Generalized Invariant Subspaces for

Infinite-Dimensional Systems
Naohisa Otsuka*
December 16, 1997

ISE-TR-97-148

* Institute of Information Sciences zind Electronics
University of Tsukuba
Tennodai 1-1-1, Tsukuba, Ibaraki 305, Japan
E-mail : otsuka @fmslab.is.tsukuba.ac.jp

This work was partially supported by Grant-in-Aid for Encouragement of Young
Scientists under Grant Number 09750474 in Japan.



Generalized Invariant Subspaces for
Infinite-Dimensional Systems

Naohisa Otsuka*

* Institute of Information Sciences and Electronics, University of Tsukuba,
Tennodai 1-1-1, Tsukuba, Ibaraki 305, Japan
Tel : +81-298-53-5320, Fax : +81-298-53-5206,

E-mail : otsuka@fmslab.is.tsukuba.ac.jp

Abstract
In this paper, some generalized invariant subspaces for infinite-dimensional systems are
investigated, and then some sufficient conditions for robust disturbance-rejection problems
to be solvable are studied.
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1 Introduction

The notion of invariant subspaces have been extended to study disturbance-rejection prob-
lems for uncertain finite-dimensional systems[1], [2], [4], [5]. Further, for infinite-dimensional
uncertain systems in the sense that systems operators are represented as convex combinations,
robust disturbance-rejection problems have also been studied[6],[7]. In order to study the prob-
lems the notin of simultaneous invariant subspaces were introduced and were used to give their
solvability conditions.

The main objective of this paper is to investigate the infinite-dimensional version of gen-
eralized invariant subspaces which were partly‘investigated by Bhattacharyya[l]. Further, as
an application of this study robust disturbance-rejection problems are formulated and their

solvability conditions are presented. Finally, some concluding remarks are given.

*This work was partially supported by Grant-in-Aid for Encouragement of Young Scientists under Grant
Number 09750474 in Japan.




2 Generalized Invariant Subspaces

First, some notations used throughout this investigation are given. Let B(X;Y) denote the
set of all bounded linear operators from a Hilbert space X into another Hilbert space ¥ and
for notational simplicity, B(X;X) is written as B(X). For a linear operator A the domain,
the image, the kernel and Cp-semigroup generated by A are denoted by D(A4), ImA, KerA4 and
{S54(t);t > 0}, respectively. The notation R™ denotes the n-th dimensional Euclidean space.

Next, consider the following linear system defined in a Hilbert space X :
d
S(e,6,7): { 37°(1) = Ale)a(t) + B(B)u(t),
y(t) = C(1)=(®),
where z(t) € X,u(t) € U := R™ and y(t) € Y := R’ are the state, the input and the measure-

ment output, respectively. And operators A(c), B(8) and C(v) are unknown in the sense that

they are represented as the forms:
Ala) = Ao+ oa1Ar+ -+ apd,,

B(p) Bo+ 1By + -+ + BBy,
Clv) = Co+mCi+-+7Cr,

where a = (a1, --,0,) € R?, B := (B1,--+,B,) € R%, 7 := (y1,--,7) € R", Ag is the
infinitesimal generator of a Cop-semigroup {S4,(¢);t > 0} on X, 4; € B(X) (i =1,---,p),Bi €
B(R™;X)(i=1,---,¢)and C; € B(X;R)) (i =1,---,¢).

Now, since A; (i = 1,---,p) are bounded, it remarks that operator A(a) generates the Co-

semigroup and has the domain D(A(a)) =D(A4y) for all « € RP.

