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Abstract. We propose a branch-and-bound algorithm of Falk-Soland’s type for solving the
minimum cost production-transportation problem with concave production costs. To acceler-
ate the convergence of the algorithm, we reinforce the bounding operation using a Lagrangian
relaxation, which is a concave minimization but yields a tighter bound than the usual linear
programming relaxation in O(mnlogn) additional time. Computational results indicate that
the algorithm can solve fairly large scale problems.
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1. Introduction

The production-transportation problem is a model for determining both optimal pro-
duction at some factories manufacturing a single commodity and optimal transportation
of the products to warehouses with known demands. Let G = (M, N, A) be a bipartite
graph consisting of a set M of m factories, a set N of n warehouses and a set A = M x N
of mn transportation routes. At each factory i € M the cost of producing y; units is
fi(y:) and the production capacity is u; units. Due to economy of scale, the production
cost f; : R — IR is assumed to be a nonlinear, concave and nondecreasing function. At
each warehouse j € N there is a demand of b; units. The cost of shipping a unit by
route (z,7) € A is cij- The problem is then formulated as follows:

minimize z = Z CijTij + Z fiys:)
(iJ)EA ieM
subject to Z z; <y, 0Ly;<u;, ie M
JEN (1.1)
Y. ziy=bj, jeN
ieM
Tij >0, (27.7) € A7

*The author was partially supported by Grant-in-Aid for Scientific Research of the Ministry of
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where z;;s and y;s are variables to be determined.

The problem (1.1) belongs to the class of capacitated minimum concave-cost flow
problems. The main characteristic of (1.1) is that the number m of nonlinear concave
variables is rather small in comparison with the number mn of linear variables. Over
the past five years, several efficient algorithms using this low-rank concavity [12] have
been proposed to solve the problem with small m [8, 11, 14, 15, 20, 21, 22]. Each of
these algorithms is polynomial or pseudo-polynomial in n. Unfortunately, however, it is
exponential in m and will be of no practical use if m exceeds five at most. Therefore,
branch-and-bound is still thought of as a most effective approach to the problem (1.1)
with larger m, as to general minimum concave-cost flow problems. Branch-and-bound
algorithms applicable to (1.1) are classified roughly into two types. The first type re-
marks on the fact that a basic solution is optimal to (1.1), and implicitly enumerates
the spanning trees of G [5, 7]. The second type exploits the separability of the objective
function and successively improves its linear underestimator as dividing the feasible set.
The basis of this approach is found in Falk and Soland [4]. While they did not assume
any network structures, Soland converted it later for a production-transportation prob-
lem with concave transportation costs [18]. In their recent book [9], Horst et al. have
also applied Falk-Soland’s algorithm to (1.1). The readers are also referred to [6, 16] for
comprehensive reviews on minimum concave-cost flow problems.

In this paper, we develop a branch-and-bound algorithm of the second type to solve
the problem (1.1) with every m. The branching operation in our algorithm is simi-
lar to that of Soland, which divides the feasible set of nonlinear variables to generate
subproblems; but the bounding operation fully exploits the problem structures and is
implemented through two stages: the first stage based on a linear programming relax-
ation and the second stage based on a Lagrangian relaxation. Although the Lagrangian
relaxation of each subproblem is a concave minimization, this two-stage bounding op-
eration provides a lower bound for it much tighter than that of Soland in O(mnlogn)
additional computational time. In Section 2, both the relaxations are given in detail.
Section 3 is devoted to the algorithm incorporating the two-stage bounding operation.
Computational results of the algorithm are reported in Section 4. Some final remarks

are discussed in Section 5.

