Solving a Class of Multiplicative Programs
with the 0-1 Knapsack Constraint

Takahito Kuno*
December 5, 1997

ISE-TR-97-147

Institute of Information Sciences and Electronics

University of Tsukuba

Tsukuba, Ibaraki 305, Japan

Phone: +81-298-53-5540, Fax: +81-298-53-5206, E-mail: takahito@is.tsukuba.ac.jp

* The author was partly supported by Grant-in-Aid for Scientific Research of the Min-
istry of Education, Science, Sports and Culture, Grant No. (C2)09680413.

Solving a Class of Multiplicative Programs with
the 0-1 Knapsack Constraint

Takahito Kuno*
takahito@is.tsukuba.ac.jp
Institute of Information Sciences and Electronics

University of Tsukuba

December 1997

Abstract. We develop a branch-and-bound algorithm to solve a nonlinear class of 0-1
knapsack problems. The objective function is a product of m > 2 affine functions, variables of
which are mutually exclusive. The branching procedure in the proposed algorithm is the usual
one; but the bounding procedure exploits the special structure of the problem and implemented
through two stages: the first is based on the linear programming relaxation and the second is
the Lagrangian relaxation. Computational results indicate that the algorithm is promising.

Key words: Multiplicative programming, 0-1 knapsack problem, concave minimization,

branch-and-bound algorithm, Lagrangian relaxation.

1. Introduction

Let us consider a nonlinear class of 0-1 knapsack problems:

minimize 2z = H Z c;z; +d;
) i=1 \jJEN;
(P)

subject to > ajz; >b
i=1

z;€{0,1}, jeN={1,...,n},
where all the data are integers and N;s are mutually exclusive, i.e.
NN N, =0 for i # h. (1.1)

We assume that b, c;s and d;s are positive and that

JEN
Under these conditions, problem (P) is feasible; the objective function is pseudoconcave
[2]; and we can assume, without loss of generality, that a;s are positive and

(n=n. (1.3)

i=1

*The author was partially supported by Grant-in-Aid for Scientific Research of the Ministry of
Education, Science, Sports and Culture, Grant No. (C2)09680413.

Minimization of a product of m > 2 affine functions, so-called multiplicative program-
mang, has abundant applications, including multiple objective decision making [7, 9] and
geometrical optimization {12, 13]. Problem (P) can also be thought of as an m-objective
optimization problem, where the costs of certain activities have no common scale if they
belong to different departments. For the multiplicative program with continuous vari-
ables, a number of deterministic algorithms have been proposed so far (the readers are
referred to [10, 11] for the state-of-the-art in multiplicative programming). Although
the problem is NP-hard even when m = 2 [15], each of these algorithms is fairly effi-
cient as long as m is, say, below five; the running time is, however, exponential in m
and increases rapidly the moment m exceeds five. At this stage, there are two possible
approaches to the problem with larger m: applying heuristic methods, and exploiting
special structures possessed by each problem example. In their recent article [4], Benson
and Boger have adopted the first approach and obtained an excellent result.

In this paper, we develop a branch-and-bound algorithm to solve (P) with every m,
by exploiting (1.1) and the 0-1 knapsack constraint. The branching procedure in the
proposed algorithm is the usual one, where the value of some free variable is fixed at
one or zero to define a subproblem; but the bounding procedure makes the most of the
structure (1.1) and is implemented through two stages: the first is based on a linear
programming relaxation of the subproblem and the second is a Lagrangian relaxation.
In Section 2, we will give these two relaxations in detail. In Section 3, we will show that
this two-stage bounding procedure can be carried out in O(n) time if the ratios cj/aj,
J € N, are preliminary sorted for each i. Computational results of the algorithm will
be reported in Section 4. '

2. Relaxations

Let us denote by (P) a subproblem of (P), in which some of the variables are fixed at

either one or zero; and let

J+ ={j € N | the value of z; is fixed at one in (P;)}
Jo = {j € N | the value of z; is fixed at zero in (Py)}
F=N\(J+UJO), Fi= NiﬂF, z::l,,m

Subproblem (P}) is then written as follows:

m
minimize 2z = H (Z cjx; + df)
t=1 \jEF;
(P) subject to > ajz; > b
JEF
z; €{0,1}, j€F,

where

d¥ =d; + Yo ¢, i=1,..,m; bk::b—Zaj.

jeJLnN; JE€T4

In the sequel, we suppose that (P) satisfies

Z a; Z bk >0
JEF
and hence has an optimal solution #* of value z* =[], (Ejepi cj:z:f + df)
Since ¢;s and d;s are positive, 3¢y, ¢;z;+d; takes a positive value at any nonnegative
z;, j € F;. This allows us to transform (Py) into an equivalent problem:

minimize w = Zlog Z cjz; + d*
i=1 JEF;

(Qx) subject to Z a;x; > b*

JEF

z; € {0,1}, j € F.

