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Abstract. We consider a global optimization problem of minimizing a linear function subject
to p linear multiplicative constraints as well as ordinary linear constraints. We show that this
problem can be reduced to 2p-dimensional reverse convex program, and present an algorithm
for solving the resulting problem. Qur algorithm converges to a globally optimal solution and
yields an e-approximate solution in finite time for any € > 0. We also report some results of
computational experiment.
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1. Introduction

We observed a remarkable progress in the last decade in the field of deterministic al-
gorithms for solving a certain class of global optimization problems. In fact, a variety
of nonconvex minimization problems have been successfully solved by exploiting their
special structures. The readers are referred to Horst-Pardalos [3] and Konno-Thach-Tuy
[8] for the state-of-the-art in the field.

Among the more intensively studied class of problems are what we call low rank non-
convex problems. These problems have the property that the original problem reduces
to an easy (usually convex) minimization problem when a few variables are fixed or more
generally, when a vector of the form Ba is fixed where x is the original variable and
B is a low rank affine mapping. Problems included in this class are low rank noncon-
vex quadratic programming problems [7, 21], minimum cost production-transportation
problems with a low rank concave cost function [12, 20, minimization of a sum and a
product of linear fractional functions [9, 10], etc.

A number of highly nonconvex minimization problems can be converted to low rank
nonconvex minimization problems by applying appropriate parameterization techniques.
For example, convex multiplicative programming problems [5, 6], i.e. minimization of




a product of several non-negative valued convex functions, can be reduced to low rank
problems by introducing a few auxiliary variables. Also, some class of reverse convex
programming problems can be converted to low rank nonconvex programming problems
by using newly developed duality theorem [17] in global optimization. Readers can find
abundant examples of low rank nonconvex minimization problem in Konno-Thach-Tuy
(8], which can be solved in an efficient way by applying outer approximation method,
partitioning/branch and bound algorithm and even variants of parametric simplex algo-
rithm.

The purpose of this article is to propose a practical algorithm for solving a linear
programming problem with several linear multiplicative constraints, yet another class of
reverse convex minimization problems [19]. Problems with linear multiplicative terms
in the objective function and/or constraint have been under intensive study in the past
several years [5, 10, 11, 13 - 16, 18] (see also Konno-Kuno [6] for a survey on algorithms
and applications of these problems). We will propose a divide-and-cut algorithm based
upon an outer-approximation and partitioning strategy [4]. It will be shown that small-
to-medium scale problems can be solved in a practical amount of time, if the number of
linear multiplicative terms in the constraints is less than five.

In section 2, we define the problem and convert it to a master problem which has a
low rank nonconvex structure. Section 3 will be devoted to the description of the divide-
and-cut algorithm and its convergence properties. Also, we will illustrate the algorithm
by using an example in two dimensional space. In Section 4, we will present the results
of numerical experiments. Some final remarks are given in Section 5.

2. Master Problem in the 2p-Dimensional Space

The problem we consider in this paper is a linear program with p additional linear

multiplicative constraints:

minimize eTa

[P] subject to Az >b, >0
(A + 6,)(dE@ +6,5) <1, j=1,....p,

where A € R™", b e R™, ¢, d;; € R" and b; €ER,i=1,2,j=1,...,p. We assume
for simplicity that the set

X={zecR"| Az > b, = > 0} (2.1)
is bounded and has a nonempty interior, and that
d;l;.:c+6,~,-20, VeeX, i=1,2,j=1,...,p. (2.2)

Under these conditions, d;;x attains a minimum and a maximum over the polytope X.
Let




b =min{dx |z € X} +6;

) ':172’ ‘:1,..-’ . 2-3
Uij =max{d;,1;w | 2 € X} + 6 } ¢ J P (2.3)

Then we have
0S£,‘j<’u,,‘j, i=1,2,j=1,...,p. (24)

We also see that the jth multiplicative constraint is redundant if uy;uz; < 1, and that
[P] is infeasible if £;;¢,; > 1. To exclude these cases, we assume in the sequel that

elj€2j <1< UyjUg;, ] = 1, ceey P (25)

