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Abstract
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1 Introduction

The so-called geometric approach has been used successfully to study various disturbance-
rejection problems (see e.g. [4], [7], [9]). This approach has been extended to uncertain systems,
and some of the corresponding disturbance-rejection problems for uncertain systems have been
studied (see e.g. [1], [2], [3], [6]). In particular, Bhattacharyya[l] investigated a generalized
(A, B)-invariant subspace and studied the disturbance-rejection problem with state feedback
for a broader class of uncertain systems. However, from the practical viewpoint the problem
of disturbance-rejection by incomplete-state (measurement) feedback, instead of state feedback,
becomes more important.

In the present paper, we will first introduce some generalized invariant subspaces, and their
properties will be studied. Further, we will formulate the robust disturbance-rejection problems
with incomplete-state feedback for uncertain systems which are investigated by Bhattacharyya[1],

and their solvability conditions are presented. Finally, an illustrative example will be given.




2 Generalized Invariant Subspaces

Consider the following linear systems defined in an Euclidean space X := R™ :

d :
S(euBi: { —2(t) = A(a)a(t) + B(B)u(t),
y(t) = C(7)x(t),
where z(t) € X, u(t) € U := R™ and y(t) € Y := RP are the state, the input and the incomplete-
state (measurement output), respectively. And coefficient matrices A(a), B(B) and C(v) have

unknown parameters in the sence that
Ala) = Ao+ o1Ar+ -+ apd, = Ag + AA(a) € V™,
B(B) = Bo+40iBi+ -+ B,B,:= Bo+ AB(3) € R™*™,
Cly) = Co+nCi+-+7Cr:=Co+ AC(y) € R®™,
where a := (ay,-++,ap) € RP, f:= (B1,---,8;) € RY, v := (y1,- -+, ) € R,
In system S(a, B8,7) (Ao, Bo, Co) and (AA(e), AB(B), AC(v)) represents the nominal system

model and a specific uncertain perturbation, respectively.

2.1 Generalized (A, B)-invariant Subspaces

In this subsection, a generalized (A, B)-invariant subspace and its properties which are in-

vestigated by Bhattachryya[l] are summarized.

Definition 2.1  Let V, £2 (C X') be subspaces.

V' is said to be a generalized (A, B)-invariant if there exists an F € R™*" such that
(A(a)+ B(B)F)V CV

for all (a,3) € R? x RY. Further, define
F(A,B;V):={F € R™*"|(A(a) + B(B)F)V C V for all (o, 8) € R? X RY}.
V(A,B: 2):={V(C 2)| 3F € R™*" s.. (A(a)+ B(B)F)V C V forall (a,3) € RP x R9}. O

For a subspace V of X define a subspace Ry of R™ and a linear map Qv on R™ by
q
Ry := ﬂ B7'V, where BV := {u € R™|B;u € V} and
=1

Qvi= R™ — R™, a projection map onto Ry along (Rv)*, where (Ry)t means an

orthogonal complement of Ry .




Lemma 2.2 [1] There exists an F' € R™ " such that (Ao + BoF)V" C V and B;FV C V (i=
1,---,¢q) if and only if 45V C ImBoQv + V. O

Lemma 2.3 [1] The following three statements are equivalent.

(i) Ve V(4,B; ).

(ii) There exists an F' € R™*™ such that (Ao+ BoF)V CV and B;FV CV (i=1,---,q),
and ;VCVCR (i=1,---,p).

(iii) AoV C ImBoQv + V and 4;V CV C 2 (i = 1,---,p). O

Lemma 2.4 [1] V(A, B; ) has a unique maximal element V*(£2) which may be calculated
from the following algorithm.
Stepl. VO = .
q

Step2. Rp:= () B 'Vi (C R™), where By 'Vi:={u € R™|B;u € V;}.
1=1
Step3. Qx:= R™ — R™, a projection map onto Ry, along (Ri)*.

