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Abstract

Frequency transformations derive filters of various types from a filter of low-pass type, and the
transformations required laborious hand computation. The present authors have been already
proposed the frequency transformation matrices which can replace the hand computation by
automatic procedures, but the procedures still require a large number of computation. In this
paper, fast algorithms to compute the elements of the frequency transformation matrices are
proposed. Properties of those matrices are first investigated, and then some fast algorithms are

presented. Finally, the proposed algorithms are compared with those based on the definitions

of the matrices.
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1 Introduction

The design methods of IIR digital filters have been extensively studied for these thirty years,
and they are roughly divided into two categories. One (A) is based on bilinear and frequency
transformations from analog filters [2]-[4],(6], and the other (B) is to optimize frequency char-
acteristics to the desired one [1],[5],[8]. The method (A) preserves frequency characteristics of
the original analog filters, so we can take advantage of highly developed analog filter design
techniques. The method (B) enables more flexible design, but the best design algorithm has not
been established yet.

The inherent problem of (A) was that the frequency transformations require laborious hand
computation. The direct application of the transformation yields a complicated formula of the
target transfer function, which has to be reduced into the form of a rational polynomial by hand
computation. The yielded formula becomes more complicated for a transfer function with a
higher order that can be used in practice to realize minute characteristics.

The present authors have been already proposed the frequency transformation matrices [7]
which can replace the hand computation in the frequency transformations by automatic pro-
cedures. However, the procedures still require a large number of computation, which contain
a lot of binomial coefficients. In computing the elements of the bilinear transformation ma-
trices [2],[3],(6], a large number of computation is also required. To decrease the number of
computation, Bose [2],[3] proposed the fast algorithm to compute the elements of the matrices.
Similarly, fast algorithms to compute the elements of the frequency transformation matrices
must be studied.

The objective of this paper is to study the fast computation of the elements of the frequency
transformation matrices. In Section 2, we investigate significant properties of those matrices.
In Section 3, some fast algorithms to compute the elements of the matrices are proposed, and

they are compared with the algorithm based on the definition. Finally, Section 4 makes some

concluding remarks.



2 Properties of Frequency Transformation Matrices

In this section, significant properties of the frequency transformation matrices are investigated.

a
Hereafter, frequency means angular frequency, and < b > denotes

<a> 0, b>aorb<0,

= |
b otherwise.

bi(a — b)!’
Let wp be the cut-off frequency of the original low-pass filter. The transfer function Hy(z)

of this filter can be written as

1 n

ap+ a1z + -+ anz” (1)
bo+brz7t 4o bz’

Hy(z) =

of which order of numerator polynomial is the same as that of denominator one, as a result of

the bilinear transformation from an analog low-pass filter [7].

2.1 Properties of the Matrix to Design Low-pass Filters

The frequency transformation formula to design the low-pass filter with the cut-off frequency

w1 is shown in Table 1, and the matrix which corresponds to that transformation was obtained

[7] as

TP .= TLP (o) = [tAL}-)’n(a)] e R(nt1)x{nt1)

n 1,
where
"= @) = -y T ) el @
-7 ’ k=0 Z_k k .

The transfer function H;(z) of the derived low-pass filter can be represented by

co+ez 4 oz
H = . 3
1(2) do+diz7l 4+ +dpz™ )

Here, the relations between the coefficients of (1) and those of (3) are as follows:

co ap do bo
C1 ai d1 b1

= T%P . ’ . = T%P (4)
Cn an d, bn



Since the coefficients {¢;}1, of (3) can be obtained by (4), the numerator polynomial Ny(z)

of Hi(z) can be written as

Ni(z) = Z ciz™"

_ Z(ZP )

1=0

n n

= > (E tij "z ) ~ (5)
7=0

On the other hand, since the transfer function H;(z) can be obtained as a result of the frequency

transformation of Hy(z), N1(z) can also be written as

Ni(z) = iqz"i
=0
n J
= (1 —az'l) j;oaj (f__;;i)
- o )
=0

From (5) and (6), we have
(1-az)"7 (=" ~a) ZtLP" -, ™)

Proposition 2.1 The first-row elements and the first-column ones of the matrix Tkp are as

follows.
(i "= (=a), j=0,1,...,n, (8)
. LP,n i/ 7 .
(ii) ti,O = (~o) < ; >, 1=0,1,...,n. (9)
Proof The proofs easily follow from the definition of (2). |

Proposition 2.2 The elements {tLJP "} of the matrix TLF satisfy the following properties.

