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Abstract

One of the recent interests in the field of fuzzy clustering is the simultaneous de-
termination of a fuzzy partition of a given data set and parameters of assumed models
of different shapes that explain respective partitioned data sets. This paper proposes
a new objective function to improve existing approaches for detecting linear varieties
with different dimensionalities. Since this is not an all-purpose method, some techniques
will be suggested by using artificial examples to show how to implement the clustering
successfully.

1 Introduction

This paper suggests a fuzzy clustering approach to finding linear varieties with different
dimensionalities. The origin of clustering method to be considered is the fuzzy c-means
(FCM) method developed by Bezdek[1], the ideas of which are traced back to Ruspini[2).

One of the recent interests in the field of fuzzy clustering is the simultaneous determina-
tion of a fuzzy partition of a given data set and parameters of assumed models of different
shapes. Gustafson and Kessel[3] introduced a volume constraint to the FCM algorithm to
obtain different local substructures. Bezdek et al.[4] introduced and analyzed a family of
objective functions that replace the centers of clusters with linear varieties of arbitrary di-
mensions. This approach is called the fuzzy c-varieties (FCV). The combination of FCM and
FCV was also discussed in Bezdek et al.[4], and later called the fuzzy c-elliptotypes (FCE)
in Dave[5], in which the adaptive fuzzy c-elliptotype algorithm (AFC) is developed, which
modifies the weights of combination adaptively in the process of clustering.

Hathaway and Bezdek[6] introduced a family of objective functions, called the fuzzy c-
regression models (FCRM), to fit switching regression models to certain types of mixed data.
Minimization of particular objective functions in the family yields simultaneous estimates for
the parameters of regression models, together with a fuzzy partition of the data. Nakamori
and Ryoke[7] modified the FCRM in such a way that the shapes of clusters are changed
dynamically and adaptively in the clustering process in order to detect a better data partition
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for developing fuzzy prediction models, following the idea in Dave[5]. The FCRM approach
has been extended to detect nonlinear substructures, for instance, in Dave and Bhaswan[8],
Krishnapuram, Frigui and Nasraoui[9][10].

There is another school of fuzzy modeling originated in Takagi and Sugeno[11] that is
interested in developing fuzzy implication inference models which consist of a number of
if-then rules, where the premises are represented by fuzzy propositions and the consequences
are given by linear equations. The main purpose of the above fuzzy clustering methods is
explanation of the given data, whereas the fuzzy implication inference model is oriented to
be used in prediction of the underlying system. The original idea for identification of a fuzzy
implication inference model in Sugeno and Kang[12] is to obtain a fuzzy partition of the
input space and linear equations simultaneously. After this work, a number of identification
algorithms were developed, for instance, in Sugeno and Tanaka[13], Nakamori and Ryoke[14].

In all above works, one of the unsolved problems is the detection of clusters with different
dimensionalities. This paper proposes a new objective function and an algorithm for detect-
ing clusters with different dimensionalities. But, since the result by this algorithm depends
on the clustering parameters and the initial condition, some ideas to obtain satisfactory

results will be suggested by using artificial examples.

2 Preliminaries

Let {#1,22, -, 2m} be the set of variables, {z1;,%9;, -, 2,;} the standardized data set of

z;, and wy the k-th data vector of all variables:
wk:(xklvxk%"'awkm)-ra k=1a2a"‘,n (1)

where (-)T indicates the transposition. The problem is to obtain ¢ fuzzy clusters Cy, Cs, -+,
C. by partitioning the data set:

S:{w17w2a"'7wn}- (2)

Let ug; be the membership value of wy, in the cluster Cj, satisfying the following condi-

tions:

(i) 0<ux <1, i=12,---,¢, k=12,---,n,

(i) Zuik>0’ 1=1,2,---,¢,

(i) > we=1, k=1,2,---,n
=1

The FCM algorithm[1] determines the membership matrix U = (u;;) and the vectors of
cluster centers V = {vy, vy, -, v.} simultaneously by minimizing the function:

Tien@V) =33 (uin)® doe (v5) (3)

k=11:=1



where
dir, (v5) = |Jwy, — vi)?, (4)

and ¢ is the smoothing parameter, a real number greater than one.
The FCV algorithm[4] detects r-dimensional (0 < r < m) linear varieties in R™:

r
Vi = {Z €ER™ | z=vi+ ) tijp;, tij € R}’ i=1,2-¢c (5)
J=1
where p;; (j = 1,2,---,r) are linearly independent vectors in R™. The first r normalized

eigenvectors {e;;} of the fuzzy scatter matrix:

k3
Si= (uin)? (wp—vi) (wp—v;)", i=1,2-c (6)
k=1
are usually used for p;; (j =1,2,---,r). Here, the normalized eigenvectors e;1, e, - - -, €imm

correspond to the ordered eigenvalues of S;:
Ait 2 Aig 2 2 Aj. (7)

The square distance between wy and V" is given by

,
Dy (v5) = llw — vl = Y |< we —vi, e >2,  les]| = 1, (8)
i=1

where < -,- > denotes the inner product. The FCV algorithm searches the minimum of the

function: n e
T (U, V) =303 (uir)? Di(vi). (9)

k=11=1
Since a linear variety is extended to infinity, there is a possibility that some cluster
contains two widely-separated groups of data points. To get over this problem, a convex

combination of the FCM and the FCV is suggested in Bezdek et al.[4]:

Jiee (U, V)= (1= ) Jfen (U, V) + S50 (U V), 0<a<l, 0<r<m. (10)

This is the criterion of the FCE which takes into account the continuity and linearity of the
data distribution at the same time.

The AFC algorithm[5] determines the parameter o in (10) locally and adaptively. The
local parameters are defined by
Aim
Air’
The objective function of AFC is then defined by

a;=1-— i=1,2,--+,c (11)

afe(U,V) = Zi: (uig)? [(1 — o4)di (v;) + aink(vi)], 0<0;<1, 0<r<m. (12

k=11:=1
Thus, the AFC algorithm detects different shapes of clusters with the same dimensionality.
However, the problem of finding clusters with different dimensionalities is left unsolved.



3 Objective Function

This paper proposes the following objective function:

J1a(U, V) = Zn: ZC: (uir)? Ei(vi) (13)

k=11i=1

where

0 (19 m—1 r .
(a) Eu(v:) =B} Q%WL r; Bi %

lwg — ;|2 r=20

-
”wk"”iHZ_Z l< Wg — V3, €55 >‘2, r=1,2,---,m—1

i=1
, Vi
(C) ﬁz =
Vi
r=0
(Aim)l, (>0, r=0

(Azr - Ai,7"+1)la l Z 0, r= 112)""m -1
The ideas of using the function (13) are summarized in the following:

e In addition of G;(= dix) and G7, (= Df) for a specified r, the square distances from
the data point wy, to the linear varieties with all dimensionalities V' (r =1, 2, -- -,
m — 1) are considered as in (b) to detect clusters with different dimensionalities.

e In order to compare distances from a point to linear varieties with different dimension-
alities, the square distance G7, is divided by m — r which is the dimensionality of the
orthogonal complement of the linear variety V" as shown in (a).

e The weight 87 in (c) is defined by using the difference between \;, and Air+1 as shown
in (d). If B} is relatively large, the possibility of the dimensionality of the cluster C;
being r is relatively high.

e The exponent [ in (d) is called the degree of linearity. If | = 0, the shapes of all clusters
become vague. On the other hand, if [ = 1, the shapes of clusters are expected to
reflect the data distribution. A real number greater than one can be used for [ to stress
the linearity in the data distribution.

4 Clustering Algorithm

The clustering is a process to determine

{wik, vi; 1=1,2,---,¢, k=1,2,---,n}
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that minimize the objective function with assumed parameters ¢, ¢, and [. Traditionally, the
fuzzy clustering assumes a group of parameters and searches the rest of parameters by the

necessary conditions of optimality, which are given in the following for the present case:

1. When the membership matrix U = (u), the eigenvalues {)\;;} and the eigenvectors
{e;;} of the fuzzy scatter matrices are given, the objective function becomes

ZZ(uzk ZACH (14)

k=11=1
The necessary condition is
0Ny _ ¢ Bi ank(U 5 Bl 0GH(vi) | _
0v; _kzzzl(uzk) [m 0v; z_‘: —r  Ov; =0 (1)