I

Definition 2.1 Let V(C X) be a closed éubspace.
(1) V is said to be a generalized controlled S(A, B)-invariant if there exists an F € B(X; R™)
éuch that
Sa+Be)FH)V CV (t2>0)
for all (e, ) € RP x RY.
(ii) V is said to be a generalized conditioned S(C, A)-invariant if there exists a G € B(R?; X)

such that
SA(a)—{»GO('y)(t)V cVv (t >0)



for all (a,7) € RP X R".
(iii) V' is said to be a generalized S(4, B, C)-invariant if there exists an H € B(R% R™) such
that '
SA(@)+B(@)HC(-)(B)V CV (2 0)

for all (e,8,7) € RP x R?x R". O

For system S(a, B, 7) generalized S(A, B, C)-invariant subspace V has the property that, if an
arbitrary initial state 2(0) stays in V, then there exists a measurement feedback H € B(RZ; R™)
which is independent of all (@,8,7) € R x R? x R™ such that state trajectory z(t) stays in V'
for all ¢ > 0.

The following lemma is very useful to prove main results.

Lemma 2.2 [3] Let V be a closed subspace of X, A be an infinitesimal generator with Cyp-
semigroup {54(¢);¢ > 0} on X, and Q; € B(X).

(i) If Sa+0,(t)V C V for all t > 0, then (A+@Q1)(VND(A) CV.

(ii) If there exists a Q2 € B(X) such that S410,(t)V C V for all ¢ > 0 and (@1-Q2)(Vn
D(A)) CV, then Sa0,(t)V C Viorallt>0.0

For a closed subspace V of X define a subspace Ry of R™ and a linear map Qy on R™ by
g

Ry:= ﬂ BV, where B71V = {u € R™|B;u € V}and Qv:= R™ — R™, a projection map
=1

onto Ry along (Ry)*, where (Ry)* means the orthogonal complement of Ry, respectively.

The following lemma is used to prove Theorem?2.4.

Lemma 2.3 The following two statements are equivalent.

(i) There exists an F € B(X;R™) such that S4o48,r(1)V CV (¢t >0)and B;FV CV (i=
1,---,q).

(ii) There exists an F' € B(X; R™) such that Sap+BouE(D)V CV (2 0).
Proof. ((i) = (ii)) Suppose that there exists an F' € B(X; R™) such that S4o4+B,r(1)V CV (¢ >
0) and B;FV CV (i=1,---,q). Then, FV C ﬁB{lV = Ry. Hence, Qv FV = FV. Thus,
(BoQvF—BoF)V = {0}. Then, it follows from Lemma 2.2(ii) that Say+ 5,0, 7(E)V C V (¢ > 0).
((ii) = (i)) Suppose that there exists an ' € B(X; R™) such that S ao+BoQuiMV CV (t 2 0).
Define F := Qv F. Then, S4,4+5,r(t)V C V (¢t > 0). Further, B;FV = B;QvFV C B;Ry C V.

This completes the proof. O




The following theorem is the infinite-dimensional version of the results of Bhattacharyya[1].

Theorem 2.4  The following three statements are equivalent.
(i) V is a generalized controlled S(A, B)-invariant.
(ii) There exists an F € B(X;R™) such that Sao1p,r(t)V C V (t > 0),B:iFV C V (Z =
1,---,q)and AV CV (i=1,---,p).
(iii) There exists an F' € B(X;R™) such that S, g o #()V C V (¢ > 0) and 4,V C
Vi=1,---,p).
Proof. ((i) = (ii)) Suppose that V is a generalized controlled S(4, B)-invariant. Then, there
exists an F' € B(X;R™) such that
Sa+BEF@)V CV (1 20) (1)
for all (a,8) € RP x RY.
First, suppose that oy = --- =@, =) = -+- = By = 0in (1). Then,
Sao+BF(H)V CV (t > 0)
which with Lemma2.2(i) implies
(Ao + BoF)(V N D(Ap)) C V. (2)
Further, suppose that oy = land az ==, =f; = --- = Bg = 0in (1). Then,
SA0+A1+B0F(t)V cVv (t 2 0)
which with Lemma2.2(i) implies
(A() + Ay + BoF)(V N D(Ao)) c V. (3)
Hence, it follows from (2) and (3) that 4;(V N D(A4p)) C V. Since Ay is a bounded linear

operator, A,V C V. Similarly, one can prove 4;V CV (i=2,--- ,D)-
Next, suppose that fy =land ey = - =a,=fo = --- = By = 01in (1). Then,