Proposition 2.1. If (x*, 2*) is optimal to (Py,), then (x*,log z*) solves (Q,); conversely,
if (x*, w*) is optimal to (Q,), then (x*,2*") solves (Py).

It should be noted on (Q,) that under condition (1.1) the objective function is sep-
arable into m concave functions, each of free variables z;, 7 € F,. As a solution to
such separable nonconvex programs, the branch-and-bound algorithm proposed by Falk
and Soland is often employed [6], Their bounding procedure uses a relaxed problem of
minimizing the convex envelop of the objective function. Our first relaxation of (Qy) is

converted from Falk-Soland’s for 0-1 knapsack problems.

2.1. LINEAR PROGRAMMING RELAXATION

For i =1,...,m, let us suppose that the free variables z;, j € F}, are arranged in the

increasing order of n; = |F}| ratios:
¢ifaj L ¢jpfag, <o < ¢, fay, . | (2.1)
If Fi # 0, let

p—1 P
b; _—..max{(),bk — Z Gj} s Za’jh <b < Za’jh
h=1 h=1

JEF\F;

B g—1 _ g
bizmin{bk,Zaj}, Zajh <bi§ZaJ’ha
h=1 h=1

JEF;

where Y_p_; - is understood to be zero; and define the numbers

p—1 q
lz' = Z th + df, U; = Z th -+ d:c (22)
h=1 h=1

Lemma 2.2. Let yf = 2 jeR cjzrf + df fJori=1,....m. Then, for each i with F; # {,

L<yf < u (2.3)
Proof: Let _
p-1 - q
f::ma,x O,b’“— Z ajl‘f 5 E:Z%‘ha bizza’jh'
JEF\F; h=1 h=1

Then y¥, I; and u; are equal to

miﬂ{z iz | Y az; > B8, x;€{0,1}, j € E} +df

JEF; JEF;

z) =2 13

if we replace § by b%, b and T, respectively. By definition, we have b <b <bF<b <T,
from which (2.3) follows. O '

Using the bounds /; and u; of ¥, let us define

log d* if F; =0
\Y;) = I i li 1
filws) o{j(u /1)(yi —1I;) +logl; otherwise.

Then f; is the convex envelop of the logarithmic function over the interval [I;, ;] and
satisfies

fi(yi) <logy;, Yy € [li,ui,

where |; = u; = d; if F; = (). Replacing log by f; in (Q,) and relaxing the 0-1 variables
into real ones, we have a continuous linear knapsack problem:
minimize w = Z c;-“a:j +dF

JEF
(Qr) | subject to 3 a;z; > b
JjeF
0 S z; _<£ 1, j € F,
where

| "e , ik
C;?:“O_S%lcj, JEN;, i=1,...,m; dkr—;fi(df)- (2.4)

From the construction of (Q,), we immediately see the following:

Theorem 2.3. Let w* and w denote the optimal values of (Q,) and (Qy), respectively.
Then

'LDka.

As is well known (see e.g. [5]), if we rearrange the variables Zj, j € F, in the increasing
order of c}/a;s, then

r—1 C r—1

- k Jr k

w._E ¢j, + =+ b—~§ a;, |,
h=1 a; h=1

Jr

and a solution & of value @ is given by

1, h=1,...,r—1
Zj, =1 (b* - Thlla;)/a;, h=r
g, h=r+4+1,...,|F|,
where
r—1 r
Z aj, < b* < Z @jy, - (2.5)
h=1 h=1

We can thus use @ as a lower bound of w* to terminate branching at subproblem
(Qi) unless @ is less than the incumbent value of (P). Since the time needed to solve
a continuous linear knapsack problem is linear, (Qp) yielding @ can also be solved in
O(n) time for given [I;,u;]s, without sorting cf/a;s 3, 8]. Unfortunately, however, the
lower bound @ is not very tight as will be demonstrated in Section 4. To work the
branch-and-bound algorithm efficiently on (P), we have to devise another relaxation of
(Qq) yielding a lower bound much tighter than .