Stepd. Bor:= BoQy.
Step3. Vip1:= Vi N Ag ' (ImBog + Vi) N AT'Vin - N A5V
Step6. V*(2):=V,. O

Example 2.5 Consider the following matrices and a subspace given by

1—|—a1+a'-2 Q9 0 —Q3 — Q2 0 ,52 1 0
0 as 0 1 1 0 0 _ 0 1
Ala) = 0 0 1 0 , B(B) = 0o o | and {2 = span E 0
1 ay; 1 1 ,81 1 0 0
Then, we have
10 00 100 -1 110 -1
0 001 000 O . 1010 0
‘40‘0010‘41‘0000’42*0000’
1011 00 0 O 01 0 0
00 00 01
00 00 0 0
0 0 Slo o @™ B=|y o
0 1 10 00
From the algorithm of Lemma, 2.4 we obtain
00 1
. 0 00 100 . 0
Vo= 12, Ro_spall{[lJ}, Qo—[o 1}, Bog = 0 0 , and V; = span 0
0 1 0



Further, we obtain

Rl'—‘spaﬂ{[g}}, le{g (1)]’ Boy =

Thus, V5 is a maximal element of V(4,B;2).0

, and V5 = V] = span

[en R ew B e B e
= O O o
OO O

2.2 Generalized (C, A)-invariant Subspaces

In this subsection, a new concept of generalized (C, A)-invariant subspace is introduced and

its properties are investigated.

Definition 2.6 Let V, £ (C X) be subspaces.

V is said to be a generalized (C, A)-invariant if there exists a G € R™%¢ such that
(Ala)+ GC(y))V CV

for all (a,7) € RP x R". Further, define
G(C, A;V):={G € R™" | (A(a)+ GC(y))V C V for all (,7) € RP X R"}.
V(C, 4:g):={V (D &) | 3G € R™!s.t. (A(a) + GC(y))V C V for all (a,7v) € RPx R™}. O

For a subspace V' of X let Py be a linear map on R? satisfying KerPy ZC’ V and
Vi =¢& (VN EKerPrCo) for some subspace ¢. Since, Codp N Ixeer = {0}, we can define a
projection map Py : R® — R’ onto Cod @ I' along KerPy = ZCEV for some I' satisfying

1=1

V=68 (VnKerPyCy).

Concerning the above invariance, the following lemma and theorem can be obtained.

Lemma 2.7 There exists a G € R™¥¢ such that (Ao + GCo)V CVand GC;V Cc V (i =
1,--+,r)if and only if Ao(VN KerPyCo) C V.
(Proof) (Necessity) Suppose that there exists a G € R™¥¢ such that (Ao + GC)V C V

and GC;V V (i =1,---,7). Letw be an arbitrary element of (V N KerPVC'o) Then,
Cov € Ker Py Z C;V which imply Cov—z Civ; for some v; € V. Hence, GC'ov—Z GCiv;
=1 -oa=1 1=1

ZG‘Cﬂf’ C V. Thus, Agv = (A9 + GCo)v —GCov € V +V = V.

=1




(Sufficiency) Suppose that Aq(VN KerPyCp) C V. Noticing that V = ¢ @ (V N Ker Py Co),
choose a basis {v1,-- -, v,} from (VNKer Py Cp) and a basis {vat1, -, v} from ¢. Define w;_, :=
Cov; (i =a+1,---,b). Then, a set {wy,--- ,Wp—q } is linearly independent. In fact, aqwy + -+
ay_qwy—q = 0implies ayvaq1+- -+ ay_qvp € KerCo C KerPyCy. Further, Q1 Vg1t Fap_,vp €
¢. Hence, ayvaq1 + -+ ap_qup € 6N (V N KerPyCy) = {0}. Thus, a; = -+ = ap—, = 0.

Now, noticing that ¥ = R’ = Co¢ @ ' @ KerPy and a set {w1, -, wy_,} is a basis of Cy¢,
choose a basis {wy_q41,-++,w} from I' @ KerPy. Define a linear map G from R’ to R™ such

that
P —ona+i (L = 17"'71)— (L)
Gwz.——{ 0 (i=b—a+1,---,0).