Letting
B? B : T
El = a;, Z E—i_f‘ I+ Zeijeij = Ai, (16)
r=1 7=1
where [ is the m X m unit matrix, we have

n

(aiI + Ai) Z (uik)q (wk — 'Uz') =0. (17)
k=1

The matrix a;/ 4 A; is nonsingular because its orthogonal entries have the maximum

absolute values in the respective columns. Then, we have
n
= (uir)? w

——n————, 1=1,2,---,c. (18)
2 (wik)®
k=1

v, =

2. When {v;} and {8} } are given, the objective function becomes
n C n [+
Jz(U) = Z Z (u,k)q Ei + Z K (Z Uik — 1) ) (19)
k=11=1 k=1 i=1

where py, 2, -, in are the Lagrange multipliers. From the necessary condition of

optimality, we have

Uik =

1 -1
c Ez q—1 .
Z(Ek) } ! 22112a"'aca k:1>2"“’n' (20)
ik

=1

Here, if E;; = 0 for some k,

1

FEr=0
uip = #{j| E ik = 0} (21)

0, Ez’k >0

where #{-} indicates the number of elements of a set.



The clustering algorithm is given in the following:

Step 1. Let ¢ = 0. Assume the values of parameters c, ¢,/ and the stopping parameter ¢.
Assume a set of initial membership values by randomization:

{uz(ltg)1 t=1,2,--+,c, k:1,2,"‘,’l’l}.

Step 2. Compute the cluster centers by

()

t k=1 -
U'E): n (t) q l:1,2,"',C.
> (w)

Step 3. Compute the eigenvalues {/\g)} and the corresponding eigenvectors {e;;} of the
fuzzy scatter matrix:

n

0= 5 ()" (ool fmn=ol)” =
k=1

Step 4. Renew the membership values by

c E(t) g—1
u£;+l): Z( ’tk) , 1::1,2’-..’0’ k:l,Q’...’n.

If EZ-(,? = 0 for some k,
1
1) _ ) #{J | Ejp =0}’
Uix =

0, E; > 0.
(- il <

holds, then stop. Otherwise, let t = ¢+ 1 and go to Step 2.

Er=0

Step 5. If the condition

5 Numerical Examples

5.1 Example 1

The first example uses a two-dimensional data in Dave[5]. The result shown in Fig.1(a) is

obtained by using the parameters:
c=5,¢=1.8,1=0.8, £ =0.0001.

Every point is classified into one cluster in which it has the largest membership value. The

J

behaviors of the function J¢,q and the value:

s=mpe - o

are shown in Fig.1(b), in which



e the figures in the top indicate the number of iterations,
o the figures in the left side correspond to the values of §, and
e the figures in the right side correspond to the values of Jp,4.

Another result shown in Fig.2.(a) is obtained by changing the degree of linearity ! form
0.8 to 0.5. Other parameters and the initial clusters are the same as previous ones. It is
understandable that a smaller value of the degree of linearity I leads unsatisfactory clusters.
The value of Jy,q is worse as shown in Fig.2(b).

When the number of clusters c¢ is four, the result is out of the question as shown in
Fig.3(a). The problem here is that the value of Jf,q in Fig.3(b) is almost the same as the
first case shown in Fig.1(b). This means that for higher dimensional cases, a cluster validity
criterion or a visual appealing technique should be developed, which is, however, left for

future study.

5.2 Example 2

The second example uses a three-dimensional artificial data. The result shown in Fig.4(a) is

obtained by using the parameters:
c=4, ¢g=138, 1=10.8, £ =0.0001.

Four line-like clusters are detected and the value of Jy,q is quite well as shown in Fig.4(b).
Clusters seen from different angles are shown in Fig.4(c) and Fig.4(d). The cluster validity
can be checked visually up to three dimensional cases.

Even when the degree of linearity [ is 0.2 instead of 0.8, the clusters shown in Fig.5(a)
are not bad visually, but the value of J,q is apparently worse as shown in Fig.5(b).

It is interesting to see what happens when the number of clusters c is assigned to other
values. For the cases when ¢ = 5, ¢ = 4, ¢ = 3, and ¢ = 2, the clustering results are shown in
Fig.6(a), Fig.6(b), Fig.6(c), and Fig.6(d), respectively. Here, starting with ¢ = 5, we reduce
the number of clusters one by one with the following strategy:

e For each cluster Cj, calculate
Zi:Z Uk, ¢=1,2,---,c. (22)
k=1
o For the cluster C; with the smallest z;, let
=0, k=1,2,---,n. (23)

e Replace ¢ with ¢ — 1, and start again the clustering by using the current membership

values instead of randomization.