(Ao + (Bo + B1)F)(V N D(4)) C V. (4)

Hence, it follows from (2), (4) and boundedness of B, F that B;FV C V. Similarly, one can
prove BiFV CV (i =2,---,q).
((ii) = (i)) Suppose that there exists an F € B(X; R™) such that

Sap+BF()V CV (2 0),B;FV CV (i=1,---,¢)and 4,V CV (i=1,---,p).
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Then,

(Ala)+ B(B)F) = {(Ao+e1di+ - apAp) + (Bo+ 1By + -+ B, By)F}

p q
(Ao + BoF) + ZaiAi + Z,BiBz’F-

=1 =1

P g
Since S4,+B,Fr(t)V C V and (Z oA + ZﬁiBiF)V C V, it follows from Lemma 2.2(ii) that

=1 1=1

Sa+BEF®)V CV (t>0)

for all (@,8) € R? x R?, which implies V is a generalized controlled S(A, B)-invariant.
((ii) & (iii)) The proof follows from Lemma 2.3. O

For a closed subspace V of X let Py be a linear map on R’ satisfying KerPy = ZCiV
=1
and V = ¢ ® (V N KerPyCy) for some subspace ¢. Since, Co¢p N KerPy = {0}, we can define
; .
a projection map Py : R — R onto Cop @ I along KerPy = Z C;V for some I' satisfying
» =1

V =6 (VnKerPyC).

The following lemma is used to prove Theorem?2.6.

Lemma 2.5 The following two statements are equivalent.
- (i) There exists a G € B(R% X) such that Sa,160,(t)V C V (¢ > 0) and GCiV CV (i =
1,-,7).

(i) There exists a G € B(R% X) such that S pp+GPyc, D)V C V(t>0).
Proof. ((i) = (ii)) Suppose that there exists a G € B(R%; X) such that S4, 10, (t)V C V (¢ >
0) and GGV C V(¢ = 1,---,7). Then, from Lemma 2.2(ii) it suffices to show (GPyCyp —
GCo)V C V. Choose an arbitrary element = € V. Then, z can be decomposed as z = y + z
(y € ¢,z € (VNKerPyCyp)). Since PyCoz = PyCoy = Coy,

(GPyCo— GCo)z = GCoy— GCoy — GCoz
= —GCoz
€ G(KerPy)
= zr: GCV

=1

c V.



Thus, Sags+cPyco()V CV (1 > 0).

((ii) = (i)) Suppose that there exists a G € B(R’ X) such that Sporaryc, )V CV (T >
0). Define G := GPy. Then, Sa4Go,(1)V C V (¢t > 0). Further, GC;V = GP/C;V C
- GPy(KerPy) = {0} C V. This completes the proof. O

Theorem 2.6  The following three statements are equivalent.

(i) V is a generalized conditioned §(C, A)-invariant.

(ii) There exists a G € B(R X) such that S4,4c0,(t)V C V (t>0),GCVCV (i=
1L-eo,r)and AV CV (i=1,---,p).

(iii) There exists a G € B(R*; X) such that S, . ap o ()V CV (1> 0)and 4V CV (i =

1,--,p).
Proof. ((i) = (ii)) Suppose that V is a generalized conditioned S(C, A)-invariant. Then, there

exists a G € B(R’; X) such that
Sae)+com®V CV (¢ >0) (5)

for all (a,7) € RP x R".