(i) = it L hi=0,1,...,n, (10)

(ii) (EPR = (=) P (é) ii=0,1,...,m, (1)

(i) G = et — et 45 =0,1,...,m, (12)
where

tl;f":o, i<Oorj<Oori>norj>n.



Proof Proof of (i): Replacing 7 in (7) by (n — j), we have
(1 - az_l)j (z ) ZtL’z_"J -, (13)
Next, replacing z=! in (13) by 2, and then multiplying 2~ to both sides, we have ,
(z“l — a)j (1 —az ) th‘lp;nn_] - (14)

The left side of (14) is equal to that of (7). This completes the proof.

Proof of (ii): Replacing c in (7) by 1/c, and then multiplying (—c)" to both sides, we have

(1 —az 1)j (z‘l - a)n_j = i(——a)” {tLj’" (é) } P | (15)

1=0

The left side of (15) is equal to that of (13). Therefore, (11) holds.

Proof of (iii): Replacing j in (7) by (j — 1), we have

1\ I+ 4 -1 = LP,n 21 .
(l—az ) (z —a) —Zt’] 127" (16)
1=0
From (7) and (16), we have
(1—oaz™ Zt””" = Ztljf il (17)

Using (8)-(10), (17) can be rewritten as follows.

LP,n LP,n LP,n LP,n -7 _
(ti,j’ tl i] 1‘—a t’l 1J+a'ti,j_l)z —0.

-

1

1

Therefore, the following equation holds:

LP LP, LP LP,n
ti " =t — e s o 5T =0,
which is equal to (12). u

Proposition 2.3 The relations between the elements {tf, f’n} of TLF and {tk}j’n—l} of TLP,

are as follows.

(i) tr" = G a5 45 =0,1,..,n, (18)
o P,n—1 LPn~1 . . _
(ii) ti‘f = t?—lZ’—l —a-t50, 4,5=0,1,...,n. (19)



Proof Proof of (i): Replacing n in (7) by (n — 1), we have

(1-az)"" 7 (' —a)’ = Ztn 1, (20)

From (7) and (20), we have

Zn:tLP” = (1—az )Zt Tl
=0
= Et e aztt 1,57 B

n
_ n—1 _ —1
- (ti, 7 tz 1 ]) :
=0

Therefore, (18) holds.

Proof of (ii): Clearly (19) holds true from (12) and (18). [ |

Proposition 2.4 The multiplication of the frequency transformation matrices TF () and

TEP (—a) becomes to (1 — a?)"-times identity matrix, that is,
T () - TF (~0) = TP (=) - Ty (@) = (1 = o) Iy, (21)
where I, 1; is an identity matrix of (n+ 1) X (n + 1).

Proof The matrix TF () describes the transformation from the coefficients of the original
low-pass filter (with the cut-off frequency wp) into those of the derived low-pass filter (with the

cut-off frequency wy).

Here, we consider the inverse transformation from the derived low-pass filter into the original.
The transformation parameter ¢ of this case is given as

sin (w1 — wO) T sin (M) T
of = 2 _ 2

= = — = —q,
sin <w1 -;-wo) T sin (%) T

which means that the inverse transformation matrix is given by T'=F (—«). Hence, there exists

p € R which satisfy

T (a) - T (—a) = T5 (—a) - THE (@) = p - Tny1- (22)



The parameter p in (22) can be obtained by the multiplication of the first-row elements of

TLP (a) and the first-column ones of TLF (—a), i.e.,

P {tLPn LPn(_a)} _ i(_a)i.ai< ” >

i=0 t
n .
= Z(—a2>"< " > = (1-a?)".
i=0 ¢
Therefore, (21) holds.

2.2 Properties of the Matrix to Design High-pass Filters

The frequency transformation formula to design the high-pass filter with the cut-off frequency

w1 is shown in Table 1, and the matrix which corresponds to that transformation was obtained

[7] as

THP THP( ) = [tg;)n( )] c R(n+l)x(n+1)
where

tHP,n — tHP,n(d)

%) : 129

Here, the following three propositions can be obtained in the same manner as Subsection 2.1.

