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Abstract

In this paper, two robust disturbance-rejection problems with state feedback and with
incomplete-state feedback for linear w-periodic discrete-time systems are studied in the frame-
work of the so-called geometric approach. And some necessary conditions and/or sufficient

conditions for the problems to be solvable are presented. Finally an illustrative example is

given.
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1 Introduction

In 1986 Ghosh(1] first studied the robust disturbance-rejection problem with state feedback
for linear systems in the framework of the so-called geometric approach, and its solvability
conditions were given. In 1995 Otsuka and Inaba et al[3] studied the corresponding robust
disturbance-rejection problem with incomplete-state feedback. On the other hand, in 1986

Grasselli and Longhi[2] studied the disturbance-rejection problem with state feedback for linear

w-periodic discrete-time systems.

The objective of this paper is to investigate two robust disturbance-rejection problems with
state feedback and with incomplete-state feedback for linear w-periodic discrete-time systems,
and to study their solvability conditions.

This paper is organized as follows. Section 2 will give various notions of invariances and
their important properties in order to formulate the problems. In Section 3, the two robust
disturbance-rejection problems with state feedback and with incomplete-state feedback for lin-
ear w-periodic discrete-time systems will be formulated, and some necessary conditions and/or

sufficient conditions for their solvability will be presented. In Section 4, an illustrative example

“will be given. Finally, Section 5 will make some concluding remarks.

2 Preliminaries

In this section, some definitions of invariances are given, and their Important properties are
investigated.

The following notations will be used throughout this investigation. Z := the set of all
integers, Z% = {ko+1,ko+2,...,ko+w | ko € Z}, N := the set of all natural numbers,
r={1,2,...,r|r € N}, R® := s-dimensional Euclidean space and RP*9 := the set of all p x ¢
real matrices. For a matrix-valued function A(:) (A(k) € RP*%,k € Z), ImA(k) := the image of
A(k), KerA(k) := the kernel of A(k) and A7} (£)Q := {z € R?| A(k)z € Q} for a subspace Q of
R?. And A() is said to be w-periodic for a given w € N if A(k) = A(k + w) for all k € Z. For
a subspace-valued function V(-) (V(k) C R®,k € Z), V(-) is said to be w-periodic for a given
weNIfV(E)=V(k+w)forall k € Z.

Now, consider a family of linear w-periodic discrete-time systems {S¥;i € r} given by

z(k+1) = Aik)z(k) + Bi(k)u(k)

,{Sf;ie’“}:{ W) = Giba(k), ke z

where z(k) € X := R" is the state, u(k) € U := R™ is the input, y(k) € Y := RP” is the



incomplete-state (measurement output) and A;(-) (4;(k) € R™™), B;(-) (B;(k) € R™™) and
Ci(:) (Ci(k) € RP*™) are w-periodic for all i € 7.

Now, the following definitions are given for the family of systems {S¥;i € r}.

Definition 2.1 Let V() (V(k) C X) be w-periodic.
(1) V() is said to be (4;(-), Bi(-))-invariant if there exists an w-periodic feedback

Fi(-) (Fi(k) € R™*™) such that
(Ai(k) + Bi(k)Fi(k))V (k) C V(k +1)

forallk e Z.
(ii) V() is said to be {(A;(-),Bi(-)) | ¢ € r}-invariant if there exists an w-periodic
feedback F(-) (F(k) € R™™) such that '

(Ai(k) + Bi(k)F(k))V (k) C V(k +1)
forallierand k € Z. 0

Definition 2.2 Let V(-) (V(k) C X) be w periodic.
(1) V() is said to be (A4;(-), Bi(), Ci(-))-invariant if there exists an w-periodic feedback
H;(:) (Hi(k) € R™*P) such that

(Ai(k) + Bi(k)H; (k) Ci(k))V (k) C V(& + 1)

forall k € Z.
(1) V() is said to be {(A;(-), Bi(-),Ci(")) | i € r}-invariant if there exists an w-periodic
feedback H(-) (H(k) € R™*P) such that