2. Relaxations

We assume throughout the paper that both the production capacity u; at each factory
¢ € M and the demand b; at each warechouse j € N are positive integers; and that the
unit transportation cost ¢;; by each route (i,7) € A is a nonnegative real number. We
also assume that

JEN ieM



Otherwise, the problem (1.1) has no feasible solutions. Since the objective function is
continuous and the feasible set is a polytope, (1.1) always has an optimal solution under
condition (2.1). In addition to this, the concave objective function achieves its minimum
at some vertex of the feasible set. By the total unimodularity, all the vertices are integral
vectors as long as b;s and w;s are integers (see e.g. [2]). Therefore, once we assume (2.1),
the problem (1.1) has an integral optimal solution («*,y*) such that

Y e =yl, ieM (2.2)

JEN
because of the monotonicity of f;s.

Using (2.2), let us rewrite (1.1) as follows:

minimize 2= f(x,y) = Z Cij%ij + Z fi(y:)
(.)EA ieM
subject to Ty =y, LEM
[PTP] J%;v ’
Z Tij = bj’ JEN
ieM
x>0, yey,

where & = (z;; | (4,7) € A) and y = (y; | i € M) are the vectors of linear and nonlinear
variables, respectively, and

Y =1[0,u] X x[0,u,]

As mentioned in Section 1, we apply a branching operation on the set ¥ recursively and
divide it into a number of subsets Y*, k = 1,...,r. Thedivision Y = {V* |k =1,...,r}

we employ is an integral rectangular partition of Y, i.e. for each k = 1,...,7, we have

Ye=IFx...xIt: IF=[iFub, ie M,

where I¥s and u¥s are integers; and
UY*=Y; itV NintY* =0 if k # h.
k=1

Associated with each partition set Y* € ) we define a subproblem:

minimize z = f(x,y)
subject to Z Ty =y, tEM
[P’“] JEN
Z(tij:bj, jE]V
ieM
x>0, yeYF,

The following are immediate consequences:

Proposition 2.1. (i) Problem [P*] has an optimal solution if and only if
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YUE<SBY ub (2.3)

ieM ieM
If (2.8) holds, [P*] has at least one integral optimal solution (z*, y*).

(i) Let zF = f(x*, y*) if (2.8) holds; 2* = +o0 otherwise. Then the optimal value of
[PTP] is given by

2 =min{zF | k=1,...,r}.

Given a rectangular partition Y = {Y* |k =1,..., r} of Y, let us take a set Yk € Y
satisfying condition (2.3) and consider the associated subproblem [P¥]. As a beginning,
we will present a linear programming relaxation of [Pk], which minimizes the convex

envelop of the objective function f as do both Falk-Soland’s and Soland’s relaxations
[4, 18].

2.1. LINEAR PROGRAMMING RELAXATION

The convex envelop of f; over the interval I* = [I¥, u¥] is defined by

[ 2t}

(uk) — £.(1F
Ftw) = P8 ey g, e,
which satisfies
Fily) < filys) if wi € I8 fiys) > fulys) if i & intIF. (2.4)

Hence, replacing f; by f; in [P*] for each i € M, we have a linear program yielding a
lower bound for 2*. Actually, in Falk-Soland [4] this linear program is used directly as
a relaxation of [P*]. In Soland [18], the set of constraints y € Y* is further relaxed into
y €Y, to make a Hitchcock problem of the resulting problem. We adopt a compromise
of these relaxations and replace y € Y'* by

0<y; <uf, ie M. (2.5)

If we delete y; by substituting y; = Y jen Ti; into (2.5) for each ¢ € M, our relaxation is
also reduced to a Hitchcock problem:

minimize 2= f(z#)= Y. cfz;+dF
(5,5)eAd

_ | subject to Z zy;<uf, ieM

[P] JEN
Z zij =bj, jEN
iEM
x>0,

where



filuf) — fz(l’”

C%ZC,‘J'-F ok , 'T ‘)G"—l
Py (fi(lf)l ; ‘“ L= fhy). (20
ieEM -

Theorem 2.2. Problem [P] has an integral optimal solution ®. Let
JEN
Then (&, §) is feasible to [PTP] and we have
z< 2 f(2,9) 2 2
Proof: Follows from the construction of [P]. a

We can thus use Z as a lower bound for z* and terminate branching at subproblem
[P*] unless 7 is less than the value of each feasible solution of [PTP] in hand. Although
the bound z might not be so tight as Falk-Soland’s, it is tighter than Soland’s; and
besides, [P] yielding Z is a simple Hitchcock problem like Soland’s. Nevertheless, the
bound % is not tight enough yet to improve branch-and-bound algorithms of the second
type drastically. To solve [PTP] with large m, we have to devise another relaxation of
[P*] yielding a much tighter bound than [P].

