of and the sequential number
local to the workstation it belongs to. Figure 13 describes how a series of six nodes
are generated in MESSENGERS. For simplicity, let these processors’ IPs be 1, 2, and 3.
Also assume that each processor has a threshold value to create nodes consecutively
as shown in the figure. Consider the third node that was created on the processor
1 and given 100000003h as its address, (abbreviated as 1.3). Then, let us assume
that the processor 1 migrates the node 1.3 to the processor 3. Since all the nodes
neighboring to 1.3 are informed of the node 1.3’s migration, Messengers navigating
along links from those neighbors to 1.3 could correctly arrive at the processor 2. How-
ever, non-neighboring nodes are out of knowledge about the node migration and thus
must use IP information. Messengers jumping directly to 1.3 would still arrive at the
processor 1 and should be forwarded to processor 3. Such forwarding is resulted from
IP-oriented addressing. Therefore, the node address must be independent of IP or
physical information.

5.1.2 Implicit Node Mapping

In Section 2, we demonstrated that the MESSENGERS implicit node mapping algo-
rithm is conveniently working for generating simple networks. However, we still need
to cope with more complicated network generation and mapping. When constructing
an n x n logical grid on n processors, MESSENGERS can map to the same processor
all the nodes on the same row (or column). However, it is much more complicated
to map a /7 X v/ sub-mesh on each processor as shown in Figure 14(A). Another
example is a tree mapping as shown in Figure 14(B), which recursively allocates each
sub-tree to a different processor every certain depth of the tree.

The explicit node mapping allows each application program to specify a processor
to generate the next new node, however it makes the thread code inflexible for system
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Figure 13: Node generations in IP-oriented addressing

reconfiguration. Therefore, we need some node mapping instructions which do not
affect thread code. "

5.1.3 User-Oriented Node Addressing

When a user gives a system-unique address to each logical node, the arising problem
is how to detect whether the given address is already assigned to an existing node or
not, and how to locate the node with that address. We need a new node mapping
algorithm that not only uniformly distributes logical nodes but also quickly locates a
node with a specific address.

Since threads may gather to a specific processor, thus resulting in load imbalance,
some node remapping algorithm is necessary to keep good load balancing. The algo-
rithm must however maintain the same property as the node mapping algorithm,
which in other words locates a node with a specific address even if it has been
remapped to another processor.




36

Figure 14: Complicated Node Mapping

5.2 Node Mapping

We propose a new explicit node mapping algorithm which uses a node mapping func-
tion defined independently from application programs, while maintaining the implicit
node mapping used in the current MESSENGERS system.

5.2.1 Node creations with a user-defined address

Assume that each processor or workstation is given a logical sequential number, (i-e.
processor ID). Similarly to MESSENGERS, such information may be defined in each
user’s configuration file. The user also specifies a node mapping function in this file.
This function receives as its argument the user-defined address of the next logical
node to be created and returns the ID of a processor to allocate this node.

The daemon process running at each processor constructs a binary tree of logical
nodes that are mapped to its local processor. (We refer to it as a local B-tree.) The
daemon calls the node mapping function whenever it creates a new logical node with
a user-defined address. In case when the function returns the current processor 1D,
the daemon searches for this node in its local B-tree. If the daemon finds the node, it
simply creates a logical link to this node. Otherwise, it creates a new node with the
user-defined address, register the node in the local B-tree and then establishes only
a new link to that node. In case when the node mapping function returns a remote
processor ID, the daemon sends the calling thread to that processor, which performs
the tree search and creates the node and link.

Figuré 15 describes how to map a logical mesh onto four processors as shown
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in Figure 14(A). Assuming that a thread is residing on the logical node 6, it is
now making a link to the logical node 7 with a navigational command, “thr_move(1,
action = @create, addr = 7). Obviously, it does not know if the node 7 exists. The
node_mapping() function is defined in a user’s configuration file. Then, the daemon
running at the processor 1 calls the function with its argument, 7 (step 1 in Figure 15).
The function returns 2, and thus the calling thread is sent to the processor 2, which
then searches for the node 7 in its local B-tree (step 2). The processor 2 finds the
node 7 and thus creates only a new link to it (step 3).