Remark. The objective function ¢Ta also attains a minimum over X at some vertex
&. If T happens to satisfy all the multiplicative constraints, we can conclude that & is a
globally optimal solution to [P}, without applying the algorithm presented in the paper.
For this trivial case, however, our algorithm can still work. a

Let us introduce 2p auxiliary variables $ij»1=1,2,j =1,...,p, and transform [P]
into an equivalent problem:

minimize ¢l
subject to € X
! dix+6;<¢&;, £&>0, i=1,2 20
ij yo= 5wy Sy Yy B, } J=1...,p

§1;62; < 1
For any fixed § = (£11,621, ..., &1p, €2p) 7, we have a linear program: |
minimize cTx
[P(€)] | subject to a € X
Dz +d <,

where D = [dy,d,,, ... ydip,dyy)T and d = (611,621, .. .,01p,625)T. Unless the feasible
set is empty, [P(€)] has an optimal solution, which we denote by x* (€). Let

Q={¢€R¥” |3z € X, £ > Dz +d), (2.7)

and define a function:

£©) ={ cTa*(¢) ifEen 2.8)

+00 otherwise.

Note that 2 is included in the nonnegative orthant of IR*” under condition (2.2). Hence,
f(€) is finite only if € > 0.

Lemma 2.1. The function f : R” — RU{~00, 400} is convez polyhedral, continuous
on  and satisfies




F(€) 2 £(€%) if & <¢ (2.9)

Proof: Both the convex polyhedrality and continuity follow from a well-known result
on parametric linear programming (see e.g [2]). The monotonicity (2.9) is obvious if

¢ Otherwise, it is proved by the following relation of inclusion:
P#A{zeR"|e€X, De+d<¢}C{zcR"|zcX, De+d<¢}. O

Using the function f, we can rewrite (2.6) as follows:

MP] mm.1m1ze f(é) ‘
subject to &1;65; <1, j=1,...,p,

which we call the master problem of [P]. The above argument is then summarized into
the following:

Lemma 2.2. If [MP] has an optimal solution £* such that f(€") < 400, any optimal
solution x*(£*) to [P(€")] solves the original problem [P]. Otherwise, [P] is infeasible.

3. Divide-and-Cut Algorithm for the Master Problem

As seen in the previous section, we can solve [P] by solving the master problem [MP].
Assuming for a while that the optimal value of [MP] is finite, let us observe some
properties of its optimal solution &*.

The following is an immediate consequence of Lemma 2.1:
Lemma 3.1. There exists an optimal solution ¢* to [MP] such that
§€i =1, j=1,...,p. (3.1)
Proof: Follows from the monotonicity (2.9) of the objective function f. O

Note that Lemma 3.1 does not imply that (d’fj:c*(g*) + élj)(d%}m*(g*) + 85) = 1 for
every j. Since [P(£")] involves no equality constraints, x*(£€") might satisfy some of the
multiplicative constraints of [P] with inequality. Let

§1j = max{¢;,1/u,;}, §2j = ma,x{fzj,l/ulj}, i=1...,p, (3.2)

where £;;’s and u;;’s are given by (2.3). It follows from (2.4) that §;;'s are all positive
numbers. '

Lemma 3.2. Among optimal solutions to [MP] satisfying (3.1 ) exists a € such that
E;-*jzg_ij, i=1,2,j=1,...,p. (3.3)
Proof: Any optimal solution ¢* to [MP] is a point in €2, and hence
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JeX, adia+6;>46; i=1,2j=1,...,p. (3.4)

Choose an arbitrary optimal solution £° satisfying (3.1) and suppose ;5 < £, < 1/ugy
for some k. Then €3, > uy and the constraint d, & + 8y < &2 is redundant in [P(£°)].
Therefore, letting

P
§1; = &3 foreach j, &, = { uge if j

§3; otherwise,

we have f(&') = f(£°). Moreover, letting

" I/U2k lf]=k
flj'_‘

"o el .
, . §a; = &; for each j,
€1, otherwise,

we have f(£") < f(¢') by the monotonicity (2.9). The resulting £” is thus optimal and
satisfies (£1x,&3%) > (1/ugk, 1/u1) under condition (2.5), as well as satisfying €165, = 1.
In this way, £° can yields an optimal solution £* satisfying (3.1) and