2.2. LAGRANGIAN RELAXATION

Let us introduce a Lagrangian multiplier A > 0 into (Q)- Then we have the second

relaxation:
minimize w =) log iz +df | + A6 = S ax;
(Lk()‘)) z§::1 (J;, o) (jeZF T
subject to z; € {0,1}, j € F.

The following is a well-known result on Lagrangian relaxation:
Lemma 2.4. Let w(\) denote the optimal value of (Le(X)). Then
w(d) < wk, vA>o0.

The question here is how we should choose a value of A such that w(A) > w. To
answer this, let us consider a linear programming relaxation of (Lk(A)). In the same way
as we have constructed (Q,), we can linearize (Lx(A)) into

minimize w = Z(Cf — Aa;)z; + dF + AB*
JEF (2.6)
subject to 0<z;<1, jEF,

where cfs and d* are defined in (2.4). The optimal value w()) of (2.6) can be computed
easily as follows:

w(A) = Y min{0, ct — Xa;} + d¥ + Ab*. (2.7)
JjeF
On the other hand, the dual problem of (Qg) is of the form:
maximize w = b*A— 3" u; +d*
JEF
subject to ajA — p; < c;?, JEF
A 20, #; 20, j€F,

(2.8)

where A and p;s represent the dual variables. Since (2.8) requires p; = max{0, a;\ — ct}
for each j € F, we have

@ = max {b"’)\ -3 max{0,a;A - c;-“}} + d. (2.9)

>
A JEF

Lemma 2.5. Let (A, 1) be an optimal solution to (2.8). Then
b = (). (2.10)
Proof: It follows from (2.7) and (2.9) that

@ = max ().

The value @ is achieved at (X, 2) in problem (2.8); hence (2.10) follows. O

Note that the value A of the dual variable is equal to the ratio c;?r /a;,, where r is defined
in (2.5).

Lemmas 2.4 and 2.5 imply that if we solve (Le(X)), we can obtain a lower bound of
w* not worse than @ because (2.6) with A = X is a relaxed problem of (Le(X)).

Theorem 2.6. The relation among the optimal values of (Qc), (Le(N)) and (Q) is
w < w(A) < wk, , (2.11)
where the first inequality holds strictly as long as

E’i, l; < Z cjzj(X) + df < U;.

JEF;

Proof: We have already shown (2.11). The latter half of the lemma follows from the
strict concavity of the logarithmic function. (

2.3. TIGHTENING THE LOWER BOUND

We see from Lemma 2.2 that the optimal value of (Q;) does not change even if we add
the constraints

I; < chxj-i—dfgui, t=1,...,m.
JEF;

The resulting Lagrangian relaxation with respect to 3 cpa;z; > bF is as follows:

minimize w = Zlog (Z c;z; + df) + A (bk -3 ajxj)

, =1 JEF; JEF
(LX) subject to l; < Z cjr; < u; — df, t=1,...,m
JEF;

ij{Oal}a JEF

Since the feasible set of (Lj())) is included in that of (Li(X)), we have the following:
Theorem 2.7. Let w'()\) denote the optimal value of (Ly())). Then
o < w(d) < w'(X) < wh.

While w'(}) is tighter than @, problem (Li(X)) yielding the former is a 0-1 integer
program in contrast to (Q). What seems to be worse, the objective function of (L} ()))
is nonlinear and concave. This implies that even the continuously relaxed problem of
(Lx(})) may have multiple local minima, many of which fail to be global ones. In the
next section, however, we will show that a global minimum of (Li (X)) can be computed
in linear time if ¢;/a;, j € N;, are previously sorted for each i.

‘3. The algorithm

Since the sets F}, i = 1,...,m, of free variables are mutually exclusive, the Lagrangian
relaxed problem (L;(A)) can be decomposed into m minimization problems, each of
which is of the form:

minimize w; = log Z c;z; +df | — A Z a;T;

JEF; JEF; 3.1

subject to L< > ez <uy— d* (3.1)
JEF;

ij{O,l}, jEFz

If we introduce an additional variable y;, the continuously relaxed problem of (3.1) is
written as follows:
minimize w; = logy; — A Z a;x;
JEF;
subject to Y ez +df =y, ‘ (3.2)
JEF;
0<z;<1, jeF; L<y<u.