Proposition 2.5 The first-row elements and the first-column ones of the matrix THY*" are as
follows.
(1) té{jn = (_&)ja 7=0,1,...,m,
fn )
(ii) tio" = &1< . > i=0,1,...,n. n
1
Proposition 2.6 The elements {tf,[ Jl-) ’"} of the matrix T,?P satisfy the following properties.
s HP HP, ..
(ll) t’] n: tn—z?n—]’ 'L,j =0,1,...,’I’L,
.. HP, HP, 1 .
(ll) tn—izz (—a)™ - t " <5> y 4,73=0,1,...,n
HP, HP, HP, s
(iii) tij n = —(ti_13_1+ R 1’;+a t” 1) 3,7 =0,1,...,n,



where

ti ™ =0,

4. 1<Oorg<Oori>norj>n. |

Proposition 2.7 The relations between the elements {tZH 31-3’"} of TH? and { tiE,I JP ’n—l} of THP,

are as follows.

. HP,n HPn-1 , ~ ,HPp-1 . .
(l) tz,] = tl,] + - tZ—l’,] 3 Z,J - 0, 1, “ae ,n,

. HP,n HP,n-1 ~ JHPmn-1 ..
(ii) i = Ly tactiiy T, 4,7=01,...,n |

The matrix THF also have the following property.

Proposition 2.8 A square of the matrix TH' (&) becomes to (1 — &2)"-times identity matrix,

that is,
TP (6) TP (@) = (1 — &3 Ly | (23)

Proof The matrix T (&) describes the transformation from the coefficients of the original
low-pass filter (with the cut-off frequency wp) into those of the derived high-pass filter (with the
cut-off frequency wy).

Here, we consider the inverse transformation from the derived high-pass filter into the original

low-pass filter. The transformation parameter & of this case is given as

cos (w> T cos (M) T

e 2 _ 2 _ o~
- W] — Wo - wp — Wy =%
cos (——) T cos (—) T
2 2
which means that the inverse transformation matrix is also given by THF (&). ]

2.3 Properties of the Matrix to Design Band-pass Filters

The frequency transformation formula to design the band-pass filter with the cut-off frequen-
cies wi,wy (w1 < wsy) is shown in Table 1, and the matrix TSP which corresponds to that

transformation was obtained [7] as

TEP — [tgf’”(u,v)] c R(2n+l)><(n+1)’



where

i
to "=t (w,w) = Y (=1 Bice e (24)
=0
1£/2] .
J t—Fk i—0+k, £—2k
= B e :
o g;<e—k k (25)

W2y (—k
Y = Z < > < >ukvz'2k. (26)
’ im0 \ L—k k

In (25) and (26), [£/2] denotes the maximum integer not exceeding £/2. The transfer function

Hj(z) of the derived filter can be written as
-14... o _z—2n
2(2) = €o +elz_1 + -+ enz— + +egnz_2 ‘ (27)
Jo+ friz7ht ot fazT 4+ fonzT?0
Here, the relations between the coefficients of (1) and those of (27) are as follows:

e ] T
e1 ag - f1 bo
a b
=TBP| 7| —TBP | | (28)
én : fn ‘ :
an bn
L €2n | L f2n ]

Since the coefficients {e;}?", of (27) can be obtained by (28), the numerator polynomial

Ny(z) of Ha(z) can be written as

2n )
No(z) = Zeiz_’

=0
2n n

= (Z tz’]l-)’na]> zt
i=0 \j=0

_ = on BP,n_—1 .