2.2. LAGRANGIAN RELAXATION

Let us introduce a Lagrangian multiplier vector A = (Aj | j € N) > 0 for relaxing the
set of constraints Y,c)s 2;; = b, 7 € N. By noting that z;; cannot exceed b; for each
(¢,7) € A, we write the resulting problem as follows:

minimize z = ¢>(£B, Y, A) = Z Cij(’\)mij + Z fz(y,) -+ Z )\jbj
(i.7)EA ieM JEN
[L(A)]| subject to Say=y, (€M
JEN
0<z;;<b;, (i,j)€ A, yeYF,

where
cij(A) =ci; — Ay, (4,7) € A (2.7)

This is the second relaxation of [P*] and plays the central role in our algorithm. As is

well-known (see e.g. [17]), we have the following:

Lemma 2.3. Let (x(A),y(A)) denote an optimal solution of [L(A)] and let z(A) =
H(@(A), 9(A); A). Then
z(A) < 2F, YA e R™



The question here is how we should choose a value of A; for each ¢ € N such that
z(A) > z. To answer this, we need to consider a linear programming relaxation of [L(A)].
In the same way as we have constructed [P], we can linearize [L(A)] using f;s into

minimize ¢(x, y; A) = > (cfj — Az +db 4+ A,
(i.j)e4d JEN
subject to Y z; <uf, jeN (2.8)
JEN
0<z; <8, (i,5) € A,
where cf;s and d* are defined in (2.6). The dual problem of (2.8) is then written as
follows:
maximize (g, v;A) ==Y wfpi— N by +dF+ 3 Ab;
ieM (i,5)eA JEN
subject to —p; — vy < cf] - (i,j)e A (2.9)
p>0, v>0,
where pt = (u; | i € M) and v = (v;; | (i,7) € A) are the vectors of dual variables. Let
#(A) and (&(A), (X)) denote optimal solutions of (2.8) and (2.9), respectively. From
the duality theorem in linear programming, we have

max $(2(A); A) = max (a(A), #(A); )

"'ﬂi_VijSij"')‘j’ (Z':J)EA
>0, v>0

= max {1/}(;1,, v,A) } . (2.10)
7Y

Lemma 2.4. The right-hand-side of (2.10) has a mazimum point (B, 0, X) with 0 = 0.

Proof: Let (p',/, ') with &' # 0 be a maximum point. Also let
)-\j=/\;--— Zl/gj, ] EN; ﬂi=,u:-, 1€ M; ;= 0, (Z,]) € A.
ieM
Then we have

“ﬁi—Dich%_A3+ngscg“A3+ ZVﬁj=Cg—'5‘jo (,j)eA

heM
Y0, A) = = Y ufp+d* + 3 N
. ieM JEN
=— Y ufp' +dF + Y(N-3 uzfj) by = (p', v ).
ieM JEN ieM
This implies that (f&,,A) is a maximum point as well. 0o

Note that, if we set v = 0 in (2.10), it coincides with the dual problem of [P):

maximize g(p,A) = 3 biA;— > ubp; 4 d*
JEN ieM

subject to A; — p; < cf’j, (i,j) € A (2.11)

p>0.



Hence, we immediately have the following lemma:

Lemma 2.5. Let (&, X) be an optimal solution of (2.11). Then

max o(&(A); A) = g(p, A) = 2

Theorem 2.6. Let (2(X),y(X)) denote an optimal solution of [L(/\)] and let z(A) =
P& (A),y(A); A). Then

z < 2(A) < 2F,

where the first inequality holds strictly if f; is strictly concave on If [llk,uf] and
yi(X) € intI* for some i € M.