First, suppose that oy = -+ =@, =73 =+ = 4, = 0 in (5). Then,
| Saprocs(V CV (¢ 0)

which with Lemma2.2(i) implies
(Ao + GCo)(V N D(Ao)) C V. (6)

Further, suppose that oy =1 and ap = - -+ = ap =71 =--=9 = 0in (5). Then,
Saota+6c,(1)V CV (t > 0)

which with Lemma2.2(i) implies

(Ao + A1 + GCy)(V N D(Ap)) C V. (7

Hence, it follows from (6) and (7) that A;(VN D(Ao)) C V. Since A; is a bounded linear operator,
A1V C V. Similarly, one can prove 4;V CV (i =2,---,p).
Next, suppose that 1 =land a; = -+~ = ap, = 7 = -+ = v, = 0 in (5). Then,

(Ao + G(Co+ C))VND(A) C V. (8)




Hence, it follows from (6), (8) and boundedness of GC; that GC;V C V. Similarly, one can
prove GC;V CV (i=2,--+,7).
((ii) = (i)) Suppose that there exists a G € B(R’; X) such that

Sap+cc,()YV CV (t> 0),GC;V cV (t=1,---,r)and 4,V CV (i= 1,--+,p)
Then,

(A() +GC()) = {(Ao+oadi+ - apdy) + G(Co+ Gy + -+ + 7Cr)}

Y T
(Ao +GCo) + ) eidi + > %Ci.

1=1 =1

¥4 T
Since S4,+6c,(t)V C V and (Z a;A; + Z'nC'i)V C V, it follows from Lemma 2.2(ii) that

i=1 =1

Sa)+ceqm@V CV (t>0)

for all (@,7) € R? x R", which implies V is a generalized conditined S(C, A)-invariant.
((ii) « (iii)) The proof follows from Lemma 2.5. O

The following theorem is an interesting result.

Theorem 2.7 The following three statements are equivalent.

(i) V is a generalized S(4, B, C)-invariant.

(ii) There exists an H € B(R’ R™) such that Sa0+BoHC,(H)V C V (t > 0), BiHC;V C
V{E=0,-,¢,7=0,--,7;(7) # (0,0)) and 4,V C V (i=1,---,p).

(iii) There exists a K € B(R% R™) such that $404+5,0v kPycy(1)V C V (¢ > 0) and AV C
V(E=1,---,p).
Proof. ((i) = (ii)) Suppose that V is a generalized S(4, B, C)-invariant. Then, there exists an
H € B(R* R™) such that

Sae)+BEYHCEH BV CV (12 0) 9)

for all (o,8,7) € RP x R x R".
First, suppose that oy = -+ =@, =f1 = =f, =y =---=7,=0in (9). Then,

SAD+BOHCO (t)V cVv (t 2 0)



which with Lemma2.2(i) implies
(Ao + BoHCo)(V N D(4g)) C V. (10)

Further, suppose that oy = land ey =+ =0, =f1 ==, =9, = --- =7, = 0 in (9).
Then,
SA0+A1+BOHCO (t)V cVv (t 2> 0)

which with Lemma?2.2(i) implies
(Ao + A1 + BoHCo)(V N D(AO)) cV. (11)

Hence, it follows from (10) and (11) that A;(VN D(4g)) C V. Since A; is a bounded linear
operator, A1V C V. Similarly, one can prove 4;V CV (i = 2,--- , D).

Next, suppose that 8, = 1 and oy = --- = ap=Pr=--=Fg=711="--=7 =0in (9).
Then,
(Ao + (Bo + B1)HCo)(V ND(Ao)) C V. (12)
Hence, it follows from (10), (12) and boundedness of By HCo that BiHC,V C V.
Further, suppose that y1 = land a; = - =@, = ffy = --- = By =v2=:=7 =0in (9).
Then,
(Ao + BoH(Co+ C1))(V ND(4p)) C V. (13)

From (10), (13) and boundedness of ByHC}, one obtain BoHC,;V C V. Similarly, one can prove
BiHC,V CV (i=1,---,q,j =1, --,7). |
((ii) = (i)) Suppose that there exists an H € B(R* R™) such that
SaotBorics()V C V (t 2 0),BHCV C V (i = 0,4, = 0,---,7;(,5) # (0,0)) and
AV CV (¢=1,---,p). Then, ‘
(A)+ BOEC) q T

= {(Ao+ BoHCo) + Y _ciAi + (3 BiB)H(D 1:C:)}

1=1 ]

=1 =1

p T - q q T .
= (Ao+ BoHCo) + Y ciAi+ Y %uBoHC: + > BiB:HCo + 5. S Biv; B:HC;.