& 2 Yuyy, &;21/wm;, j=1,...,p.
This, together with (3.4), proves (3.3). o
Let
5=, 1/6,)7 ti=(1/6,,6)" i=1...p, (3.5)
and let
Py = H(s1,t1) X --- X H(s,,¢,), (3.6)

where H(s;,t;) denotes the convex hull of {0, s;,t;} C R?. It follows from (3.2) and
(3.5) that s1; < #y; and sy; > ty; for each j under conditions (2.4) and (2.5), where
8;j = (815,52;)7 and t; = (t1;,t2;)T. The following lemma claims that we have only to
search the polytope @ for an optimal solution £* to [MP]:

Lemma 3.3. The polytope ®y contains an optimal solution £* to [MP] if it exists.

Proof: From Lemma 3.2, we can suppose

6; = (Elkjag’;j)T € {£J € R’ l gj 2 _£_J} n {63 € R’ |§1j£2j = 1}3 J=1...,p,

where §_J. = (£ & 2j)T. It is easy to see that there is a constant a > 0 such that
af € conv{s;,t;}. Since &;;&,; is a quasiconcave function [1, 5], we have

d2€;j§;j > min{élj/élj’ézj/ézj} =1,

which implies that o > 1. Hence,




€ € conv{{_,s;,¢;} C H(s;,t;). O
From Lemma 3.3, we see that [MP] is equivalent to

minimize  f(§)

3.7
subject to ¢ € =N Py, (3.7)

where

E={6eR¥”|{;6,; <1, j= 1,...,p}. (3.8)

To solve the master problem reduced to (3.7), we generate a sequence of subsets ®;’s in
R such that

For each k we compute ¢* € argmin{f(¢) | ¢ € ®,}. If £&¥ happens to be a point in
E, then ¢* is optimal to [MP] and hence [P(£¥)] provides an optimal solution x*(£5) to ,
[P]. Otherwise, we construct the next relaxation @141 by discarding some portion of @,
containing £€* but no points in E. In this process, the main difficulty is that the usual
cutting plane procedures cannot be used because = is not a convex set. In the rest of
this section, however, we will show that it is possible to overcome this difficulty if we
exploit a special structure possessed by (3.7). Namely, the feasible set = N ®y can be
expressed as follows in terms of the orthogonal product of p subsets in R:

EN®y =5 x -+ x 5, (3.10)
where
E.j=H(8j,tj)ﬂ{§j € R? If]jfzj Sl}, J=1,...,p. (311)

Due to this structure, we have only to approximate each E; in the two-dimensional
subspace to generate ®,’s in the whole space.

3.1. APPROXIMATION OF THE FEASIBLE SET
Let us consider the initial relaxed problem of [MP]:

[MP,] minimize{f(¢) | ¢ € ®}.
Since [MPy] is equivalent to a linear program with n + 2p variables:

minimize ¢l

subject to ®x € X (3.12)
dij@ + 85 < siydj + by, i=1,2 i=1,...p '
)‘J+p’_1_<.1a /\Ja/'l'JZO ’ 7




£1r€2r =1

L s

glr

Figure 3.1. Removal of £2 from H(s,,t,).

we can solve it efficiently using available algorithms such as the simplex method. If
(3.12) is infeasible, then [P] is also infeasible. Let us suppose that (3.12) is feasible and
has an optimal solution (2°, A°, u®), where A° = (A%, ..., AT and p® = (p,..., pu0)T.
Then (A%, u°) provides an optimal solution £° to [MPy] in the form:

&= s ]+, i=1,2,j=1,...,p (3.13)

Unless ¢° is a point of =, we have to discard some portion containing £° from ®,. This
can be done in the following way.
Let

r € argmax{£),£5. | j =1,...,p}, (3.14)

and consider H(s,,t,) in the £;,-{;, plane (see Figure 3.1). Let us denote by L(€?) the
half-line emanating from the origin to &2, and by v, = (vy,,vs,) the intersection of L(gY
and the curve £;,.£,, =1, i.e.