CPU#1 CPU#2
Stepl: Step2:
node_mapping(addr) { B-Tree
if ((a=addr%4) ==11lla==2) o
if (addr <= 8) return(1); N
else return(3);
else 6
s a e ) .
/N if (addr <= 8) return(2); \.
9 10 @ else return(4); 0
} ‘ Step3:
e . Create only a link to 7
— _J alloc_func(7)=>2

CPU#3 CPU#4

Figure 15: Node creates with a user-defined address

5.2.2 Node creations with an implicit mapping

The thread may create a new node without a specific user-defined address, in which
case the MESSENGERS’ implicit node mapping chooses a processor to generate the
node, using a threshold value. Note that such a node must be still given a system-
unique address from the system. For this purpose, negative integers are reserved for
the system to assign an address to a new node automatically, while positive integers
are used for users to define an address by themselves. Each daemon has a preassigned
range of negative integer values to be used as system-generated addresses. This works
as a user’s node mapping function does, and therefore an existing node is quickly
located with its system-generated address.

To given a concrete sequence of the implicit mapping, assume that a thread ini-
tiates thr_move(i = 1, action = @create, daemon = @n). This node is generated
as follows: the current daemon migrates the calling thread to one of the neighboring
daemons, which creates a new node and chooses one from its unused negative integers
as its system-generated address. The logical node is then registered in this daemon’s
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local B-tree, so that it can be located in the similar manner for nodes defined with a
user-defined address.

5.3 Node Remapping

The node mapping function and the local B-tree do not work for nodes that have been
remapped to somewhere else from its original daemon. To locate remapped nodes, we
get prepared for another binary tree at each daemon that keeps track of those nodes
and their new daemons. (We distinguish it as a migration B-tree from the local
B-tree.) When the daemon migrates a logical node to another daemon, it not only
registers this node in its migration B-tree but also tells all its neighboring daemons
to perform the same registration. Therefore, when a daemon cannot find a logical
node using the node mapping function and the local B-tree, it then uses the migration
B-tree and transfers threads to an appropriate daemon. When a thread jumps to the
old ‘daemon from non-neighboring ones, the old daemon forwards this thread to the
new daemon, as informing the source daemon of the new destination. The source
daemon then updates its migration B-tree and sends the subsequent threads directly
to the new destination.

The use of migration B-tree has the advantage in not only removing inter-daemons
synchronization but also mitigating message retransfer, (i.e. thread retransfer), in-
curred by node remapping. If the system would not support threads to be forwarded
to their new destination, the daemon must request all its neighbors to stop sending
threads before starting a node migration. It would also have to wait until it receives
all in-transit threads, so that no more threads will be sent to the old node. Our scheme
does not require such blocking, since threads can be forwarded to the new node. In
addition, the source daemon that erroneously transfers a thread to the old node is
informed of this thread’s retransfer and registers the new destination in its migration
B-tree. It thereafter sends the following threads directly to the new destination.

Figure 16 shows an example of node remapping. Assuming that the processor 1 has
originally created the logical node 3, it is currently moving the node to the processor
3. Before the processor 1 informs its neighboring processor 2 of this node remapping,
a thread has invokes thr_move(1, action = @jump, addr = 3) at the processor 2.
The processor 2 calls the node_mapping() function, which returns 1. Thus the thread
is transferred to the processor 1. The processor 1 no longer has the node 3 in its
local B-tree but registers it in the migration B-tree showing that the node 3 has been
moved to the processor 3. The thread is therefore forwarded to the final destination,
the processor 3. The processor 3 tells the processor 2 to register in its migration
B-tree that the node 3 is now on the processor 3.
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Figure 16: An Example of Node Remapping
5.4 Related Works
There are three works highly related to our node mapping and remapping scheme:

e Distributed Hashing: Given a set of processors, the distributed hashing se-
lects one to maintain a new data item, so that a number of data items are
uniformly stored in each processors’ local memory. It is effective for the analysis
of Petri Nets. A system described with Petri Nets has global states or so-called
markings, each of which is defined with the distribution of tokens on places in
the net. The system analysis sometimes requires constructing a graph of all
markings reachable from the initial system state, which is called a reachability
graph. NASA Langley Research Center proposed the use of distributed hashing
for constructing such reachability graphs and uniformly distributing markings
over processors [CGN95]. The distributed hashing is considered as a specific
form of our node mapping function. However, there is a big difference between
two of them. Distributed hashing does not care the connectivity among mark-
ings in the reachability graph, but only focus on their uniform distribution. Our
node mapping functions are defined by users, taking such node connectivity into
consideration. Another difference is that distributed hashing does not permit
marking migration, whereas our local and migration B-trees keep tracks of mi-
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grated nodes.