In order to prove (Ao + GCo)V C V let an arbitrary element 2(= z; + 23) € V = ¢ & (Vn
Ker Py Cy) such that 2, € ¢ and a5 € (V nKerPy(Cp). Then,

(Ao + GCo)z = (Ao+ GCo)z1 + (Ao + GCo)ay
b
> ai(Ao+ GCo)v; + Aoza + GCoty
i=a+1
= Aozz (by Co(V NKerPyCy) C KerPy C KerG)

€V

for some a; which imply (4o + GCo)V C V. Moreover, since C;V C KerPy C KerG we obtain
GC;V = {0} C Vforalli=1, --,r. This completes the proof. O

Theorem 2.8 The following three statements are equivalent.

() V e V(C,A4; ).

(ii) There exists a G € R™** such that (4g + GCo)V C V and GC;V C V (i=1,---,7),
and A,V CV(i=1,---,p)and € C V.

(iii) Ao(VN KerPyCo) CV, AV CV (i=1,---,p)and € C V.
(Proof) ((i)= (ii)) Suppose that V' € V(C, A4; €). Then, there exists a G € R™* such that

(A(a) + GC)V C V (1)

for all (a,7) € R? x R" and € C V. Now, choose a; = +-- = ap=0andy3y = =7 =0in
(2). Then,
(Ao + GCo)V C V.




Further, choose oy = 1,09 =+~ =a,=0and v, =--- =7, = 0 in (2). Then
(Ao + A + GC())V cVv

which imply A1V C V. Similarly, it can be easily proved A;V C V (¢=1,---,p). On the other

hand, choose a; = l,ap ==, =0and 7 =1,7=--- =7, = 0 in (2). Then,
(Ao + A1+ G(Co+ L))V CV

which imply GC1V C V. Similarly, it can be easily proved GC;V C V (i=1,---,7).
((i)= (i)) Suppose that there exists a G € R™* such that (Ag + GCo)V C V and GGV C
V (i=1,---,r),and 4,V CV (i=1,---,p)and € C V. Let an arbitrary element z € V. Then,

(A(e) + GC(7))z (Aot a1y + -+ 4+ apdp + GCo + 11GCy + -+ - + 7,GCr)z

(Ado+ GCo)r + (1A1 + -+ + apAp)z + (mGCy + -+ 7,GCr )z

€ Vv,

for all (a,7) € R? x R" which imply V € V(C, 4; €).
((ii)¢ (iii)) The proof is obvious from Lemma 2.7. O

The following lemma guarantees the existence of a unique minimal element of V(C,A4;¢).

Lemma 2.9 V/(C, 4;€)is closed under the operation of subspace intersection, that is, V(C, A4;

€) has a unique minimal element V,(&).

(Proof) Let ¥,V be subspaces of V(C, 4; €). Then, from Theorem 2.8 we obtain

Ao(ViN Ker Py, Co) C Vi, AVAC Vi (i =1,---,p), € C W4,

Ao(Van Ker Py, Co) C Vo, AiVaC Vo (i = 1,--+,p) and € C V3,
where Py, : R’ — R! be the projection map onto Ay, := Co¢; ® I'; along KerPy, = ET: CiVj for
some subspace [} satisfying V; = ¢; & (VN KerPy,Co) (5 = 1,2). Since KerPv,av,) é=(lKeerlﬂ
KerPy,), one can define the projection map Py,ny, : R — R! onto A(vag) = Cod1a & Iyo
along KerPy,ny,) = XT:CQ(Vl N V) satisfying Adv, C Ay, (5 = 1,2), where (Vi N ¥3) =

=1
¢12 & ((1/1 n ‘/2) n I(eI'P(VanZ)C-'O)_
In order to prove (V1 NV3) € V(C, A; €), from Theorem 2.8 it suffices to show that

Ao(Vi NV N KerPy;avy) Co) C (Vi N V2), (2)




AinV)c(VinVy) (i=1,---,p)and € C (V4 N V3). (3)

Since (3) is clear, we prove (2). Now, the following inclusion holds.
KerP(Vanl,)Co C {Keerl Co N KerPVQCO}.