V1r = \/ 6?1‘/537'? Ugr = \/ Egr/égr (315)

Between £, and v,, both lying on L(£?), there is a relation €2 £ > v3,vp, = 1 as long
as £€° ¢ . Hence, we can remove ¢?, as shown in Figure 3.1, by replacing H(s,,t,) by
the union of two simplices H(s,,v,) and H(v,,t,). In the whole space, this operation
leads to

'1’1 = H(S],tl) X e X H(S,._l,tr_l) X (H(s,,v,) UH(’U,,t,-))X
H(3r+1-, t,-+1) X+ X H(sp,tp). (3.16)




Lemma 3.4. If an optimal solution £° to [MPy] is not a point in =, then
¢, ENd,C o,. (3.17)
Proof: Obvious from the definition of ®,. a

From Lemma 3.4, we have an alternative relaxed problem of [MP]:

[MP,] minimize{f(¢) | ¢ € @}

This problem, however, cannot be solved directly as [MPy] can, because its feasible set
®, is not a convex set. We then divide ®, into two subsets:

‘I’l = H(sl,tl) X X H(S,._l,tr..l) X H(S,.,'U,.)X

H(sr+l3tr+l) X +ee X .H(Sp, tp), (3.18)
\I}2 = H(S],tl) X - X H(S,-_l,t,._]) X H('v,,t,)x
H(Sr+1,tr+1) X e X H(Sp,tp). (319)

For i = 1,2, taking ¥; as a feasible set, we define a subproblem of [MP,]:

[P] minimize{(£) | £ € T.}.

Since &; = ¥, U ¥,, either [_151] or [P,] provides an optimal solution ¢! to MP;]. Here
we should note that [P;] is a relaxed problem of

[P;]  minimize{f(&)| & € ¥;N =},

which is just the same form as (3.7). Therefore, by applying the above procedure recur-
sively to [P;]’s, we can find a globally optimal solution £* to [MP] whenever it exists.

3.2. ALGORITHM

We are now ready to present the algorithm for solving [MP]. Let € > 0 denote a given
tolerance.

Algorithm DC

Step 0. Construct &y = H(sy,t;) x --- x H(s,,t,) according to (2.3), (3:2), (3.5) and
(3.6), and solve the initial relaxed problem [MP,]. If [MPy] has an optimal solution
¢°, then P = {(®,, £°)}. Otherwise, let P = 0. Go to Step 1 with k& = 0.

Step 1. If P = §, then stop — [MP] is infeasible. Otherwise, select a pair (', ¢') with
the least f(£') in P and let P =P\ {(¥,¢")}. Let (¥y,¢%) = (¥, ¢') and

[Pi]  minimize{f(¢) | € € U, = H(s*, t5) x - .- x H((s;,t9)}.
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Step 2. If the optimal solution &* to [P] satisfies

max{{i;&; | j=1,...,p} < 1+e¢,

then ¢° = ¢* and stop. Otherwise, let 7 be the smallest index in arg max{£5;£5; |
j=1....p}

Step 3. Let vk = (\/fiz/séz, Jaé:/ﬂz)T and

Wy = H(sllc’tk) iRe H(sr 1 -—1) X H(sf,v':)x
Mk ) e n Hish, 1),

U, = H(sp,85) x - - x H(sf_y,t r—1) X H(vk, t4)x
H(sf+l, r+1) XX H(sp’tﬁ)'

For i =1,2, do the following: Solve
[Pit] minimize{f(¢) | & € ¥y}

If [Py] has an optimal solution £, then P = P U {(\Dik,ﬁik)}.
Step 4. Let k =k +1 and return to Step 1. (]

Letting

={¥](2,8) e P} (3.20)

at the beginning of the kth iteration, we see that the sequence, ®g, P4, ..., satisfies the
relation (3.9). Moreover, £* is an optimal solution to the kth relaxed problem:

[MP] minimize{f(¢) | ¢ € ®,},

since we choose (¥, £¥) with the least f(&") from P every iteration.

If this algorithm terminates, either [MP] is found to be infeasible at Step 1 or an
approximate solution £° is obtained at Step 2. In the latter case, though £° might not
be feasible to [MP], it satisfies the e-feasibility:

fijfgj S 1 +€? j = 19"'7p’ 56 e ®03 (3'21)
and also provides a lower bound of the globally optimal value:
F€) < f(€), Y€ €ENS,. (3.22)

It is easily seen that @*(£°) provided by [P(¢°)] has the similar propertles for the original
problem [P].