(Ai(k) + Bi(k)H (k)Ci(k))V (k) C V(k + 1)
forallierand k € Z. D

Remark 2.1 We note that, for each system S¥, an (A4;(-),B;(-))-invariant (or an
(Ai(-), Bi(), Ci(-))-invariant) V(-) has the property that if an arbitrary initial state z(0) € V(0)
then there exists a state feedback input u(k) = F;(k)z(k) (or an incomplete-state feedback input
u(k) = H;(k)y(k)) such that z(k) € V(k) for all k£ > 0. On the other hand, for the family of
systems {S¢; i € 7}, an {(4i(-), Bi(")) | ¢ € r}-invariant (or an {(Ai(-), Bi(1),Ci()) | & € r}-
invariant) V(-) has the property that if an arbitrary initial state z(0) € V(0) then there exists a
state feedback input u(k) = F(k)z(k) (or an incomplete-state feedback input u(k) = H{(k)y(k))

which is independent on ¢ such that z(k) € V(k) for all £ > 0. O



Now, the following lemma holds.

Lemma 2.1 Let V(-) (V(k) C X) be w-periodic. Then, V(-) is {(4i(-),Bi(")) | i € r}-

invariant if and only if V/(-) satisfies

forall k € Z.

Vik+1) Bi(k)

Vk+1) | B2 o

Vw}l) BJ@

(Proof) Necessity is obvious. To prove sufficiency, suppose that V(-) satisfies (1). And

now, we fix ko € Z. Then, there exists a basis {vf,v§, -, vf} of V(k) for all k € 2,

k
wyH
witt
where p(k) is a dimension of V(k). It follows from (1) that there exists vectors ™ €
wpy!
V(k+1)
V(k+1) .
. and u; € U such that
V(k+1)
A (k wr ! By (k)
Ao (k witl By(k
S P R P @
A (k) whi! B, (k)

forall j € {1,2,...,u(k)} and k € Z%,

k+1 -

Since V(-) is w-periodic, the basis {v¥,v¥ ..., v¥ .} is also a basis of V (k + lw) and w**! is
N l 2 :u(l") 7‘a.7

in V(k+lw+1) for all / € Z. Then, we define -

k+lw
Y;

k+lw+1

Wy 4

ktlw

'LLJ

forallke Zy,,le€ Z and j € {1,2,...

a state feedback Fy(k) : V(k) —» U by

= v €V(k+w) (3)
= witeV(k+lw+1)

= uieU (4)

p(k)}. Then, (2) is satisfied for all &£ € Z. Now, define

. 'u;“-‘:'= —Fy(k)vk (5)



forall j € {1,2,...,u(k)} and k£ € Z. And let F(k) : X — U be any extension of Fy(k) to X
for all k € Z. Then, it follows from (3), (4) and (5) that F(-) is w-periodic. And from (2) and’
definition of F(-),

A (k) wh ! By (k)F (k)
As(k) | | whE By(k)F(k) |

T T : K
Ar (k) wiH! By (k) (k)

for all k € Z. 1t follows that
(Ai(k) + Bi(k)F(k))of = wii' e V(k+1)
for all j € {1,2,...,u(k)}, i € r and k € Z which imply
(Ai(k) + Bi(k)F(k))V (k) C V(k+1)

for all i € » and k € Z. This completes the proof. m]

For a given w-periodic subspace-valued function A(:) (A(k) C X), define the following class
of w-periodic subspace-valued functions.
VSO, BIORAC) i€ r) = {V) I VE) © AR, V() s {(Ai(), Bi() | € r}-invauiant .
For simplicity, Vs(A;(-), B;(:); A(*) | 1 € 7) is denoted by V  (A(-)).
Definition 2.3 V*(:) is said to be a supremal element of V(A(-)) if the following two
conditions hold.

(i) V() € Vs(A()

(i) I V() is an arbitrary element of V4(A(-)), then V (k) C V*(k) for all k € Z. O

Then, the following lemmia holds.
Lemma 2.2 Vs(A(-)) has the supremal element V*(-) in the sense of Definition 2.3.

(Proof)  The proof can be easily shown by using the results of Wonham [4]. o

The computational algorithm of V*(-) can be obtained as follows.