In fact, let = be an arbitrary element of Ker Py, Av,)Co- Then, Coz € KerFyinv,) C { KerPy,N
KerPy,}. Hence, 2 € { KerPy, Con Ker Py, Cy}. Then,

Ao(Vi N V3 N Ker Py, ay,)Co) C Ao(Va NV N Ker Py, Co N Ker Py, Cy)
C AQ(V1 n KeI‘PV1 Co) n AQ(VQ n KeI‘PV2Co)

c (VinVz),

which imply (2). Thus, V1NV, € V(C, 4; €), which means that V(C, 4; €) has a unique minimal

element. This completes the proof. O
For the computation of V(&) we have the following algorithm.

Theorem 2.10 A unique minimal element V.(€) of V(C, 4; €) can be calculated by the
following algorithm.

Stepl. V5 := €.

Step2. P := R* — R’ a projection map onto Cof2 @ I} along Ker P, for some I’} such

that KerP, = ZT:C’iT/k and Vy = 2, @ (VN Ker P.Cy).

Step3. Cp:=PiCo. |

Stepd. Vip1:=Vi + Ag(KerCop N Vi) + A Vi + -+ + ApVi.

Step5. T/‘L(E)::Vn.
(Proof) We first observe that the sequence {Vi} is nondecreasing : clearly Vo C Vi, and if

Vi-1 C Vi, then, noticing that KerC, D KerC,p_y,

Vier = Vi + Ao(KerCypi N Vi )+ A1V + -+ + ApVi
D Vi1 + Ao(KerCop—1 N Viq) + A1Vioy + - + A,V
= V..

Thus, there exists an m such that Vj, = V,, for all k > m. Now, let V be an arbitrary element

of V(C, A; €). Then, from Theorem 2.8 we have

-}




Ao(VNKerPyCo) CV, AV CV (i=1,---,p)and € C V.
Then, clearly Vo(= €)C V, and if V,_; C V, then
Vi = Vior+ Ao(KerCogoy NViey) 4+ Ay Viey + -+ + ApViy
C V4+ Ao(KQI‘C’ok_l N V) + A V44 Ap"f
= V+ Ao(Kel‘Cyok_l N V)
Now, since KerP,_; C KerPy we have Ao( KerCor—1 NV) C V. Hence, V, CV forall k > 0

which imply V,,(= V1) C V, that is
Vin = Vin + Ao(Ker PrCo N Vi) + A1 Vi + -+ 4+ Ay V.

Hence. we have

Ao(KerPrnCoNVip) C Vi, AiViy C Vi (i=1,---,p) and € (= Vp) C V.
It follws from Theorem 2.8 that V,,, € V(C, A4; € ) Thus, subspace V,, is a minimal element of
V(C, 4; c’:‘). This completes the proof. O

Example 2.11  Consider A(a) of Example 2.5, C(7) given by

1
~Im 0 0 0 _ 0
C(ﬂ_{l 10 OJ and € = span 0
' 0
Then, we have
., 10 000 |1 0 00
CO_[I 10 OJ’ Cl‘[o 00 OJ

From the algorithm of Theorem 2.10 we obtain

1

0 1 1 0 0 Y
,Fo—{O}, oo—l:l 1 0 O}andh_Vo.

1
Py = 2 = spa 0
s 40 = 0 11’ 0 = Span 0

]
o™
H
(l’)

0

Thus, ¥ is a minimal element of V(C, A4; 8). ]
2.3 Generalized (4, B, C)-invariant Subspaces

Definition 2.12 Let V (C X) be subspace.

V' is said to be a generalized (A, B, C)-invariant if there exists an H € R™* such that
(A(e)+ B(OYHC(m)V CV

8




for all (@, 3,7) € R? x R? x R". Further, define
H(A,B.C;V):={H € R™*" | (A(a) + B(B)HC(7))V C V for all (a,8,7) € R x RI x R"},
V(A,B,C):={V | 3H € R™**s.t. (A(a)+B(B)HC(y))V C V for all (a,8,7) € RPXxRIXR"}.