Theorem 3.5. If € > 0, Algorithm DC terminates after finitely many iterations. If
€ = 0, then every accumulation point of the sequence {¢* |k =0,1,.. .} s a globally
optimal solution to [MP].

Proof: Suppose DC is infinite. Since £*’s are generated in the compact set 5N, there
exists a subsequence which converges to a point £ € &, N Q. Let r € arg max{&;;&,; |
J=1,...,p} and take {£€* | ¢ = 0,1,...} from the convergent sequence so that the
smallest index of arg max{fl’c ] f;; | =1,...,p} is equal to r. Then an infinite sequence
is generated in the £,-§,, plane as follows:

H(sk,tl) o H(sh th) 5 ...,

Note that sk = (s’fﬁ, s’;ﬁ)T and tf = (_tfﬁ,t';:)T satisfy
LSSt < 1) <k gk < g0 (3.23)
S1p S 81 < Ir = 2r S lgp < Sor & Sy, .

1r»

for each ¢g. Otherwise, ff,? 5§," < 1 holds and DC terminates.

Now assume the contrary to the assertion, i.e. there exists some constant ¢ > € such
that

ﬁfﬂ&fﬂ > 1+ 0 for every ~q. (3.24)
Let us define
hi, (€) = (1/550 — 1/t20) (61, — sb1) — (51 — t¥0) (5, — 1/5™0).

In the {1, plane, ki, (€) = 0 represents the line connecting two points sk and the, It
follows from (3.23) that Ay, (€%) > 0 for each ¢ while hi,(§) < 0 for & € H(sk, thk).
Hence, we have

lim Ay, (§%) = Lim hy, (€% = 0. (3.25)

g0

In addition to this, (3.23) implies that slfi’s and tfﬂ ’s have subsequences convergent to
some 3y, and t;,, respectively, and that

Sfl)r S S1r S flr S t(l)r-

. . k k - sk kg ok .
Since either s;i*" or t;7*' coincides with v;? = v &ii /€57, we have three possible cases to

consider.
® 5, < Z]r = U, = \/gl,./f—z,. and the limit of hkq is
B(&) = (1/§1r - 1/"71r)(£1r - glr) - (51,. - 271")(521‘ - 1/51,).
® 5, = 7y, < t;, and the limit of hy, is
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Figure 3.2. Example (3.27) of problem [P].

7‘(5) = (1/, — 1/t )(€1r — 01p) — (T1r — #10)(E2r — 1/%y,).

® 5, = t, = ¥y, and the limit of By, is

h(€) = —(&1r — B1,)/T1r + V1 (Ear — 1/50,).

In any case, simple arithmetic shows that there is a positive constant o such that

iz b, (€4) = F(&) = o (VELGr —1).

(3.26)

We see from (3.25) and (3.26) that £, &, = 1, which contradicts the assumption (3.24).
Therefore, Algorithm DC terminates after finitely many iterations if € > 0. Since f is

continuous and ®;, O EN &, for each ¢, we have

f(&) = 1ig£gff(€kq) < f(§), V€€ EN,,
which implies that ¢ is a globally optimal solution to [MP]. O
3.3. NUMERICAL EXAMPLE

Let us illustrate Algorithm DC with the following simple example:

minimize —4xr; — 5z,
subject to z; — 2, >0, 0< 2, <3, >0

z%—-mg <3, zyze < 2.

(3.27)

This problem has two locally optimal solutions x4 = (vV2,v/2)T and 2B = 2,17,

among which &? is globally optimal (see F igure 3.2).
Let
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X={xeR|z;,-2,>0,0< 2 <3, zy > 0},

and let
di = (0.333,0.333)7, 6y, =0; dy = (1.000,—1.000)T, 6, =0 g
dy2 = (0.500,0.000)T, 6,3 =0; dy = (0.000,1.000)T, &5 =0.