= Z Zti,j z aj. (29)
7=0 \i=

On the other hand, since the transfer function Hy(z) can be obtained as a result of the frequency

transformation of Hy(z), No(z) can also be written as

2n ]
No(z) = X:eiz"z
=0

n -2 1 J
. -2 1 n | 2 tvztu
= (uz +vz" "+ 1) JZ:%CL] ( = r a1+ 1)
{(—1)3 (uz“2 +ovz 4 l)n ’ (z“2 + vzt +u) } a;. (30)

7=0

10



From (29) and (30), we have
(1) (uz2 b0z 1) (2 2wzt 4 u) ZtBP nyi, (31)

Proposition 2.9 The first-row elements and the first-column ones of the matrix TB® are as

follows.
(i) toy" = (~uf, j=0,1,...,m, (32)
: n k . .
(ii) to"t= > < > wRy* i =0,1,..,2n. (33)
’ o\ k i—k
Proof The proofs of (32) and (33) easily follow from (24) and (31), respectively. [ |
Proposition 2.10 The elements {tfy3 f’n} of the matrix TEP satisfy the following properties.
(i) ty = (=Dt o i=0,1,...,2nand j=0,1,...,n, (34)
1
(ii) o = (—u) " (—,3>, i=0,1,...,2nand §=0,1,...,n,  (35)
5 » w' u
BP, BP, BP BP, /BP BP,
(iii) b= {tz 551+ (tz R v 17;)‘*'“(”?“”1 21;)}

1=0,1,...,2nand j =0,1,...,n, (36)

where

" =0, i<0orj<0ori>2norj>n.

Proof Proof of (i): Replacing j in (31) by (n — j), we have
(—=1)"7 (uz"2 +vz7t + 1)] (z_2 + vz~ > ZtZB:’_T; -, (37)
Next, replacing 27! in (37) by z, and then multiplying (—z)~™ to both sides, we have

(——l)j (z"Q +uz7 4 u)j (uz'"2 +vz 4 l)n_j = i {(—1)" t,]?ffn_j} 278 (38)
=0

=

The left side of (38) is equal to that of (31). Therefore, (34) holds.

Proof of (ii): Replacing u and v in (31) by 1/u and 1/v respectively, and then multiplying

(—u)™ to both sides, we have

(—1)"7 (z-? Lzl u)n—j (uz—2 +ovz7t 4 l)j = iz,(—u)n : {t?;’n (%’ %) } 27 (39)



The left side of (39) is equal to that of (37). This completes the proof.

Proof of (iii): Replacing j in (31) by ( — 1), we have

2n

(-1)71 (uz"2 +vz 4 1) oI (z‘z +vz7l 4 'u)j~1 = Z tfjp_qz_’. (40)
=0
From (31) and (40), we have z
(uz +vz™! 4 1) ZtBP Mt = — (z'2 +vzt + u) %t?f_”iz_i. (41)
=0
Using (32)-(34), (41) can be rewritten as follows. Z
{50 4t o (1B 4B o (B 4 )} =,
i=1

Therefore, the following equation holds:
BP BP, /B BP, BP,
S b (850 ) e (0 ) =0,
which is equal to (36). |

Proposition 2.11 The relations between the elements {tf} ]1.) ’"} of TBP and { tiBf ’""1} of TEP,

are as follows.

O = el e BT B
1=0,1,...,2nand y =0,1,...,n, (42)

.. BP, BP 1 BP,n—1 BP n—

G = = (e e N ),

1=0,1,...,2nand y=0,1,...,n. (43)

Proof Proof of (i): Replacing n in (31) by (n — 1), we have

2n—2

. n—1-j j ;
(-1) (uz‘2 + vzt + l)n ’ (z_2 + vz~ ) Z tBP nl (44)
From (31) and (44), we have
2n ‘ 2n—2
tlzp’nz“’ = (uz—2+vz +1) Z tBP’n L
1=0
2n—-2 2n—2 2n—2
= uy tBPn 1,—(42) Z tBP,n 1—(+1) Z tBP,n 1~
1—0 2=0 1=0

BP, 2l BP 1 2 BP 1
_ n—1 —z n— —z MN—=1_—3
= “th-w U2 AT 2

2n
BP,n—-1 BP,n—-1 BP,n—1 —i
= Z (U tz_‘)] —+v- ti~].,,j + tl,] ! ) Z .
=0

12



Therefore, (42) holds.

Proof of (ii): Clearly (43) is true from (36) and (42).
2.4 Properties of the Matrix to Design Band-stop Filters

The frequency transformation formula to design the band-pass filter with the cut-off frequencies

w1, w2 (w1 < ws) is shown in Table 1, and the matrix which corresponds to this transformation

was obtained [7] as

1 0
-1
_ BP
o Tn u=i,v=70 ’
0 (-1)"
where
ot = 2™, 5)
i ,BPm ~ ~
= (_1)]'ti,j "(4,7)
i
= Y Bieje;
£=0, u=u,v="=7

Then, the following three propositions can be obtained in the same manner as Subsection 2.3.