(]
The following two lemmas are used to prove Lemma 2.15.

Lemma 2.13 [5] Let V,W(C X) be subspaces. Then, there exist subspaces X; and X1 such
that V=X 6 (VNW),X = Xo@ W and X; C X,. O

Lemma 2.14 [8] Let F € R™™ and T € R**". Then, there exists a k' € R™*! such that
F = KT if and only if KerT C KerF. O

Lemma 2.15 There exists a & € R™*¢ such that (Ao + BoQv K PyCo)V C V if and only if
AoV C ImBoQv + V and Ao(VNKerPyCo) C V.

(Proof) (Necessity) Suppose that there exists a & € R™*¢ such that (Ao+BoQv K PyCo)V C V.
Let v be an arbitrary element of V. Then, w := (Ao + BoQv K PyCo)v € V. Hence, Agv =
w — BoQv A PyCov € V4+ImBoQv which imply AV C V+ImBoQy. Further, let v be an
arbitrary element of VNKerPyCy. Then, we have Aov = (Ao + BoQvE PyCo)v € V which
imply Ao(VNKerPyCy) C V.

(Sufficiency) Suppose that AoV C ImBoQv +V and Ao(VﬁKerPVCo) C V. Then, from Lemma
2.13 there exists subspaces {2 and Xy such that V = [} (Vr‘lKeerC'O), X = Xo8Ker Py Cy
and 2 C Xo. Now,let L: X — X,bea projection map onto Xg along Ker Py Cy. Since 4qV C
ImBoQ1- + V, there exists an H € R™ ™ such that (4q + BoQv H)V CV (seee.g. [9]). Define
Ho := HL. Then, clearly KerPyCy C KerH,. Hence, from Lemma 2.14 there exists a & € R™*¢

such that Hy = K Py Cy. Thus, we have
(do+ BoQvEPyCo)V = (Ao + BoQvHo)V (4)
= (Ao + BoQv Ho)2 + (Ao + BoQv Ho)(V N Ker Py Cy)
= (Ao+ BoQvHL)+ (Ao + BoQv E Py Co)(V N KerPyCy)
= (Ao + BoQvH)2 + Ao(V N KerPyCy)
C V4V

= V.

This completes the proof. O




Using this lemma, we have the following theorem.

Theorem 2.16  There exists an H € R™** such that (4(a) + B(8)HC(H))V C V for all
(a,0,7) € RPx RIx R" if and only if there exists a K € R™*¢ such that (Ao+BoQv K Py Co)V C
Vand 4,V CV (e=1,---,p).

(Proof) (Necessity) Suppose that there exists an H € R™** such that (A(a)+ B(8)HC(y))V C
V for all (@, 8,7) € R? x R? X R". Then, clearly, V € V(4, B; X) N V(C, 4;{0}). By virture

of Lemma 2.3 and Theorem 2.8 we have
AoV CImBoQv +V, Ao(VNKerPyCo) CVand A,V CV (i =1,---,p).
Thus, it follows from Lemma 2.15 that there exists a K € R™*¢ such that
(Ao + BoQv E PyCo)V C V.
(Sufficiency) Suppose that there exists a K € R™*¢ such that
(do+ BoQvEPyCo)V CVand A,VCV (i=1,---,p).
Let = be an arbitrary element of V. Then, noticing that ImQy C Ry = ﬁ B[IV,
i=1
(A(a) + B(B)Qv K PvC(y))x
= (Aot ardy+ -+ apdy, + (Bo+ 1Br + -+ By By )QvE Py(Co+ 11C1 + -+ + 1.C;))x
= (Ao+ BoQvEPyColz + a1 Az + -+ apApx
H(B1B1+ -+ BgBy)QvE Py (Co + 11C1 + ++ + 1.C, )z
e V.
Define H := Qy A Py-. Then, we have .
(A(e) + BBYHC(7))V C V
for all (a,8,7) € RP x R"x R". O
Concerning the three generalized invariant subspaces, the following corollary can be obtained.