Lemma 2.3 Let A() (A(k) C X) be w-periodic. For each k € Z, define the sequence V*(k)

for £ € Z according to

VOE) = Ak)
a4\ [ vk By (k)
vegy = Agn| W] VTR B
A,-(l;)‘ Virl(e+ 1) B (k)



for p > 0. Then, the following statements hold.

(i) VE(k) C VFE (k) for all k € Z and p > 1.

(ii) For fixed ko € Z, there exists j < max {dim[A(k)] | k € 2%} such that VI(.) is the
supremal element of V (A(-)).

(Proof)  The proof of (i) can be easily shown by induction with x. Therefore, we will
prove (ii). In order to prove (ii), it suffices to show the following two claims.

Claim 1 "There exists j < max{dim[A(k)|k € Z} ]} such that VI(-) € V(A()).

Claim 2 For an arbitrary element V() € V4(A(:)), V(k) C V#(k) for all k € Z and
p 2> 0.

(Proof of Claim 1) ~ We will first prove that V#(-) is w-periodic for all j > 0 by induction
with p. Since A(+) is w-periodic, it is obvious that V() is w-periodic. Assume that Ve is

w-periodic. Since A(-), B(-), A(:) and V#~1(.) are all w-periodic, the following equalities hold.

A\ [ vt ) Bi(k)
iy = agn| A0 Ve | Ba(t
A4, Vil 1) B, ()
Ak +w) \ [/ VE k4wt 1) Bi(k +w)
— Ak +w)n AQ(A:‘+ w) V“*l(k‘+w+1) T Bg(/\?"f‘w)
Ar(k‘+ w) V“—l(k:{—w-i- 1) Br(k'+ w)
= VA(k+w)

for all k € Z. Then, V#(-) is w-periodic for all 4 > 0.
Next, since V#(-) (¢ > 0) and A(:) are w-periodic, there exists j < max{dim[A(k)|k € Z{ ]}

such that 4
Ay (k) VI(k+1) Bi(k
Aq(k Vi(k By (k
Vi) = Ak n | (_ + Im 2(
Ar (k) VI(k+1) B, (k)
for all £ € Z which imply
Vilk) C A(k) (6)



A1 (k) VI(k+1) By (k)
LE gy o | VERD BQZ(k) (7)
Ar () VI(k+1) B, (k)
for all k € Z. Therefore, it follows from w-periodicity of VI(), (6), (7) and Lemma 2.1 that
Claim 1 holds.
(Proof of Claim 2) The proof also can be shown by the induction with u. Let V(:) be

an arbitrary element of V;(A(:)). It is obvious that
V (k) C A(k) = VO(k)

for all £ € Z. Assume that V (k) C V#~1(k) for all k € Z. Then by using Lemma 2.1, the

following inclusions hold.

A\ [/ VE+D Bi(k)
Vk) C A(k)N AQ.(A’) V(k,ﬂ) +Im BQ,(k)
aw ) I\ v Bu(K)
AR) \ T VR £ 1) By(k)
e agyn| A0 ey | Ba(h)
4w ) |\ vt B, (k)

= V&)

for all k € Z. Hence, the proof of Claim 2 was completed.

This completes the proof of this lemma. m]

3 Problems Formulation and Main Results

In this section, we first formulate our robust disturbance-rejection problems and then give
some solvability conditions for the problems.
Consider the following linear w-periodic discrete-time system SY(ev, B,7,0,0).
z(k+1) = A(k)z(k) + B(k)u(k) + M(k)¢(k)
S¥(a, B,7,48,0) : y(k) = Ck)z(k)
z(k) = D(k)z(k), ke Z
where z(k) € X := R™" w(k) € U - R™M™ (k) € Q == R®, y(k) € Y := RP and

z(k) € Z := R are the state, the input, the disturbance, the incomplete state and the controlled

6



output, respectively, and A(k), B(k), M (k), C(k) and D(k) have uncertainties which are assumed

to have the following convex combinations of two given matrices, respectively.