Proposition 2.12 The first-row elements and the first-column ones of the matrix T25" can

be written as follows.

. B ~q R

(i) toj’n = o, j=0,1,...,n,

" BS,n L/ n k ~i—k~2k—i
(i) tio = Z ) w T i=0,1,...,2n. |

’ i—o \ K 1—k
Proposition 2.13 The elements {t? JS’"} of the matrix TES satisfy the following properties.

(i) oot = gt i=0,1,...,2nand § =0,1,...,n.

.. BSqn _  -n _ /BSn _1__ ?_ . -

(ii) bpliy = Ut (ﬁ"&)’ 1=0,1,...,2nand 7=0,1,...,n.

BS, BS, _ (.BS, BS, - (,BS, BS,n
(iii) ;"= tie  +0 (ti—ltlj—l - ti—lZ') +u (ti,j—nl - i—-2,j> ,

13



where

5™ =0, i<Oorj<Oori>2norj>n. =

Proposition 2.14 The relations between the elements {t?, JS ’n} of TBS and {tg JS ’"_1} of Tfﬁl
are as follows.

. BSyn . ~ ,BSn-1 ~ ,BSn-1 BS,n—1
() Ligh = uctigy UGG LT

t=0,1,...,2nand y =0,1,...,n,

s BS,; . BSp—1 , ~ ,BSn—1 , ,BSn—1
(i) tiy = - (“ M SRS e R o ) '
1=0,1,...,2nand y =0,1,...,n, |

3 Fast Algorithms to Compute Frequency Transformation Ma-
trices

In this section, some fast algorithms to compute the elements of the frequency transformation
matrices are first proposed, and then the algorithms are compared with those based on the
definitions by the number of addition and multiplication. Based on the comparison, the best

algorithms will be chosen.

3.1 Fast Design of Low-pass Filters
To compute all the elements of the matrix T%P to design low-pass filters, the following two

algorithms can be considered.

Algorithm 3.1 All the elements {tzf’"} of the matrix TLF are computed by the following five

steps.
[a] The element té‘,lg’" is one for any n.

[b] From (8), the following relation holds.

tl[;s’n = (—a) : t%)‘;];ilp .7 = 1, 2, RN (% (45)

LP,n}n

Based on the relation (45), the first-row elements {to,j are determined.

14



[c] From (9), the following relation holds.

5 7
t}OP" = t{;f’”< ‘ >, i=1,2,...,n. (46)
1
. LP,n #/2] .
Based on the relation (46), the first-column elements {ti o' f,_, are determined.
y i=
P 7/2) . .
[d] Based on (12), the elements {ti,j } are determined for j =1,2,...,n.
Based on (10), the el LPn1™ determined for j = 0,1 m
[e] Based on (10), the elements {ti,j }i=l_n/2J+1 are determined for j =0,1,...,n.

Algorithm 3.2 The elements { ti‘;”} of the matrix T71;P can also be computed by the following

six steps.
[a] Same to [a] of Algorithm 3.1.
[b] Same to [b] of Algorithm 3.1.

[c] Same to [c] of Algorithm 3.1.

n/2
[d] Based on (18), the elements {t{f’;’,n}Ln/ i

case, the elements of the (n — 1)th-order matrix T%F | are required. They are computed
n—1

] are determined for y = 1,2,...,n — 1. In this
=

recursively.

LP,n} [n/2]

[e] Based on (19), the (n + 1)th-column elements {ti,n are determined.

i=

[f] Same to [e] of Algorithm 3.1. |

In this paper, three algorithms are compared by the number of computations of addition (in-
cluding subtraction) and multiplication (including division), respectively. The three algorithms

to be compared are as follows.
(a) Algorithm based on the definition (2).
(b) Algorithm 3.1.

(c) Algorithm 3.2.