Corollary 2.17 V is generalized (A, B,C)-invariant subspace (i.e., V € V(4, B,C)) if and
only if V' is generalized (A, B)-invariant and generalized (C, A)-invariant subspace (ie., V €
V(A,B; X)NV(C, 4;0)).

(Proof) The proof follows from Lemmas 2.3, 2.15 and Theorems 2.8, 2.16. O

10




3 Robust Disturbance-Rejection

In this section, we will study the robust disturbance-rejection problem. The linear control
system to be considered is given by
d )
() = A(a)z(t) + B(BYu(t) + E(o)E(t) + S(ryn(2),

S(e, 3,7, 6,0, T): y(z‘,) = C(7)l(t)
z(t) = D(6)z(t)

with z(1) € X := R", u(t) € R™, y(t) € R’, 2(t) € R* are the state, the input, the incomplete-
state ( measurement output ) and the controlled output, respectively, £(¢) € R" is a disturbance
which can be measured by controller and 7(t) € R’ is also a disturbance which can not be

measured by controller. It is assumed that coefficient matrices have the following unknown

parameters.
Ale) = Ao+ardi+ -+ apdy = Ag + AA(a) € R*™,
B(B) = Bo+BiBi+ -+ BBy := Bo+ AB(B) € R™*™,
Clr) = Cot+nCi+---+7C :=Co+ AC(y) € R™™,
D(8) = Do+ 68Dy +--+68,D,:= Do+ AD(6) € R**™,
E(e) = Eo+o1Ei+4 -+ 0(E = Eo + AD(0) € R™,
S(r) = So+ 7S+ + 7Sy = S0+ AS(1) € R™*?,

where

o = (ala"'aap) € vaﬁ:: (ﬁh"'aﬁq) € Rqa7 = (71)"'377‘) € Rr,
6:=(61,---,6) € R’, 0 :=(01,---,04) € R, 7 := (r1,-++,74) € R

In System S(a, 3,7, 6,0,7) (Ao, Bo, Co, Do, Eg, So) and (AA(a), AB(fB), AC(y), AD(8),
AE(c), AS(7)) represent the nominal system model and a specific uncertain perturbation,
respectively. Now, we apply to system S(«,3,7,4,0, 7) an incomplete-state feedback and mea-
surable disturbances of the form

u(t) = Hy(t) + Rn(t)
where H € R™*‘, R € R™”. Then, the closed-loop system is given by

SrinleBipb.om): { o0 = (A@) + BEIC))e(0) + (BE)R + S(r)n(e) + Blo)e(o),
z(t) = D(68)z(1).

11




The robust disturbance-Rejection problem with incomplete-state feedback and measurable dis-
turbances for system S(a,f3,7,8,0,7) is stated as follows: Given matrices Ay, B, Ci,D; E; S
for system S(a,f,7,6,0,7), find if possible an incomplete-state feedback gain H € R™*¢ and
R € R™*? such that the closed-loop system SH,r(a,B,7,0,0,7) rejects the disturbances € and 7
from the controlled output z for all parameters (a,8,7,6,0,7) € RP x R"x R" x R° X R' x R*.

This problem can be rephrased as follows.

Problem 3.1  Given matrices 4;, B;, C;, D;, E;, S; for system S(a, 3,7, 6,0,7), find if possible
an incomplete-state feedback gain # € R™*¢ and R € R™*? such that

(d(a) + B(B)HC(7)|Im(B(B)R + S(7)) + ImE(0))
i= D _(A(@) + B(B)HC(7))* " (Im(B(B)R + S(r)) + ImE(o))
k=1

C KerD(6)
for all parameters (a,3,7,6,0,7) € R x RI x R" x R® x R! x R*. O

Remark 3.2 IfC(y) = I, (identity matrix), then Problem 3.1 reduces to the robust disturbance-
rejection problem with state feedback and measurable disturbances (RDRPSFMD). If R = 0
and S(7) = 0, then Problem 3.1 reduces to the robust disturbance-rejection problem with
incomplete-state feedback (RDRPISF). If C(v) = I,, R = 0 and S(r) = 0, then Problem 3.1
reduces to the robust disturbance-rejection problem with state feedback (RDRPSF) formulated

by Bhattachryya[l]. O
The following two lemmas can be used to prove Lemma 3.5.