7

As mentioned before, this problem is neither linear nor convex; nevertheless, once the
value of y; is fixed in the interval [I;,u;], we can solve it very easily.

Note that (3.2) with a fixed y; is just a continuous linear knapsack problem. There-
fore, the optimal value is given by

s—1 e s—1 4
i) = 1ok = 3 (S 0, + 2 (- S e #)) (33)
h=1

h=1 s

for some s such that Y571 ¢, +dF <y < T3, ¢, + d¥, where

i/ 2 agfciy 2 - 2wy, [c, (3.4)
Let

Mo =df; mh=1ha+c;, h=1,... n,. (3.5)

We should recall here that (3.4) is equivalent to the order (2.1) of the variables z;, j € F,
used to compute the bounds I; and w; of y¥. Hence, from the definition (2.2), both I;
and u; exist among ny,, h =1,...,n;. We also have the following:

Lemma 8.1. The function gi 18 concave on the interval [ny_y,mu) for each h =1,... n;.

Proof: We see from (3.3) - (3.5) that g; is composed of a logarithmic function and a
convex piecewise affine function with break points 7, h = 0,1,...,n;. Since a sum of
concave and affine functions are concave (see e.g. [14]), the function g; is concave on
each affine piece [n,_1,). O

Lemma 3.1 guarantees that gi is minimized at some extreme point of [Mh—1,7n]s
over the interval [I;,u;]. Moreover, if we fix the value of Yi at any n, € {m | h =
0,1,...,m;} N [l;,4;] in problem (3.2), the optimal z;, takes a 0-1 value:

Jn

,_{1 ifh<s

0 otherwise.

This, together with Lemma 3.1, implies that

g; = min{gi(ys) |y € fm | h=0,1,...,n} O [l]} (3.6)

gives the optimal value not only to (3.2) but also to the 0-1 integer program (3.1). The
optimal value w'(A) of (Li(A)) can therefore be computed by

w’(A) = Zg: + Ak,
i=1

Theorem 3.2. Given X > 0, problem (L\()\)) can be solved in O(nlogn) arithmetic
operations and O(n) evaluations of the logarithmic function.

Proof: For each i, sorting a;/c;, j € F,, in the order (3.4) requires O(n;logn;) arith-
metic operations; and (3.6) requires O(n;) evaluations of log. Their total numbers are

O(X % nilogn;) = O(nlogn) and O(X) n;) = O(n), respectively. O

This polynomial-time solvability of the nonconvex program (Lj,(})) is totally due to
the rank-two monotonicity [16, 11] possessed by the objective function of (3.1). Functions
of this class are certainly concave on their domains; but the concavity can be embedded
into only a two-dimensional subspace, which enable us to effectively apply parametric
programming like the above (see [11] for further details).

3.1. DESCRIPTION OF THE BRANCH-AND-BOUND ALGORITHM

In the preprocess of the algorithm for (P), we first sort c;/a;, j € N; for each i. This
requires O(n log n) arithmetic operations but omits the time needed to sort a;/ci, j € F;
in the solution to (Lj(X)) at each step after that.

procedure PREPROCESS;
begin
fori=1,...,mdo
sort ¢;/a;, j € N; in the increasing order;
set the incumbent (z°, w®) == (1,...,1,¥7", log(,en, ¢ + ds))
end,;

In accordance with an ordinary branch-and-bound algorithm for 0-1 linear knapsack
problems, we propose the depth-first-search rule to select (Qg) from the set of active
subproblems and as the branching variable z, with ¢ = arg min;cp c;? /a;j. Then the
algorithm, incorporating the two procedures stated in Section 2, is summarized into a

recursive form:

algorithm MULTILKNAP;
begin
PREPROCESS;
BRANCH/BOUND(®,0, N);
¥, %) = (x°,2%")

end;

procedure BRANCH/BOUND(J,, Jy, F);
 begin
let (Q;) denote the subproblem corresponding to (Jy, Jp, F);
if b* < 0 then
begin
forj=1,...,ndo
if j € J; then 2 :=1 else z; = 0;