This strategy tentatively spoils the conditions which the membership values should satisfy.
But, of course, the next iteration recovers losses.

The behavior of the objective function Jy,q is shown in Fig.6(e). Since the value of J tvd
is changed in a large way from ¢ = 4 to ¢ = 3, we can conclude without seeing Fig.6(a) to

Fig.6(d) that the appropriate number of clusters is four.

5.3 Example 3

The third example uses another three-dimensional artificial data: a line-like cluster and
a plane-line cluster cross each other in the three dimensional space. The result shown in

Fig.7(a) is obtained by setting:
c=2, ¢g=15,1=08, ¢ =0.0001.

The behaviors of the function Jy,4 and the value:

J

are shown in Fig.7(b). Clusters seen from different angles are shown in Fig.7(c) and Fig.7(d).

o=y -

In these figures, data points included in the plane-like cluster are indicated by black points.

A failed example is shown in Fig.8(a) for which a different set of initial membership
values is used. The algorithm finally detects two planes instead of one line and one plane.
We can understand that this result is not acceptable by Fig.8(b) in which the value of Jy,q
becomes worse. But, unfortunately, we cannot understand the behavior of Jf,q which goes
well at first, but turns to the worse direction after all.

The strong dependence on the initial condition is unsurprising when using the fuzzy
clustering algorithm. No one knows which initial state is connected with which final state.

This requires a heuristics for successful application.

6 Parameters

Some suggestions for determining the clustering parameters and the initial membership val-
ues are summarized in the following:

1. The number of clusters ¢. There exist some proposals to determine an optimal value of
¢ by defining cluster validity criteria. But, in the present study, we repeat the clustering
from a larger value of ¢ to a smaller one, and compare results by the membership
values and the value of the objective function. One strategy for reducing the number
of clusters was suggested in Section 5.2.

2. The smoothing parameter g. This parameter should be close to one from the viewpoint
of data classification. But, when it is close to one, the result heavily depends on the
initial condition, and the shapes of clusters do not change variously. It is recommended
to start with a larger ¢, then make it smaller gradually. An automatic modification of
this parameter is left for future study.




3. The degree of linearity I. This parameter determines the shapes of clusters. When
I = 0, the shapes of clusters become vague. On the other hand, when [ = 1, the
shapes depend on the data distribution. It is recommended to repeat the clustering by

changing this parameter from a smaller value to a larger one.

4. The stopping parameter €. The algorithm does not guarantee a monotonous conver-
gence in membership values because the shapes of clusters are changing in the process

of clustering. A smaller value of ¢ is recommended for this reason.

5. The initial membership values. They are determined by randomization in the present
study. It is unavoidable that different initial values usually lead different clustering
results. We have no choice but to repeat the whole clustering process with different
initial values. If the results are unstable for initialization, one should change other

parameters.

7 Conclusion

This paper proposed a new objective function and a fuzzy clustering algorithm for detecting
clusters with different dimensionalities. The new proposal is, however, not a magic. It takes
a step forward, we believe, but does not always work well. Some techniques for determining
the clustering parameters were suggested in order to implement the clustering successfully.
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Fig.1(a) A successful result for the data in [5].
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Fig.2(a) A failed example for the same data in Fig.1(a).
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Fig.3(a) Another failed example for the same data in Fig.1(a).
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Fig.4(a) A successful result for a set of artificial data.
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Fig.5(a) Another successful result
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Fig.6(a) Five clusters for the same data in Fig.4(a).

Fig.6(c) Three clusters for the same data in Fig.6(a). Fig.6(d) Two clusters for the same data in Fig.6(a).
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Fig.6(e) Behaviors of J, and § in detecting clusters in Fig.6 (a), (b), (c) and (d).



Fig.7(c) The same clusters in Fig.7 (a)

seen from a different angle.

Fig.8(a) A failed result for the same data in Fig.7 (a)
obtained by a different initial condition.
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Fig.7(d) The same clusters in Fig.7 (a)
seen from another different angle.
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