Lemma 3.3  There exists an R € R™** such that Im(BoR + So)CVandImB;RCV (i =
1,---,q) if and only if ImSy C V+ImByQv .

(Proof) (Necessity) Suppose that there exists an B € R™*? such that Im(BoR + So) C V and
IgnBiR CV(i=1,---,9). Let & = (Soy) be an arbitrary element of ImSp. Since Ry € Ry =

ﬂ B 'V, QvRy = Ry. Thus, we have

i=1
r = Soy
= (BoR+ So)y — BoRy
(BoR + So0)y — BoQv Ry

12




€ Im(BoR+ So) + Im(BoQv)
€ V+ImBoQy.

(Sufficiency) Suppose that ImSy C V4+ImBoQy. Let {vi, -+, v} be a basis of ImSy. Then,
there exists a set {£1,--+,&,} such that v; = So&;. Then, it can be easily proved {&;,---,&} is
linearly independent. Now, choose a basis {&k+1,--+,&} from KerSy such that R” = span
{51,~--,§k}@1\’e1'5'0. Since v; € V+ImBoQv, there exists 2; € V and r; € Ry such that
v; = ¥; + Bor;. Define a linear map R: R” — R™ such that

) e (i=1,--0k)
Réz—{ 0 (i:k“}‘l,"',ﬂ)-

Then, for each i = 1,--- k

(BoR+ S0)6i = BoR& + Soé;
= BoR& + z; + Bor;
= BoR& + z; + Bo(—RE)
=

e V.

Further, foreach i = k4 1,--- P

(BoR + So)&i =0 € V.

Thus, Im(BoR + .59) C V. Moreover, from the definition of R we have ImB;RCV (i=1,---,q).

This completes the proof. O

Lemma 3.4 There exists an R € R™*” such that Im(B(8)R + S(r)) C V for all (B,7) €
R?x R" if and only if there exists an R € R™*%? such that Im(BoR+ So) CV,ImB;RCV (¢ =
I,--+,q)and ImS; C V (i = 1,---,u).

(Proof) (Necessity) Suppose that there exists an B € R™*? such that Im(B(B)R + S(r)) cV
for all (8,7) € R? x R*. Then, clearly Im(BoR + Sp) C V and Im((Bo + B1)R + Sp) C V. Thus,
Im(ByR) C V. Similarly, it can be easily obtained Im(B;R) C V for all : = 1,---,q. Further,
since Im(BoR+So+51) C V, we obtain ImS; C V. Similarly, it can be easily obtained ImS; C V'

foralli=1,---,u.
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(Sufficiency) Suppose that there exists an R € R™*” such that Im(BoR + So) CV,ImB;R C
V(i=1-,9and ImS; CV (i = 1,---,u). Let y (= (B(B)R + S(7))z) be an arbitrary
element of Im(B(8)R + S(r)). Then, we have

(B(B)R + S(7))a
= {(Bo+BBr+ -+ By By)R+ (So+ 1181 + -+ + 1u8) }a
(BoR + So0)z + f1B1Ra + -+ + By ByRr + 1.1 + -+ - + 1, Sy

y

€ 7,
which imply Im(B(8)R + S(r)) C V for all (3,7) € R? x R*. O
The following lemma can be used to prove Theorem 3.7.

Lemma 3.5  There exists an B € R™” such that Im(B(8)R + S(r)) C V for all (8,7) €

R? x R" if and only if ImSq C V+ImBoQv and ImS; C V (i=1,---,u).

(Proof) The proof follows from Lemmas 3.3 and 3.4. O

Theorem 3.6 If there exists a subspace V such that V € V <A, B; ﬁ KerD,-) nv (C, A; zt: ImEi) "
then the RDRPISF is solvable. =0 =
(Proof) Suppose that there exists a subspace V such that the stated above condition is satisfied.