Proof: It follows from Lemma 2.5 that
A € arg max ¢>(5B(f\); A).

Since (2.8) with A = X is a relaxation of [L(A)], we have

2(A) = ¢(2(X), y(A); X) > d(@(A); A) = 2
If y;(A) € intI¥ and f; is strictly concave on If for some i € M, we have f; (y:(X) >
fi(y:(X)) by definition; hence,

$(@(X), (A A) > d(x(A); X) > (@A) A). O

While the bound z(A) turned out to be tighter than 7, problem [L(A)] yielding it
is a concave minimization in contrast to [P]. This means that [L(A)] can have multiple
local minima, many of which fail to be global ones. Therefore, as does [P¥], the relaxed
problem [L(X)] itself belongs to the class of multiextremal global optimization which is
known to be hard to solve in general [9, 10]. In the next section, however, we will show
that the global minimum z(A) of [L(A)] can be computed in O(mnlogn) arithmetic
operations and in O(mn) evaluations of f;s for a given A.

3. The Solution

Let us again look at problem [L(A)] in detail. We then see that it can be decomposed
into 7 minimization problems, each of which is of the form:

minimize 2; = z Cij (A).’l?z‘j + f,-(yi)
jeN

subject to wy=y, ieM (3.1)
JEN
O0<z; <b;, jEN, yel}.




Even though the objective function is concave, (3.1) turns into a continuous linear
knapsack problem once we fix the value of y: in the interval I* = [Ik yb Suppose

22 il

that the variables z;;, j € N, are arranged in the order
ciji(A) S+ < ey, (A) 0 < ey, (A) -+ < g () (3.2)

Then an optimal solution of (3.1) with a fixed y; is given by

bjh’ h=1,,q~—1
iijh (yi) = Yi — ;]L;l bj,w h = q (33)
0, h=q¢+1,...,n,

if there is an index ¢ < p such that EZ;% bj, < yi < Xf_;bj,; otherwise,

~ bjh’ hzl,...,p
() = 3.4

i () {0, h=1,....n (34)
Let us denote the value of (%;;(y;) | j € N) by

Fi(y) = 3 ci(N)as(i) + filws); (3.5)

JEN

and define

Mo =0; mn=mp_1+0b;, h=1,... n. (3.6)

Lemma 3.1.  The function F; is concave on the interval [(Mh—1,74] for eachh =1,... n.

Proof: We see from (3.2) - (3.6) that F is composed of a concave function fi and n
piecewise affine functions c;;(A)Z;;{y:), j € N, each of which has at most one break point
in {nx | h=0,1,...,n}. Since a sum of concave and affine functions is concave (see e.g.

[3]), the function F; is concave on each affine piece of 2ien Cii(A)E5(y:). O

Lemma 3.1 guarantees that F; is minimized at some end point of (7%, 7n—1]s over the
whole interval [y, 7,] = [0, B]. Therefore, the optimal value of (3.1) is given by

z(A) = min{Fi(yi) |y: € (If N{m | h=0,1,... ,n}) U {1k, uf } ; (3.7)
and the optimal value of [L(A)] is

Z(A) = Z Z,'(A) + Z )‘jbj-

ieM _JEN

Theorem 3.2. Given A > 0, the lower bound z(A) can be computed in O(mnlogn)
arithmetic operations and O(mn) evaluations of f;s.



Proof: For each i € M, sorting c;;(A) in the order (3.2) requires O(nlogn) arith-
metic operations; and (3.7) requires O(n) evaluations of fi- Their total numbers are
O(mnlogn) and O(mn), respectively. O

The polynomial-time solvability of the concave minimization problem [L(A)] is totally
due to the rank-two monotonicity [12, 19] possessed by the objective function of (3.1).
Functions of this class are certainly concave on their domains; but the concavity can be
embedded into only a two-dimensional subspace, which enable us to effectively appl

parametric programming like the above (see [12] for further details).