A(k) = adi(k) + (1 - a)Aa(k)

B(k) = pBBi(k)+ (1 - p)By(k)

M(k) = yM(k)+ (1 —7)My(k) (8)
C(k) = dC1(E)+ (1 —0)Ca(k)

D(k) = oDi(k)+ (1 — o) Dy(k)

where A;(-) (Ai(k) € R™™™"), Bi(-) (Bi(k) € R™™), M;(-) (Mi(k) € R™®), Ci(-) (Ci(k) €
RP*™) and D;(-) (D;(k) € R7™) are all w-periodic for i € 2, and «, 3,7, 4,0 € [0, 1].

Now, we consider an incomplete-state feedback of the form
ulk) = H(k)y(k) = H(k)C(E)z(k)

where H(:) (H(k) € R™*?) is the w-periodic incomplete-state feedback. Then, we obtain the
following closed loop system S%(e, 3,7, d,0) (see Figure 1).

z(k+1) = (A(k) + B(k)H(k)C(k))z(k) + M(k)E(k)

Sale, B,7,0,0) : { 2(k) = D)z(k), ke Z

E_, z=Dx

u | S7(By8,0) y

H |«

Figure 1: Block diagram

For the system S%(w, 8,7,d,0), we use the following notations.

ATk = A(k) + B(k)H(k)C(k)
M (k ko) = AM(k—1)AT(k—2)--- AT (ky) (k> ko)
@ff(k,k) :; I, |

where I, is an (n x n)-th identify matrix. Then, the following lemma holds.



Lemma 3.1 The following relations hold.

h
(kb — o) = {7 (k,k - w)} (9)
76, )" (k) = ®F(ik) (10)
M (k+whk+w—h) = H(kk—h) (11)
(Proof) . The proof is easily shown and is omitted. o

Our robust disturbance-rejection problem can be stated as follows. Given w-periodic matrix-
valued functions A;(:), Aa(-), Bi(:), Ba(), Mi(-), Ma(-), C1(-), Ca(-), D1(-) and Dy(-) of the
system S“(a, 8,7, d,0), find (if possible) an w-periodic incomplete-state feedback H(-) (H (k) €

R™*P) such that
k-1

D(k) > " (k,h+ 1)M(h)E(R) = 0

h=kp

for all @, B,7,0,0 € [0,1], £(-) and & € Z where kg is an initial time.

It remarks that a subspace generated by the disturbance £(-) is the following subspace.

k—1
> @7 (k,h+ 1)ImM (h) (12)

h=kg
Before formulating our problem, some properties related to subspace (12) are shown.

The following lemma will be used to prove Lemmas 3.3 and 3.4.
Lemma 3.2 The following inclusion holds.

O (ke k= (n+ h)w — )ImM(k — (n + h)w — | — 1)
n—1

c {(I)”(A:,A:—iw—l)hnM(k—iw—l—1)}

12

forallle€ {0,1,...,w~1}, h>0and k € Z.
(Proof) See Appendix 1. a

Lemma 3.3 The following assertions hold.

(1) If £ — nw < kg, then

k-1 k-1
Yook b+ DImM(h) € S @7 (k,h +1)ImM(h)
h=ko h=k—nw

(i)  Ifko <k — nw, then

k-1 S k—1
o oMk h+ DImM() = ST H(k, A+ 1)ImM (h)
h=Kkg h=k—nw

(Proof)  See Appendix 2. O



By virtue of Lemma 3.3, our robust disturbance-rejection problems can be formulated as follows.

Robust Disturbance-Rejection Problem with Incomplete-State Feedback (RDRP-
ISF)  Given w-periodic matrix-valued functions A, (), A2(-), B1(-), Ba(-), M1(-), Ma(-), C1(-),
Ca(+), D1(-) and Do(-) of the system S¥(«, 3,7, d,0), find (if possible) an w-periodic incomplete-

state feedback gain H(-) (H(k) € R™*P) such that

k-1
> @k, h+ 1)ImM(h) C KerD(k)

h=k—nw

for all &, B3,7v,6,0 € [0,1] and k€ Z. O

Remark 3.1 If C(-) satisfies C(k) = I, for all k € Z, the above problem (RDRPISF)
reduced to the corresponding problem with state feedback, and is called Robust Disturbance-