Then, it follows from Corollary 2.17 that there exists an H € R™*¢ such that
(A(@) + B(B)HC(7))V C V

t s
forall (o, 3,7) € RPx RIx R™ and Z ImE; CV C ﬂ KerD;. Further, it can be easily obtained
1=0 1=0

t s .
that ImE (o) C Z ImE; for all o € R and ﬂ KerD; C KerD(6) for all § € R°. Then, we have
=0 =0

<A(e)+ B(A)HC(y) | ImE(0) > C < A(a)+ B(B)HC(7) | > ImE; >

C < A(a)+ B(B)HC(7) | ;0>
= V

C ﬁ KerD;

C II‘:grD((S)

for all parameters «, 3,7, 6, 0. Thus, RDRPISF is solvable. O
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s 1
Theorem 3.7 Ifthere exists a subspace V such that V € V. (A, B; ﬂ KerD,-) nv (C’,A; Z ImEi) .
=0 =0
ImSo C V+ImBoQy and ImS; CV (i = 1,---,u), then Problem 3.1 is solvable.

(Proof) Suppose that there exists a subspace V such that the stated above conditions are sat-

isfied. Then, it follows from Corollary 2.17 that there exists an H € R™*¢ such that
(A(e) + BBYHC(v))V C V
for all (a,3,7) € R x RIx R” and i ImE; CV C ﬁ KerD;. Further, it follows from Lemma
3.5 that there exists an R € R™*X* 8111??1 that =
Im(B(B)R+ S(r)) CV
for all (3,7) € R? x R*. Then, we have

< A(e)+ B(B)HC(y) | Im(B(B)R + S(7)) + ImE(c) > C < A(a)+ B(B)HCH)|V >
c Vv
C KerD($)

for all parameters a, 3,7,6, 0, 7. Thus, Problem 3.1 is solvable. O

4 An Illustrative Example

Consider the following systems given by

I+ar+ay a3 0 —oy—ay 0 B
A 0 ay; 0 1 |1 0 o0
1 a; 1 1 : B 1
AN 71 0 00 _
C(/)—l1 100},D(é)—[001+6l 6 |,
1+0'1 1
, 0 0
E(O‘)— 0 ’ S(T)—' 0
0 1
Then, we have
1 0 00 1 0 0 -1 11 0 -1
« _ 10001 10 00 O 1010 0
do=10901 0 A1‘0000’A2”0000’
1 01 1 0 00 0 01 0 O




[0 0 00 01
00 00 00
Bo— 0 0 ;vBl“" 0 0 ) B‘Z— 0 0 ’
0 1 10 0 0
0000 1 000
CO“[lloo]’Cl‘[oooo =D, [0010},172_[0001},
1 0 1
0 0 0
Eo=E; = 0 0|51 = 0
0 1 0
2
Now, since 2 = ﬂIxerD and € = ZhnE,,lt follows from Examples 2.5 and 2.11 that
=0 =0
1
0 2 1
V :=span 0 14 (A, B;,[l KerDi) nv (C’, A; ;ImEi) .
0 = =

Thus, from Theorem 3.6 RDRPISF is solvable with incomplete-state feedback gain H = [ 00

Further, since

ImSo C V 4+ ImBoQy and ImS; C V,

0 0

0 —1 ] and mea-

From Theorem 3.7 Problem 3.1 with incomplete-state feedback gain H = [

surable disturbances gain R = [ _01 J is solvable.

5 Concluding Remarks

In this paper, two conceépts of generalized (C, A)-invariant subspce and generalized (4, B, C)-
Invarinat subspace were introduced, and then their properties were investigated in the so-called
geometric approach. Further, the relationship between these two invariant subspaces and gen-
eralized (A, B)-invariant subspace which was studied by Bhattacharyya [1] was investigated.
Finally, using these concepts the robust disturbance-rejection problems with incomplete-state

feedback were formulated, and then their solvability conditions were presented.
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