Then we see that problem (3.27) satisfies condition (2.2). Also, both conditions (2.4)

and (2.5) are fulfilled by

b1 =0.000, uy; =2.000; £ =0.000, uy = 3.000 } . (3.28)
€12 = 0.000, wip =1.500; £y =0.000, uy, = 3.000

The objective function value f(¢) of the master problem [MP] is provided by
minimize —4z; — 5z,
subject to (z1,2,)T € X (3.29)

0.333z; + 0.3332z; < &1, 1.000z; — 1.000z, < £,
0.500z; < €1, 1.000z, < £z,

Initialization (Step 0). First of all, we construct the initial relaxed problem [MP,] of
[MP]. By substituting (3.28) into (3.2) and (3.5), we have

59 = (0.333,3.000)T, £ = (2.000,0.500)T
53 = (0.333,3.000)T, #2 = (1.500,0.666)T.

Then H(s?,t}) and H(s},t3) have the shapes shown by Figure 3.3, and their orthogonal
product @y = H(s},1?) x H(s),t3) is the feasible set of [MP,]. The optimal solution to
[MPy] is as follows:

¢’ = (1.222,0.306,0.917,1.833)T; f(£°) = —16.500.
We then start iterating the algorithm with P = {(®,, £°)}.

Iteration k = 0. We take (@, £°) from P and let
[Po]  minimize{(£) | € € By = H(s), 12) x H(s, 2)}.
Since £0,£9, = 0.373 < £%,£9, = 1.681, we compute
0 T T
o} = (Veh/eh VELIEL) = (0707, 1414)",
and define
\1’10 = H(s(l)’ t‘l)) X H(sg,vg)a "IJ?O = H(s(;?ttl)) X H(vg$t2)

(see Figure 3.3). The minima of f over ¥y and &, are respectively

¢'% = (0.943,0.236,0.707,1.414)T; f(£°) = —12.728
£ = (1.155,1.768,1.308,0.848)T; f(£%°) = —14.702.

We set P = {(£'°, ¥14), (£%°, Uy)}.

12
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1.768

1.075

1.071 1.155 &

Figure 3.3. Feasible sets of the relaxed problems.

lteration k = 1. Since f(¢'%) > £(£%°), we take (€%, W) as (€', W) from P and let
[Pi]  minimize{f(¢) | € € U1 = H(s},8}) x H(s}, 1)},

where

s = 89 = (0.333,3.000)7, ¢! = = (2.000,0.500)T
83 = v§ = (0.707,1.414)T, &} = £2 = (1.500, 0.666)T.

The optimal solution to the second relaxed problem [MP,] is given below by [P,]:
&' = (1.155,1.768,1.308,0.848)T; f(¢') = —14.702.

Since £1,63; = 2.041 > £],€], = 1.109, we set

vl = (eh/eh, e /eh) = (0.808,1.238)T,
Ui = H(sy, v1) x H(s},t3), Wy = H(vi,t}) x H(s},tl).

The minima of f over ¥y; and U,; are respectively

£ = (0.808,1.238,0.606,1.212)T; F(£') = —10.909
£ = (1.071,1.075,1.072,1.070)T; f(£%") = —13.928.

We set P = {(510, ‘IJIO)a (511’ \I;ll)v (5217 ‘II:ZI)}'
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lteration k = 2. We take (£, Uy) as (€%, ¥,) from P and let
[P minimize{f(€) | € € ¥, = H(s?, £2) x H(s2, £2)},

where

s8] = v} = (0.808,1.238)T, #2 = ¢! = (2.000,0.500)T
s3 = 53 = (0.707,1.414)T, 2 = ¢} = (1.500,0.666)T.

The optimal solution to [MP,] is
&% = (1.071,1.075,1.072,1.070)T; f#(£?) = —13.928.

Since 2,62, = 1.151 > £2,£2, = 1.147, we set

v} = (V€h/Eh, /€8 /E%,) = (0.999,1.001)T,
V12 = H(s},v}) x H(s},83), Uy = H(v3,12) x H(s2,£2).

The minima of f over ¥y, and Uy, are respectively

£'? = (0.999,1.001,0.865,1.265)T; f(£'2) = —13.248
¢” = (1.059,0.971,1.037,1.103)%; F(£%) = —13.812.

We set P = {(510, ‘1’10)1 (5117‘1’11)5 (612’ \IJIZ)’ (622, \1'22)}'

In the next iteration, we take (£?2, ¥z,) as (£°,¥;) from P. Then the optimal solution

to [MPs] is as follows:

§* = (1.220,0.891,1.037,1.103)T; f(£%) = —13.812.