=1 =1 =1 =1 7=1

P r g 9 7
Since Sag+Borcy()V C Voand (3 aidi+)  7:BoHCi+Y  BiBiHCo+ Y. fiv; B:HC;)V C
=1 =1 =1 =1 j=1
V, it follows from Lemma 2.2(ii) that

SA(a)+B(ﬁ)HC(—y)(t)V cVv (t > 0)
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for all (a,8,7) € R x R? x R", which implies V is a generalized S(A, B,C)-invariant.

((ii) = (iii)) Suppose that there exists an H € B(R’; R™) such that Sa0+BoHC,(1)V CV (£ > 0),
B;HC;VCV (1=0,--+,¢,7=0,---,7;(3,7) # (0,0)) and 4,V CV (1=1,---,p). Then, it fol-
lows from Lemmas 2.3 and 2.5 that there exists an * € B(X; R™) such that S por By eV C
V (t > 0) and there exists 2 G € B(R%; X) such that S 4o4GPyc, )V CV (t > 0). From Remark
in [8](p.106) there exists a K € B(R’; R™) such that S40+BoQuEPyC,()V CV (> 0).

((iii) = (ii)) Suppose that there exists a K € B(R’ R™) such that S4,45,0vkPyc,(t)V C
V(t>0)and A4,V CV (i =1,---,p). Define H := Qv K Py. Then, S4,48,50,(1)V C V (t > 0).
Further, one obtain B;HC;V = B;QvKPyC;V C BiImQv C BiRy C V (:1=0,---,q,7 =
0,---,7;(4,7) # (0,0)). This completes the proof. O

Corollary 2.8 V is a generalized S(4, B,C)-invariant if and only if V is a generalized con-
trolled S(A, B)-invariant and a generalized conditioned S(C, A4)-invariant.

Proof. The proof follows from Theorems 2.4, 2.6 and 2.7. O

It is interesting to note from Theorems 2.4, 2.6 and 2.7 that generalized invariant subspaces
are connected with the invariances of a finite number of conditions. So, we can check whether

a given subspace V' is a generalized invariant or not.

3 An Application to Robust Disturbance-Rejection

In this section, the infinite-dimensional version of disturbance-rejection problems for uncer-
tain systems which were investigated by Bhattacharyya[l] are studied.

Consider the following uncertain system S(a,3,7,6,0) defined in a Hilbert space X.

%xm = A(a)a(t) + B(B)u(t) + E(0)E(1),
S(e, 8,7,6,0) : y(t) = C(7)z(¢),
z(t) = D(6)z(t)

where 2(t) € X, u(t) € U := R™, y(t) € Y := R, 2(t) € Z 1= R¥ and £ € L1((0,00); Q)
are the state, the input, the measurement oﬁtput, the controlled output and the disturbance
which is a Hilbert space () valued locally integrable function, respectively. It is assumed that

coefficient operators have the following unknown parameters.

Ala) = Ao+aiAr+---+ apAp 1= Ag + AA(a),
B(B) = Bo+piBi+ -+ BBy := By + AB(B),
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C(r) = Co+mCi+ - +%C = Co+ AC(y),
D(6) = Do+ 61D1+ -+ +68,D, := Do+ AD(6),
E(U) = Fo+orBy+ -+ 0iEy = Eo—f—A_D(O'),

where A;, B;,C; are the same as system S(a,3,v) in Section 2, D; € B(X;R*), E; € B(Q; X)
and a := (a1, ,0p) € R?, f:= (B1,-+,B;) € R, v := (71,--,7) € R, 6 := (61,---,65) €
R® 0:=(01,---,0¢) € R".