9

w' =T log(Tjen, ¢;z) + di);
if w' < w° then update the incumbent (z°,w®) := (z', w')
end '
elseif ", ra; > b* then
begin
fori=1,....,mdo
compute [/;,u;] and define the convex envelop f; of log over the interval;
construct the linear programming relaxation (Q,) using f;s;
solve (Qy) to obtain @ and X;
if @ < w°® then
begin
solve the Lagrangian relaxed problem (L} (X)) to obtain w’ (A);
if w'(A) < w® then
begin
choose ¢ := arg min;c y c¥/a;, where cf =log(ui/l;) ¢; / (u; — l;);
BRANCH/BOUND(J, U {t}, Jy, F \ {t});
BRANCH/BOUND(J,, Jo U {t},\{t})
end
end
end
end;

Since ¢;/a;, j € F(i), have been sorted in the procedure PREPROCESS, both I; and
u; can be computed in linear time; and hence the convex envelop f; of log over [I;, u;] can
be obtained in linear time. This order of cj/a;s can also be used to solve the Lagrangian
relaxed problem (L (})) and reduce the number of arithmetic operations from O(n log n)
to O(n). The linear programming relaxed problem (Q,) is a continuous linear knapsack
problem, which can be solved in O(n) time. Consequently, if an evaluation of the
logarithmic function can be done in a unit time, the total computational time needed in

the procedure BRANCH/BOUND is O(n) before its recursive calls.

4. Computational Results

Let us report computational results of testing the algorithm MULTI_KNAP on randomly
generated problems of (P).

The algorithm was coded in double precision C language (note that c;?s can take real
values in (Qy,)) according to the description in the preceding section. In the procedure
PREPROCESS, we sorted aj/c;, j € N;, by quicksort, which requires O(nlogn) time
on the average but O(n?) time in the worst case (see e.g. [1]). Also in the procedure
BRANCH/BOUND, we solved (Q,) by sorting Lf/ a;s with the quicksort algorithm in-
stead of applying the linear-time algorithm to it. In addition to the code MULTI.KNAP,

10

Table 4.1. Comparison of MULTLKNAP and LP_RELAX when n = 60.

MULTILKNAP LP_RELAX
a=.2 a=.5 a=.8 a=.2
m # calls time # calls time # calls time # calls time
2 40.1 .007 88.0 015 175.9 035 6566529.6 775.6
(117) (.017) (136) (.017) (548) (.167) (45904400) (4944.1)
3 33.6 .007 153.4 .043 179.0 .042
(73) (.017) (344) (.117) (631) (.183)
4 35.1 .010 282.7 .093 327.7 .080
(130) (.017) (1295) (.483) (1462) (.417)
5 53.3 .013 266.8 .087 201.5 050 5480941.3 796.7
(128) (.033) (606) (.233) (724) (.200) (32825816) (4412.0)
6 20.6 * .007 408.0 137 299.7 077
(49) (.017) (1591) (.600) (1582) (.433)
10 51.3 .015 407.3 143 222.7 .065 6174459.9 1174.0
(172) (.050) (960) (.383) (683) (.250) (39763636) (7074.6)
12 55.6 .018 539.3 .208 155.3 .053
(209) (.067) (1744) (.783) (410) (.150)
15 45.7 .018 405.1 167 196.9 .063
(138) (.050) (1091) (.500) (545) (.167)
20 49.2 .020 237.8 .108 176.8 .070 7166561.1 1861.2
(145) (.067) (708) (.333) (336) (.117) (53134457) (12909.6)
30 53.0 .025 98.8 .052 182.1 .092
(118) (.083) (182) (.100) (357) (.183)

we coded the algorithm omitting the second stage of bounding procedure based on the
Lagrangian relaxation (denoted by LP_.RELAX).

The test problems were generated in the following way: a;s and c;s were drawn from
the uniform distribution in the intervals [1,50] and [1,20], respectively; b was set to the
rounded value of a ¥ ;c v a;, where 0 < a < 1; and d;s were set to di = 3 ;en,(20 - a;).
The size of (m,n) ranged from (2,60) to (20,120); and | Ni]s were fixed at n/m. For
each size, we solved ten instances on a UNIX workstation (hyperSPARC, 150MHz) and
measured the average performance of the codes.