e Distributed B-Tree: The distributed B-tree decides the range of data items to
be stored in each processor’s local memory. Using a binary tree, each processor
maintains all data items dynamically mapped to it. Upon a search for a given
data item, the processor that is supposed to include this item looks through its
binary tree, and then creates the item only when it is not in the tree. University
of Erlangen-Niirnberg proposed such a distributed B-tree to maintain the Petri
Nets’ reachability graphs [ADK97]. When a processor includes more markings
than the other processors, it can migrate all markings under a given subtree to
its neighboring processor, which is chosen according to marking ranges. This
migration scheme therefore not only maintains the property of B-tree but also
move a set of markings quickly. Our local B-tree corresponds to the distributed
B-tree functionally. However, in the distributed B-tree, each processor must
keep the range of markings, which is irrelevant to the actual connectivity among
markings. Another difference is that our node remapping allows nodes to be
migrated to any processor with the support of the migration B-tree, while the
distributed B-tree restricts the migration destination to neighboring processors.

e DSM Ownership Management: Distributed shared memory (DSM) with
a page-basis memory management permits each processor to search the current
owner of a given page and obtain its ownership upon modifying the page content.
The old owner then creates a link to the new owner for this page, so that it can
keep track of the link when again taking back its ownership. Occasionally, a page
ownership is repeatedly passed from one to another processor, which results
in generating a daisy chain of links. To prevent this chaining, the new ower
tells all processors on the chain to make a direct link to it. This management
algorithm was first implemented in Ivy [Li88]. Our scheme is similar to the DSM
ownership algorithm in forwarding a thread (or a page ownership request) to the
real processor owning the destination node (or the requested page) and informing
the source processor of the real destination. The differences between two of
them are three-folded: (1) DSM knows the number of pages over the system a
priori and assigns a different contiguous range of pages to each processor, while
our node (re)mapping scheme deals with an unknown number of logical nodes
and maps them to each processor using the node mapping function; (2) DSM
recursively performs a page directory look-up at each probable page owner till
reaching a real owner, whereas our scheme recursively performs a migration B-
tree search at each probable node owner till reaching a real owner; (3) In DSM,

~ a page ownership request informs only the probable page owners of the new
owner. In our scheme, a node migration informs all the neighboring daemons of
the new destination daemon, which, when receiving forwarded threads, notifies
their source daemons of the real destination.
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6 Conclusion

We proposed three main ideas to apply autonomous objects for parallel graph compu-
tation: (1) instantiating autonomous objects with threads, (2) developing an efficient
navigational statement for thread migrations, and (3) implementing node-oriented
load balancing.

We need to first evaluate the efficiency of each functionality. For the use of thread,
we must investigate which of the following two schemes is better: (1) all autonomous
objects at each daemon are simply executed as a sequence of precompiled functions by
the main thread, or (2) each autonomous object is instantiated with an independent
thread and executed concurrently. The former is the current work of the MESSEN-
GERS project. The main thread emulates object context switches efficiently but may
be still blocked upon I/O operations. The latter is the one we proposed in this report.
Threads relinquishes upon I/O operations, thus keeping the CPU busy.

Another performance improvement we are expecting is the quick search for destina-
tion specs with user-defined node addresses and link IDs. It is necessary to evaluate
how much better performance will be brought by this scheme than the inefficient
string-oriented search for destination nodes. We also need to describe various graphs
to prove the flexibility of the entire features which our navigational calculus provides.

For the node-oriented load balancing, we should investigate how much overhead
will be resulted by moving a thread from one to another logical node on the same
daemon. If such an intra-daemon thread migration incurs performance degradation
unacceptably larger than a simple thread context switch, users may not want to
map multiple logical nodes on a single daemon, which thus makes our load balancing
scheme useless. Provided the performance degradations is negligible, we must then
evaluate the cost of a node migration, which is used to decide when a node should
migrate for better performance.

After clearing all the performance concern, we will realize a new computing en-
vironment with all the efficient schemes on parallel machines such as Tsukuba Uni-
versity’s CP-PACS [BNNI97] and Maestro [YYPK"98], and UC Irvine’s cluster of
SUN/Solaris workstations. '
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