3.1. THE BRANCH-AND-BOUND ALGORITHM FOR [PTP]

Using the results obtained so far, we implement the bounding operation through two
stages. Let z° denote the least value among feasible solutions of [PTP] in hand. At the
first stage, we solve the linear programming relaxed problem [P] for a given subproblem
[P*]; if the lower bound 7 is less than z°, we set 2° to min{z°, f(&,y)} and proceed to
the second stage. At the second stage, we solve the Lagrangian relaxed problem [L(A)].
Here, (f, A) is an optimal dual solution of [P] and hence can be computed in the process
of the first stage. Unless the lower bound z(A) is less than 2°, the subproblem [P¥] is
fathomed. '

If 2(A) < 2°, we implement the branching operation in the same way as in Soland
[18]. Namely, we choose a factory node s € M such that

s € argmax { £:(5) - fi(#)}, (3.8)

and divide the corresponding interval I* = [i¥, u*] into two subintervals I * = [1% 7,] and
I* = [g,,u*]. We then update the integral rectangular partition of ¥ as follows:

Yo =T xIE I % x oI5 R=1,9

YV =(\YHu{yh vk},

We should note that , falls in the open interval (¥, u*). Since we have
= ) B+ filln) <2° < f(&9)= > cyz;+ Y. f:(5),
(i.)eA ieM (i,j)EA ieM

at least one of the differences in (3.8) is positive. We see from (2.4) that this can happen
only when g, € intI¥. Hence, by the integrality of ¥, 1¥ and uf for all i € M, the number
of branching operations on each partition set must be finite. Also note that Y lies in
both the partition sets Y* and Y'*: newly generated. This implies that % is feasible to
both [P*] and [P*] associated with ¥* and Y% respectively. We can therefore save the
time and memory needed to solve one of them by using & as a starting feasible solution
if we employ the depth-first-search rule to choose a partition set from ).
The branch-and-bound algorithm for [PTP] is summarized into a recursive form:

9




algorithm LP_ LAGRANGE;
begin
B = Yjenbs;
it B > ¥ ;cpr u; then [PTP] is infeasible
else
begin
initialize the incumbent (z°,y°) := (0,0) and 2° := +00;
BRANCH/BOUND(Y);
x* = x° and 2* := 2°
end
end;

procedure BRANCH/BOUND(Y*);
begin
let [i¥,u¥], i € M, denote the intervals defining Y'*;
ify,cml*<B< Sicar uf then
begin {The first-stage bounding operation}
let [P¥] denote the subproblem associated with Y*;
define the convex envelop f; of f; over [I¥, u*] for each i € M and construct the
linear programming relaxed problem [P] of [P*];
solve [P] to obtain its optimal solution &, value 7 and dual solution (B, A);
if Z < 2° then
begin {The second-stage bounding operation}
Ui = 3 jen T for each i € M;
if f(Z,9) < 2° then update (z°,y°) := (&, 9) and 2° := f(&,9);
construct the Lagrangian relaxed problem [L(X)] of [P*] using X;
solve [L(A)] to obtain its optimal value z(X);
if 2(A) < z° then
begin {The branching operation}
choose s € arg max;c s {fi(gji) - f}(gi)}; v
divide I} = [I¥, u¥] into I** = [1¥,3,] and I* = [g,, u*];

for h=1,2do

begin
YRom I oo x IE I8 o TE X - x TE
BRANCH/BOUND(Y*#)

end

end
end
end
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end;

The convex envelops f;, i € M, can be obtained in O(m) arithmetic operations
and O(m) evaluations of f;s. Problem [P] can be constructed in O(mn) arithmetic
operations. Therefore, the number of arithmetic operations at the first stage of the
bounding operation is dominated by that needed to solve a Hitchcock problem [P];
it can also be bounded by some lower order polynomial in (m,n), eg. H(m,n) =
O((mnlog(m + n))(mn + (m + n)log(m +n))) (see [2]). The second stage, as shown in
Theorem 3.2, requires O(mn log n) arithmetic operations and O(mn) evaluations of f;s.
Consequently, if an evaluation of f;s can be done in a unit time, the total computational
time needed in the procedure BRANCH/BOUND is bounded by O(H(m,n)) before its
recursive calls.