Rejection Problem with State Feedback (RDRPSF). o
Next theorem is our main result.
Theorem 3.1 If there exists an {(A;i(-), B; (), Ci(-))]z,7,! € 2}-invariant V(-) such that
(ImM (& — 1) + ImM (k — 1)) C V(k) C (KerD; (k) N KerDs(k)) (13)

for all £ € Z, then the RDRPISF is solvable.
(Proof) Suppose that {(4;(-), B;(-), Ci(-))|¢, 4,1 € 2}-invariant V(-) satisfies (13) for all

k € Z. Then, there exists an w-periodic feedback H(-) (H (k) € R™*9) such that
(Ai(B) + Bi(k)H(K)C(k)V (k) c V(k+1) (14)

for¢,7,l € 2 and k € Z. Choose an arbitrary element z(k) € V(k). Then, using (8) and (14),

the following relations hold.
(A(k) + B(k)H (k)C(k))z(k)
= o(Ai(k) + By (k) H (K)Cy(k))x(k) + (B8 — a)(A2(k) + By (k) H (k)Cy(k))z(k)
+B(1 = 0)(A2(k) + By (k) H(k)C2(k))z(k) + (1 — B)3(Aa(k) + Ba(k)H (k)Cy (k))z(k)
+(1 = B)(1 = 6)(A2(k) + Ba(k) H(k)Ca(k))x(k)

€ V(k+1)
forall o, 8,v,6,0 € [0,1] and k€ Z wh'i,ch' imply
AT(R)V (k) = (A(k) + B()H(E)C(K)V (k) C V(k+1)

9



for all @, 8,0 € [0,1] and k € Z. Further, it follows that

Mk, h+ )V (h+1) = AT(k—1AT(k—2)- - AH(h+ 2 AT (h+ )V (h + 1)

c A"k -1DAT(k—2)--- AT (h+2)V(h +2)

C V(k) (15)
for all k,h+1 € Z (k > h+1). Moreover, since V(-) satisfies (13),
ImM(k —1) C V(k) C KerD(k) (16)

for v,0 €[0,1] and k € Z.
Therefore, it follows from (15) and (16) that

k-1 k-1
> ok h+ DmM(h) ¢ > H(k A+ 1)V(h+1)

h=k-nw h=k—nw

k—1
c > V(k)
h=k—nw

= V) +V(k)+- +V(k)

nw tlmes
C KerD(k)

for all k € Z and o, 8,7, 48,0 € [0,1] which prove that RDRPISF is solvable. 0

Corollary 3.1 It is assumed that C(-) satisfies C(k) = I, for all k € Z. And, de-
fine Qy3(k) := KerD)(k) N KerDy(k) for k € Z and let V*(-) be the supremal element of
Vis(Ai(-):Bj(-); Qu2(1) | 4,5 € 2). If

(ImM, (k — 1) + ImMs(k — 1)) C V*(k)

for all £ € Z, then RDRPSF is solvable.

(Proof) The proof follows from Theorem 3.1 0

Next lemma will be used to prove Theorem 3.2.

k—1
Lemma 3.4 Let V(&) := Z o (k, h+1)ImAM (h). Then, V (-) is w-periodic and satisfies

h=k-nw

ATRYWV (k) CV(k+1)

forall k€ Z, i.e. V() is (A(-), B(), C(-))-invariant.
(Proof)  See Appendix 3. O

10



Theorem 3.2 If RDRPISF is solvable, then there exist (A;(-), B;(-), Ci(-))-invariant Vi;(-)
for i, 7,{ € 2 such that

(i) (ImMi(k — 1) +ImMa(k — 1)) C () Viu(k) forallk € Z
1,7,l€2
(ii) > Viju(k) C (KerDy(k) N KerDy(k)) for all k € Z
2,7,lE2
(iii) () H(Ai(-), Bj(-),Ci(); Viu(-) # ¢
i,5,0€2
~ where

H(4:(-), B;(), Gi(); Vig ()
{ () 1 (A0) + By (B Hige 0) Cu()) Viu(F) C Vigi(k +1) for all & € 2

(Proof) Suppose that RDRPISF is solvable. Then, there exists an w-periodic

incomplete-state feedback H(-) such that

k—1
> & (k,h+ 1)ImM(h) C KerD(k)

h=k—nw

for a,B,7v,4,0 € [0,1]. Thus, for 7,5, {,p,q € 2 we have

ki D,JZ(A, h 4+ 1)ImM,(h) C KerD, (k)
h=k—nw
where
Af(k) == Ai(k) + Bj(k)H (k)Cy (k)
Oik.ko) = Al (k—~DAH(k—2)-- Aflko) (k> ko)
(I)ul(l»,/\f) = I,.