In System S(e,B,7,6,0) (Ao, Bo,Co, Do, Eo) and (AA(a), AB(B), AC(v), AD(6),AE(0))
represent the nominal system model and a specific uncertain perturbation, respectively.

Now, apply to system S(a,B,7v,6,0) a measurement feedback of the form:
u(t) = Hy(t)
where H € B(R% R™). Then, the resulting closed-loop system is given as

St By .07 { (1) = (A(e) + BSYHC(1)e(t) + E(@)E(D),
z(t) = D(6)z(¢).

Our robust disturbance-rejection problem with measurement feedback for system S(«, 8,7,6,0)
is stated as follows: Given operators A4;, B;, C;, D;, E; for system S(e, B,7,6,0), find if possible
a measurement feedback gain H € B(Re; R™) such that the closed-loop system Sg(a, 8,7, §, o)
rejects the disturbances £ from the controlled output z for all parameters (o, 8,7,6,0) €
RP x R? x R" x R® x R'. To achieve this control requirement we must solve the following
problem : Given operators A4;, B;, C;, D;, E; for system S(e,B,7,86,0), find if possible a mea-

~surement feedback gain H € B(R*, R™) such that

t
D((S)/O SA(a)+B(ﬁ)HC('7)(t — T)dT =0 (t >0)forall £ € LIIOC(O,OO;Q)

or equivalently

< Sass@enOImE©) >i= L (Y] Suapspmon ©mE@) ¢ KerD(o)

for all parameters (a,(,7,6,0) € R x R? x R” x R® x R!, where L(2) and overbar mean the
linear subspace generated by the set Q and the closure in X, respectively.

This problem can be rephrased as follows.
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Problem 3.1  (Robust Disturbance-Rejection Problem with Measurement Feedback (RDRPMF)
Given operators A;, B;,C;, D;, E; for system $(e,(,7,6,0), find if possible a measurement
feedback gain H € B(R‘; R™) such that

< S4(a)+B(E)HC () ()ME(0) >C KeTD(5)
for all parameters (o, 8,7,6,0) € RP x RIx R" x R® x R'. O

Remark 3.2 If C(y) = I (identity operator), then Problem 3.1 reduces to the robust disturbance-
rejection problem with state feedback (RDRPSF). O

The following theorem gives solvability conditions for RDRPMF to be solvable.

Theorem 3.3 If there exists a generalized S(A4, B, C)-invariant subspace V such that
ZImE cvc ﬂ KerD;,

=0 =0

then the RDRPMF is solvable.
Proof. Suppose that there exists a generalized S(A, B, C)-invariant subspace V such that

¢ s
Y ImE; CV C () KerD;.
=0 =0
Then,
Sa+BE)HCHV CV (1> 0)

for all (a,5,7) € R? x R? x R". Hence,

¢
< Sa@+B@EHC) () | ImE(0) > C < Syey4B@mom)() | Y ImE: >

i=0
C < Sa+BE)CH)() |V >
=V
C ﬁ KerD;
C zK:‘SID(é)

for all parameters («,3,7,6,0) € RP x R? x R” x R® x R!. Thus, RDRPMTF is solvable. O

The next corollary follows from Theorem 3.3.

11



Corollary 3.4  Assume that C() = I. Then, if there exists a generalized controlled S(4, B)-
invariant subspace V such that
i s
ZImEi cVc ﬂ KerD;,
=0 =0

then the RDRPSF is solvable. O

It remarks that Theorems 2.4 and 2.6 play important role to check whether a given

subspace is a generalized invariant or not.

4 Concluding Remarks

In this paper, sorﬁe generalized invariant subspces for infinite-dimensional systems were in-
troduced, and then their properties were investigated. Especially, it is interesting that Theorems
2.4,2.6 and 2.7 say infinitely many conditions are equivalent to finite number of conditions. Fur-
ther, the infinite-dimensional version of the disturbance-rejection problems for uncertain systems
which were investigated by Bhattacharyya[l] were formulated, and then their solvability condi-

tions were presented.
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