4. Computational Results

Let us report computational results of testing the algorithm LP_LAGRANGE on ran-
domly generated problems of [PTP].

The algorithm was coded in double precision C language according to the description
in Section 3.1. In the procedure BRANCH/BOUND, the Hitchcock problem [P] was
solved by the stepping-stone algorithm; and [L(A)] was solved through sorting cij(A),
J € N, by quicksort for each ¢ € M. Therefore, in our code, the first-stage bounding
operation requires pseudo-polynomial time [2]; the second-stage requires O(mnlogn)
time on the average but O(mn?) time in the worst case [1]. In addition to the code
LP_LAGRANGE, Soland’s algorithm [18] was coded in the same way for the sake of
comparison (denoted by SOLAND).

The test problems were generated in the following manner: ci;s were integers drawn
from the uniform distribution [1,10]; u;s were all fixed at 200; b;s were set to the round-
off value of a(} ;cpr u;)/n for a = 0.6, 0.75 and 0.9; and the concave production costs
were defined by fi(y;) = 8,/7; for 8 uniformly random in [10,20]. The size of (m,n)
ranged from (5,25) to (30,100). For each size, ten instances were solved on a UNIX
workstation (hyperSPARC, 150MHz).

"Table 4.1 shows the comparison of the codes LP_.LAGRANGE and SOLAND on prob-
lems of six different sizes. In columns of LP_.RAGRANGE, the average number of calls
on the procedure BRANCH/BOUND and the average CPU time in seconds (and their
maxima in the brackets) are listed for a = 0.6, 0.75 and 0.9; ir. columns of SOLAND,
the same statistics are listed for @ = 0.75. We see clearly that LP_.LAGRANGE sur-
passes SOLAND in all respects. There is no doubt that this is caused by the second-
stage bounding operation in LP_.LAGRANGE, because it is the essential difference be-
tween the two codes. More noteworthy is a decrease in the number of calls made by
LP_LAGRANGE between m = 10 and 15 for each n» and a. This tendency is indicated
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Table 4.1. Comparison of LP_LAGRANGE and SOLAND.

LP.LAGRANGE SOLAND
a=.6 a=.75 a=.9 o =.75

mxn # calls time  # calls time # calls  time # calls time
5 x 25 126.5 .207 22.0 077 1.2 .042 138.0 187
(239) (.367) (119)  (.183) (3) (.050) (225) (.317)
10 x 25 1244.2 3.13 42.4 .297 1.0 A17 8919.8 15.23
(4439) (8.08) (143)  (.783) (1) (.133) (31217) (53.82)
15 x 25 30.8 441 8.8 .297 1.0 .0.243 416949.0 2453.93
(139) (1.25) (19)  (.433) (1) (.283) (1660667) (8116.37)
5 x 50 1714 1.647 67.6 1.04 16.8 .603 392.2 2.31
(243) (2.43) (141)  (1.50) (41) (1.08) (649) (3.78)

10 x50 3033.0 7146  169.2  6.85 74 1.07 78374.8  1340.97
(13077) (239.17)  (461) (11.20)  (25) (1.65)  (170401) (3053.12)

15 x 50  1504.8 87.68 92.8 8.42 1.0 1.48 — —*
(4507) (260.82) (211) (16.80) (1) (1.78) (—) (—)

* The average time exceeded 10 thousand seconds. When o — .9, the number of calls was
88501.6 (291395); the time was 4054.14 (17093.9) seconds.

more clearly by Table 4.2.