In this way, Algorithm DC will generate a sequence {&F | £k =0,1,...}, whose accumu-
lation point £* = (1.000,1.000,1.000, 1.000)7 is a globally optimal solution to [MP]. We
obtain an optimal solution 2® to (3.27) and the optimal value —13.000 by solving (3.29)

with ¢ = (1.000,1.000,1.000, 1.000)T.

4. Computational Experiment

We will report computational results of testing Algorithm DC on randomly generated

problems of the form:

minimize —&x
subject to Az < b, x>0
@5z +6)(dEe +8;) <1, j=1,...,p,
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Table 4.1. Performance of Algorithm DC for (4.1) when e = 105.

p 2 3
m 30 30 50 50 30 30 50 50
n 20 50 30 70 20 50 30 70
CPU time taken at Step 0
0.65 2.27 3.20 12.12 0.84 3.29 4.89 18.18
(0.14)  (0.35) (0.55) (1.80) (0.10) (0.36) (0.59) (2.56)
# of subproblems
15.0 27.2 19.2 30.0 46.8 73.2 62.8 72.8
(8.29) (11.57) (6.29) (10.71) (24.40) (28.77) (21.84) (18.43)
CPU time taken at Steps 1 - 4
2.91 16.73 11.12 77.66 15.39 61.35 74.86 297.78
(1.74)  (5.60) (7.43) (45.85) (12.34) (29.83) (28.76) (146.81)
Total CPU time
3.56 19.00 14.32 89.78 16.22 64.63 79.74 315.96
(L.77) (5.61) (7.46)  (46.07) (12.31)  (29.97) (28.62)  (146.64)
P 4 5
m 30 30 50 50 30 30 50 50
n 20 50 30 70 20 50 30 70
CPU time taken at Step 0
1.19 4.76 7.04 26.09 1.54 5.59 8.39 28.67
(0.14)  (0.31)  (0.96)  (3.68) (0.13)  (0.72)  (1.10) (2.42)
# of subproblems
77.8 156.4 129.8 122.4 134.8 390.8 215.0 400.2
(64.14) (68.42) (49.82) (76.28) (93.60) (152.30) (161.01) (189.07)
CPU time taken at Steps 1 — 4
31.92 175.23 246.12 509.82 72.17 694.47 540.51 2175.89
(21.95) (64.87) (152.83) (218.92) (50.48) (356.32) (427.06) (1067.39)
Total CPU time
33.11  179.99  253.16  535.91 73.71 700.06  548.90  2204.55
(21.98) (65.00) (152.16) (218.83) (50.43) (356.37) (426.28) (1067.78)
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Table 4.2. Effect of varying € on Algorithm DC.

(m,n,p) (30,20,3) (30,20,4)
€ 104 10-5 10-6 1077 10~* 10-5 10~ 1077
# of subproblems

36.4 46.8 55.0 65.0 62.2 77.8 89.0 96.2

(19.62) (24.40) (27.54) (32.12) (53.73) (77.80) (89.00) (76.19)
CPU time taken at Steps 1 - 4

11.60 1539 1823  21.65 25.43 3192  36.61  39.27
(8:66) (12.34) (14.22) (17.48)  (18.27) (21.95) (24.43) (25.64)

where A € R™*", b ¢ R™, &, d;; € R" and §;; € R.

Algorithm DC was coded in double precision C language according to the description
in Section 3.2. At Step 0 in DC, we have to solve 4p linear programs of size (m,n) to
compute ¢;;’s and u;;’s, and one linear program of size (m + 3p,n + 2p) to solve the
initial relaxed problem [MP]. The procedure employed to solve them was the usual
revised simplex method. Each relaxed subproblem [P;] to be solved at Step 3 is also
equivalent to a linear program of size (m + 3p,n + 2p). In our code, the dual simplex
method solved it using a solution provided by the preceding relaxed subproblem as the
starting dual feasible solution.

The test problems (4.1) had 16 different sizes; (m,n,p) ranged from (30,20,2) to
(50,70,5). Components of A, b and & were drawn from a uniform distribution in the
interval [0.00,1.00], and those of d;;’s and §;; were in the interval [0.50,1.00]. Out of the
resulting instances of each problem size, we selected the first ten instances which were
feasible but had no trivial solutions, and solved them on a microSPARC II computer
(85 MHz).