Then, the following inclusions hold.

k-1

Vak) = > @ (k,h + 1)ImM,(h) C (KerD; (k) N KerDy(k)) (17

h=k—nw

for 4,7,0,p € 2. And, define
Vigi(k) = Vi (k) + V5, (k)

for all k € Z. Then, since Vi;-l(—) and Vi;“’-l( ) are (A;(-), B;(-), Ci(-))-invariant with incomplete-

state feedback H () by (17) and Lemma 3.4, it follows that
(Ai(k)'+ B; (k) H(k)Ci(k))Viji(k) C Viu(k +1)
for all 7,4,{ € 2 and A € Z which imply’l

LI lE2

11



Further, V;;(-) satisfy the following inclusions.
(ImMi(k — 1) + ImMy(k - 1)) C Viji(k) C (KerD; (k) N KerDy(k))
for all ¢,7,/ € 2 and k € Z. Therefore,

(ImMy(k — 1) + ImMy(k — 1)) C [ Viu(k)

i,5,1€2
> Viu(k) C (KerDy (k) N KerDs(k))
2,J,0€2
ﬂH )Cl() zyl())#qs
1,7,l€2
for all £ € Z. This completes the proof of this theorem. O

4 An Illustrative Example

Consider the following two-periodic uncertain system:

1 1 2 7‘rk
CAR) = | T+ a(sin® FE—1) a+ (1 —a)cos? 2 qm2 g"
a cos? % (1 - a)sin® %" sin? 1'%
Sw (8% J Tk
(e) 1 cos? Zk
B(k) = | 1 Mk =| 1
0
Ch)=I; D) =[0 1 -1]

where « is an uncertainty in [0, 1].
By using Lemma 2.3, the supremal element V*(-) of V3(A;(-), B;(-); Q12(-)|i,7 € 2) can be

computed as
xk

2

V*(k) = span cos %

zk

2

Since it can be easily checked that V*(-) satisfies the conditions of Corollary 3.1, RDRPSF is
solvable. Indeed, the following state feedback gain solves the problem.

F(k) = [ cosmk 1 0]

Next, consider the system S$“(a) with C(k) = [ -1 cosmk O ] Then, V*(:) is also

{(A4;(), B; (), Ci()) | 1, 7,1 € 2}-invariant with an incomplete-state feedback gain
H(k) = —cosnk
and, since V*(-) satisfies conditions of Theorem 3.1, RDRPISF is solvable.

12



5 Concluding Remarks

In this paper, the two robust disturbance-rejection problems with state feedback and with
incomplete-state feedback for linear w-periodic discrete-time systems were formulated, and then
some necessary conditions and/or sufficient conditions for these problems to be solvable were
obtained. The results are extensions of the results of Ghosh[1] and Otsuka and Inaba et al.[3] to

the w-periodic discrete-time systems, and of the results of Grasselli and Longhi[2] to the robust

probléms.

Appendix 1 (Proof of Lemma 3.2)

It follows from (9), (10), Cayley-Hamilton’s theorem and w-periodicity of M () that the

following inclusions hold.

@7 (kb — (n+ h)w — DImM(k — (n + h)w — [ — 1)
= Ok k=) {OT(h =tk —w z)}"‘*"‘ InM(k — (n+h)w—1—~1)  (by (9), (10))

= @k {nf (<I>” —1, K —w—l)) }ImM(A —(n+hw-1-1)

=0
(by Cayley-Hamilton’s theorem)
n-—1 i
= {Z O (ke ke —iw — l)} ImMk - (n+h)w—-101-1) (by (9), (10))

n—1
C {0 bk —iw — DM (k — i — [ 1)} (by w-periodicity of M(-))
1==0

This completes the proof of this lemma. a

Appendix 2 (Proof of Lemma 3.3)