Table 4.2 shows the results of LP_.LAGRANGE on problems of larger sizes with o
fixed at 0.75. For n = 75 and 100, the table gives the same statistics as Table 4.1 from
m =35 to 30. In either case, we see that the number of calls rises the peak at some
m around 10 - 15 and then decreases as m increases. We can therefore expect that
LP LAGRANGE will keep its efficiency up to still larger (m,n) at least for randomly
generated problems of [PTP].

Table 4.2. Computational results of LP_.LAGRANGE when « = .75.

n="75 n = 100

m  # calls time # calls time

5 82.6  (135) 6.20 (10.38) 1104 (227) 19.25 (30.48)
10 4332 (885) 55.41 (115.10) 1530.6 (6539) 334.64 (1447.67)
15 7118 (2309) 130.84 (395.43) 197.2  (515) 122.21  (273.50)
20 52 (21) 11.85  (17.32) 194.2 (1237)  134.98  (657.88)
25 3.0 (11) 12.76  (16.85) 71.6  (179) 90.78  (175.35)
30 4.6 (13) 16.36  (22.72) 8.2 (45) 46.33 (89.05)

12



5. Concluding Remark
As we have demonstrated in the preceding section, the Lagrangian relaxation [L(A)]
provides a fairly strong lower bound z(A) for the value zF of each subproblem [P"'].
Before closing the paper, we will show that the bound z(A) can further be tightened.
Since the total production at factories cannot be below the total demand at ware-
houses, any feasible solution (x,y) of the production-transportation problem (1.1) sat-
isfies
Su>B=3 (5.1)
ieM JEN
Similarly, if [P¥] has a feasible solution (x,y), it must satisfy (5.1). Therefore, the set
of optimal solutions does not change even if we add the constraint (5.1) to [P¥]. The

resulting Lagrangian relaxation with respect to YiemTi; = b, 7 € M, is written as

minimize 2z = ¢(x,y; A)

subject to Z y; > B
L'(A ieM
[L'(A)] S wy =y i€ M
JEN

0 S Ty S bj7 (27.7) € Aa (/S Yk'

The feasible set of [L'(A)] is obviously included in that of [L(A)]. This, together with
Theorem 2.6, leads to the following:

Theorem 5.1. Let (@'(X),y'(A)) denote an optimal solution of [L'(A)] and let Z'(A) =
d(x'(A), Y (A); A). Then

z<2(A) € (X)) < -,

Due to the first constraint, [L'(A)] cannot be decomposed into rank-two monotonic
problems like (3.1). However, we can transform it to a specially structured production-
transportation problem, for which a pseudo-polynomial algorithm is available [13]. Let
us make m copies of the set N, i.e. N; = N for each i € M; and set co;(A) to zero for
each j € UjemNV;. Introducing variables Zoj, J € UsemN;, and w;, i € M, we have a
problem equivalent to [L'(X)]:

minimize 37 Y ciij(Neg + Y fily:) + > Abs
1EMU{0} JEN; tEN jeEN
subject to Z w; < (m—1)B
ieM
Z To; = w;, Z Ty =y, 1€M (5.2)
JEN; JEN;
To; + 25 = b;, JEN;,, ieM
Toj, Ti; 2> 0, JEN;, ieM
Yi, w; 2 0, i€ M.
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It is easy to check that the value of (5.2) is equal to 2’ (A). This problem can be thought of
as a production-transportation problem, in which the set of mn warehouses is partitioned
into m subsets IV;, i € M; each factory i € M is allowed to supply only warehouses in
its assigned subset IV;; and factory 0 supplies warehouses in N; for each i € M with a
total of w; units. Problems with such a structure can be solved in O(m?nB) arithmetic
operations and O(mnB) evaluations of f;s if we apply an algorithm proposed in [13].
Although the algorithm is pseudo-polynomial, it will be an effective procedure in the
branch-and-bound algorithm for solving [PTP] when n is beyond a hundred and B is
relatively small. Computational experiments are now under way, the results of which
will be reported elsewhere.
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