15



Figures 1 and 2 respectively show the number of addition and multiplication to compute all the
elements of the matrix T5 for the above three algorithms. Comparing (a) with (b) and (c),
the latter two can compute the elements of the matrix T'5¥ with much fewer operation than (a).
Comparing (b) with (c), (b) seems to work as same as (c) in the case n < 3, and better than
(c) in the case n > 4. Therefore, the algorithm (b) can be considered as the best algorithm to
compute the elements of the matrix T-F.

Similarly to Algorithm 3.1, all the elements of the matrix THF to design high-pass filters can

be quickly computed.

3.2 Fast Design of Band-pass Filters

To compute all the elements of the matrix T5F to design band-pass filters, the following two

algorithms can also be considered.
Algorithm 3.3 All the elements { tg ]P’n} of the matrix T,EEP are computed by the following five

steps.

[a] The first-row first-column element tg, lg’" is one for any n.
[b] From (32), the following relation holds.

BP,n BP,n

to" = (—u) o™, §=1,2,...,n. (47)

Based on the relation (47), the first-row elements {tOB, ?’n}ﬁl are determined.

[c] Based on (33), the first-column elements {t;3 g) ’n}f‘ , are determined.
2 i=

[d] Based on (36), the elements {tf;’n}? are determined for 7 = 1,2,...,n.

=1

BP,n}Qn

[e] Based on (34), the elements {ti,] are determined for j =0,1,...,n. ]

i=n+1
Algorithm 3.4 The elements {t?, J]-)’"} of the matrix TEP can also be computed by the following
six steps.

[a] Same to [a] of Algorithm 3.3.

[b] Same to [b] of Algorithm 3.3.

[c] Same to [c] of Algorithm 3.3.

16



[d] Based on (42), the elements {t?f’"}é L are determined for j = 1,2,...,n—1. In this case,
b} 7=
the elements of the (n — 1)th-order matrix TS’_PI must be computed. They are computed
recursively.

[e] Based on (43), the (n + 1)th-column elements {tf ,1: "}n are determined.

[f] Same to [e] of Algorithm 3.3. |

As the analogy with Subsection 3.1, three algorithms are compared by the number of compu-
tations of addition (including subtraction) and multiplication (including division), respectively.

The three algorithms to be compared are as follows.
(a) Algorithm based on the definition (24).
(b) Algorithm 3.3.
(c) Algorithm 34.

Figures 3 and 4 respectively show the number of additions and multiplications to compute all
the elements of the matrix TEP for the above three algorithms. Comparing (a) with (b) and (c),
the latter two can compute the elements of the matrix T5F with much fewer operation than (a).
Comparing (b) with (c), (b) seems to work better than the algorithm 3.4 for any n. Therefore,
the algorithm (b) can considered as the best algorithm to compute the elements of the matrix
TBP | also in this case.

Similarly to Algorithm 3.3, all the elements of the matrix T,ES to design band-pass filters

can be quickly computed.

4 Concluding Remarks

In this paper, some properties of the frequency transformation matrices were investigated, and
the fast algorithms to compute the elements of the matrices were also presented. The proposed
Algorithms 3.1 (for low-pass filter) and 3.3 (for band-pass filter) can compute all the elements
of the matrices with much fewer operation than the algorithms based on the definitions. Similar

algorithms to design high-pass and band-pass filters can also be considered.

17
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Table 1: Transformation formulae of frequency transformations for ITR digital filters

Filter Type

Transformation Formulae

Cut-off Frequency Parameters
1 2l —q
Low-pass 2= —
1—az1
sin (M) T
a= 2
w1 . (CU() + wl)
sin{ —— | T
2
High-pass -1 ' +a
- Z —
&8P 1+ @21
cos (wo ;wl) T
“ T <_9~_wl> T
2
-2 —1
‘4wz +u
Band- 1o 2
anc-pass ‘ uz=2 +vzl 41
k-1 2ok
w1, ws (w1 < wa) kE+1’ k+1’
k = cot < )
2
I )
cos
(2327
cos
24 gzl 44
Band-sto =
P z uz_2 + 0zl +1
. k-1 26
U=——, U=——,

~ wo — Wi Wy
k=t Ttan —T
a.n( 5 > an 5 1o

cos (%ﬂ) T

a= —
cos (wg 2 wl) T
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