(i) and (ii) in the case that kg = k — nw are obvious. So, we prove (i) in the case that

ko < k — nw. Then, it is obvious that the following inclusion holds.

k—1 k-1
> ok b+ DImM((R) D> ST @ (kb + 1)ImM(h) (18)
h=kq h=k-nw

Since ko < k — nw, there exists:j € {0,1,.2,...} such that

{(/ﬁ—nw)—jw}i(ko+l)€{0,1,...,w—1}
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Then, the following relations are obtained from Lemma 3.2.
k—nw-—1
> @7 (k,h+ 1)ImM (n)
h=ko .
= " (kk —nw)ImMk —nw—-1) + O (k, k — nw — 1)ImM (k — nw — 2)
+ o+ (kb —nw— (w—1))ImM(k — nw — (w=-1)-1)

~

w times
+ O (k k- (n+ Dw)ImM(k — (n+ 1w — 1)
+o (k- (n+ Dw — (w=INImM(k - (n+1w—(w—1) - 1)

~ s

w times

+ Ok k—(n+j - Dw)ImM(k — (n+j — Dw — 1)
+o @k k- (n4j - Dw— (w-1))mMEk - (n+j—-Nw—(w-1)=1)

~ v

w times
+ PH(k k — (n+ §)w)ImM(k — (n + j)w — 1)
+ooed {®F (hk ~ (n+ ) — [{(k = nw) — jw} ~ (ko + )
ImM (k = (n + j)w — [{(k = nw) — jw} — (ko + n] -1}

“(k—nw)—jw}~{ko+1”+l§w times

n—1 n—1 :
C > @Mk k —iw)InM(k —iw — 1) + 3 7 (k, k — iw — DImM (k — iw — 2)
1=0 i=0

n—1
+oe Z O (k) bk —iw — (w— INImM(k —iw - (w—1)—1)  (by Lemma 3.2)
=0

k-1
= > @k h+1)ImM(h) (19)

h=k—nw

Thus, the following inclusions follows from (19).

k—1 k—1 k—nw-—1
Y Pk h+DImM(R) = S ®(k,h+ DImM(h) + > Bk, h+ 1)ImM(h)
h=ko h=k—nw h=ko
k-1
C > ®(kh+1)ImM(h) (20)
h=k—nw

Hence, (ii) in the case that kg < & — nw follows from (18) and (20).

This completes the proof. 0O

Appendix 3 (Proof of Lemma 3.4)

The following edualities hold.

ktw—1
Vik+w) = > @k + w,h + 1)ImM(h)

h=k+w—nw

14



= Ok +wk+w—nw+)ImMk + w — nw)
+0H(k + w,k + 0 —nw+ ImMM (k + w — nw + 1)
o+ Okt w bk + w)ImM(k + w — 1)

= O (k, k- nw+ 1)ImM(k — nw) + 7 (k, k — nw + 2)ImM (k — nw + 1)

+o+ (ke E)ImM (k — 1) (by (11) and w-periodicity of M(-))
k—1
= > @k h+1)ImM(h)
h=k—nw
= V(k)

for all k € Z. Thus, V() is w-periodic.

Further, it follows from Lemma 3.2 that the following relations are obtained.

AT (k)V (k)
k-1
= AY(k) >0 @f(k h+ 1)ImM(h)
h=k—nw
k-1
C > (k4 1L+ 1)ImM(h) + @7 (k+ 1,k + 1)Imb (k)

h=k—nw

k
= O (k4 1,k — nw+ 1)ImM (k — nw) + Z SH(k +1,h + 1DImM(h)
h=k—nw+1

k
= oM(k+1,(k+1) —nw)ImM((k+1) ~nw-1)+ > &7 (k+1,h+1)ImM(h)

h=k+1—-nw
n—1 (k+1)-1
c > {o k41 k+1 - iw)mM(k - i)+ Y oM (k+1,h+ )ImM(h)
=0 h=(k+1)—nw

(by Lemma 3.2)

(k+1)—1
= . > H(k+1,h+1)ImM(h)
h=(k+1)—nw
= V(k+1)

for all £ € Z. This completes the proof. ]
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