Table 4.1 shows the behavior of MULTLKNAP on problems of size n = 60 when m
increases from 2 to 30. For @ = 0.2, 0.5 and 0.8, the average number of calls on the
procedure BRANCH/BOUND and the average CPU time in seconds (and their maxima
in the brackets) are listed in their respective columns. It is worth noting on the results for
a = 0.5 and 0.8 that after rising the peak at some m < 30, the number of calls gradually
decreases as m increases. The table also compares MULTLKNAP with LP_.RELAX for

a = 0.2. It clearly indicates the dominance of the Lagrangian relaxation over the linear

11

Table 4.2. Computational results of MULTI.LKNAP when a = 5.

n = 80 n = 100 n =120
calls time # calls time # calls time
2 113.2 .025 150.5 .045 296.4 .088
(236) (.067) (269) (.083) (643) (.183)
5 4387.0 2.120 3463.6 2.040 27812.4 19.795
(37766) (18.433) (14031) (8.367) (147113) (102.117)
10 33141 1.707 7096.3 4.563 99142.3 74.875
(20559) (10.833) (28857) (18.817) (406035) (295.050)
20 1973.8 1.312 4416.7 3.352 22389.3 20.778
(14050) (9.617) (23599) (18.783) (134405) (127.467)

programming relaxation.

Table 4.2 summarizes the computational results on larger-size problems. For o =
0.5, the same statistics as in Table 4.1 are listed in it. For each size of n, the code
MULTIKNAP performs very well on problems with small m or large m (small |V;|s in
other words). On the whole, we can conclude that MULTLKNAP is reasonably efficient
for randomly generated problems of (P). Each test problem might be somewhat small if
it were a linear 0-1 knapsack problem. However, we must not forget that the objective
function of our problem (P) is nonlinear and nonconvex.

References

[1] Aho, A.V., J.E. Hopcroft and J.D. Ullman, Data Structures and Algorithms, Addison-
Wesley (MA, 1983).

[2] Avriel, M., W.E. Diewert, S. Schaible and I. Zang, Generalized Concavity, Plenum
Press (NY, 1988).

(3] Balas, E. and E. Zemel, “An algorithm for large zero-one knapsack problems”,
Operations Research 28 (1980) 1130 — 1154.

[4] Benson, H.P. and G.M. Boger, “Multiplicative programming problems: analysis
and an efficient point search heuristic”, Technical Report, College of Business Ad-
ministration, University of Florida (FL, 1997), to appear in Journal of Optimization
Theory and Applications.

[5] Dantzig, G.B., Linear Programming and Erxtensions, Princeton University Press
(NJ, 1963).

[6] Falk, J.E. and R.M. Soland, “An algorithm for separable nonconvex programming
problems”, Management Science 15 (1969) 550 — 569.

[7] Geoffrion, M., “Solving bicriterion mathematical programs”, Operations Research
15 (1967) 39 - 54.

12

[8] Johnson, D.B. and T. Mizoguchi, “Selecting the kth element in X + Y and X; +
Xo+ -+ Xn", SIAM Journal of Computing 7 (1978) 147 - 153.
[9] Konno, H. and M. Inori, “Bond portfolio optimization by bilinear fractional pro-
gramming”, Journal of the Operations Research Society of Japan 32 (1988) 143 —
158.
[10] Konno, H and T. Kuno, “Multiplicative programming problems”, in R. Horst and
P.M. Pardalos (eds.), Handbook of Global Optimization, Kluwer Academic Publish-
ers (Dortrecht, 1995).
[11] Konno, H., P.T. Thach and H. Tuy, Global Optimization: Low Rank Nonconver
Structures, Kluwer Academic Publishers (Dortrecht, 1997).
[12] Kuno, T., “Globally determining a minimum-area rectangle enclosing the projection
of a higher-dimensional set”, Operations Research Letters 13 (1993) 295 — 303.
[13] Maling, K., S.H. Mueller and W.R. Heller, “On finding most optimal rectangle
package plans”, Proc. the 19th Design Automation Conference (1982) 663 - 670.
[14] Mangasarian, O.L., Nonlinear Programming, McGraw-Hill (NY, 1969).
[15] Matsui, T., “NP-hardness of linear multiplicative programming and related prob-
lems”, Journal of Global Optimization 9 (1996) 113 - 119.
[16] Tuy, H., “Polyhedral annexation, dualization and dimension reduction technique in
global optimization”, Journal of Global Optimization 1 (1991) 229 — 244.

13