Table 4.1 shows the average performance of Algorithm DC when the tolerance € was
fixed at 107°. For each (m,n,p), it gives the CPU time (in second) taken at Step 0, the
number of relaxed subproblems [P;;]’s solved at Step 3, the CPU time taken at Steps 1
— 4, and the total computational time. The standard deviations of these numbers are
also given in the brackets. Table 4.2 shows the effect of varying the tolerance ¢ on DC
for (m,n,p) = (30,20, 3), (30,20, 4). For each value of €, the number of [P;t]’s solved at
Step 3 and the CPU time taken at Steps 1 — 4 are listed in it.

We see from Tables 4.1 and 4.2 that the main factor affecting the performance of
Algorithm DC is the size of p. The number of subproblems generated through compu-
tation increases sharply as a function of p, and the computational time taken at Steps 1
— 4 does even more sharply. For each p, however, it is worth noting that the number of
generated subproblems is rather insensitive to the variation of (m,n). Obviously, the to-
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tal computational time is dominated by that needed to solve [Pix]’s. Therefore, we may
conclude that Algorithm DC has the potential to solve (4.1) with much larger (m,n) as
long as p is a small number, say less than five. In that case, DC will require a more
efficient procedure such as an interior-point algorithm or sophisticated implementation
of the dual simplex method, to solve linear programs associated with [Pa)’s.

5. Concluding Remark

Before closing the paper, let us devote a little space to discussing the general class of [P]
defined below:

minimize cTa
subject to Az >b, >0 (5.1)
(da + 6y)(dp® +6;) <1, j=1,....p,

where A’ € R™*", ¥ € R™, and the other notations are similar to [P] but dx + 6;;'s
can take both positive and negative values on the polytope

X' ={zxeR"|Az>V, a:ZO}. | (5.2)

According to the signs of dTm + 6;;’s, the problem (5.1) can be decomposed into 4*
subproblems, each of which is of the form:

minimize c

subject to « € X'
(d1]m+61,)(d T+ 655) <1, j=1,...,p
dix+6; <0, i=1,2, jeJ
dlx +6; >0, i=1,2, jeJ,

dy ;& + 0695 <0, d2]m+62,>0 JE€Js,

(5.3)

where J;UJ,UJs ={1,...,p'} and sNJ, = J,NJ; = J3N J; = 0. Since the last 2|J3|
constraints imply that B

(dija +615)(dg; +655) <1, j € Js, (5.4)

we can remove (5.4) from (5.3). Hence, (5.3) is reduced to

| minimize Te
subject to ¢ € X (5.5)

~T - ~T - .
(dye + 615)(do; + 695) <1, j€ LU Jy,
where

(dlg"sla’ 237621)7 ifje;

5.6
(d13961]1d239521)a if j € Jy, ( )

~T ~ ~T ~
(dlj"sljadzj"sz’j) = {
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and

5T z . .
X=Xn{zeR" ZT"’” 20, =12 jehUl (5.7)
@+ 61; 0, dy;x+65; >0, jeJs
Then we immediately see that
a§w+5,~,-zo, VeeX, i=1,2j€ U, (5.8)

Since we have not assumed that X nor X’ has a nonempty interior, both the bounds lf
and #;; of (dqm +6;;) on X might coincide for some J € J1UJ,. In such a case, however,
d,-l;-a: +6;; is constant valued on X, and hence the constraint (d1 T+ by j)(dzja: +68;) <1
can be regarded as a linear inequality. We can therefore assume for (5.5) that

0< b <y, i=1,2 €Ul (5.9)

Also, in the same way as in Section 2, the other essential condition needed in Algorithm
DC can be assumed as follows:

biily; S 1< ilyjily;, j€J1UJ, (5.10)

These two conditions (5.9) and (5.10) allow us to apply Algorithm DC to (5.5). In other
words, we can solve the general class (5.1) by applying DC to 4* problems belonging to
its subclass [P]. When p' is two or three, Algorithm DC will generate a reasonably good

approximate solution of (5.1) in a practical amount of time, as shown in Section 4.
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