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Abstract: A multiset which is also called a bag is a collection of elements in which a symbol can
be repeated, and hence different from an ordinary set. Fuzzy bags have been proposed by Yager,
but the relations and operations therein are incompatible with those for ordinary fuzzy sets.
New multiset relations and basic operations including the a-cut are defined which are consistent
with those for ordinary fuzzy sets, A number of theoretical properties are shown. Application
to new rough approximations for fuzzy sets, multisets, and fuzzy multisets is considered. For
example, fuzzy multisets are induced from a rough approximation of an ordinary fuzzy set.

1 Introduction

Crisp multisets [3] which are also called bags [8] have been generalized into fuzzy bags [12,
5, 6, 11]. They are defining a fuzzy bag as the crisp bag of the product space {(@i, )}
where p; is the membership for z;. This definition has, however, an inconsistency, namely,
(finite) crisp sets are regarded as a particular kind of bags with the basic set relations
and operations which are essentially the same for the both, whereas an ordinary (finite)
fuzzy set cannot be regarded as a special type of fuzzy bags with keeping the consisitency
for the set relations and operations.

In this paper we consider new relations and operations for fuzzy multisets. Although
the definition of fuzzy multisets itself is the same as Yager’s definition, we distinguish
fuzzy multisets herein and fuzzy bags by Yager, since the relations and operations are
different between the both. Using the definitions in this paper, we easily see the consis-
tency above mentioned: a mapping I'(-) that imbeds an ordinary fuzzy set into a fuzzy
multiset is used for this purpose. A notable property of the fuzzy multiset is that an
a-cut is naturally defined which corresponds a fuzzy multiset to a one-parameter family
of crisp multisets. Using the a-cut, it is proved that the collection of fuzzy multisets in
a finite universal set forms a distributive lattice [7].

As an application, we consider a rough approximation of an ordinary fuzzy set which
is different from rough fuzzy set by Dubois and Prade [2].

2 Multisets and fuzzy multisets

Let us briefly review the concept of crisp multisets [3, 8]. We hereafter prefer the term
of multisets to bags. Assume that X = {z;, z,, .y Z,} is a finite set and all multisets
are considered on this universal set. Let N = {0, 1, 2, ...} be the set of natural numbers.
A multiset, say F, is characterized by a function Countz: X — N which means that the




number of copies of z; is given by Countp(z;). We sometimes write £ = {Countg(z)/z :
z e X}

Example 1. Assume X = {a,b,c,d} and E is characterized by Countg(a) = 1,
Countp(b) = 2, and Countg(c) = Countg(d) = 0. which means that there are one
copy of a and two copies of b in E, but no copies of ¢ and d. We may write £ = {a,b,b}
or E = {1/a,2/b}, ignoring elements of zero copies.

For two multisets £ and F, the inclusion is defined by
ECF < Countg(z) < Countp(z), Vz € X.
The union and intersection are defined by

Countpur(z) = max[Countg(z), Countp(z)], Vz e X,
Countgnp(z) = min[Countg(z), Countp(z)], Vz € X.

Readers may notice that there are resemblances between multiset operations and those
for fuzzy sets.

An ordinary (finite) crisp set can be regarded as a particular type of multisets for which
the function C'ount takes values of zero or unity. The above definitions are consistent with
the standard inclusions and union/intersection operations when crisp sets are regarded
as particular multisets.

Although Yager [12] has proposed fuzzy bags and their operations, a part of the
- proposed relations and operations are inconsistent with those for ordinary fuzzy sets,
when the class of ordinary fuzzy sets are regarded as a particular subclass of all fuzzy
bags. (For more details concerning his definitions, see the appendix.)

This means that we should newly consider basic relations and operations for fuzzy
multisets. In the following basic defintions and propositions concerning their theoretical
properties are listed. The propositions need to be proved. For the ease of reference the
proofs are given in the appendix.

Let I = [0,1] be the unit interval. As introduced by Yager [12], a fuzzy multiset
of X is characterized by a crisp multiset of X x I. Namely, for a fuzzy multiset 4 =
{(2i, i) }iz1,..., which means that 2; has the degree of membership j;, (2;, ;) and (z;, 1;)
(¢ # j) can have the same symbols: z; = z; and/or p; = ;-

We can assemble, for each 24 (1 < k < n), the collection of the corresponding mem-
bership p"’s: (1, Za)ye+s(#he, Tk ), which means that there are copies of z;, with possibly
different degrees of relevance represented by i, ..., Fie,- Thus, the same set can be
expressed as

A= { {/’L’M) R} /J',1£1 }/1131, ey {}U':zla ey ﬂ:,gn}/:l:n } (1)

Notice that {p};, ..., iy, } is a crisp multiset of I. The latter representation is more
convenient for the definitions below.

Example 2. Let X = {a,b,¢,d} and
A = {(a,0.2),(b,0.5),(5,0.1),(a, 0.2), (a,0.3),(d,0.7)}
{{0.2,0.2,0.3} /a, {0.5,0.1} /b, {0.7} /d}.

Thus, A has three copies of a with the degrees 0.2, 0.2, and 0.3; it has two copies of b
with the degrees 0.5 and 0.1, and so on.




An operation for crisp multisets that is inapplicable to ordinary sets is the direct sum
@. Let £ and F be two crisp multisets. Then

Countggr(z) = Countg(z) + Countp(z), Ve € X.

The sum of two fuzzy multisets of X is defined by the direct sum of the corresponding
crisp multisets of X x J. Namely, let 4 = {(zi, pti)}iz1,.., and B = {(z T 1) Yi=t,.g-
Then

A® B = {(21, 1), -, (T, o), (1, 1), s (25 p1) }-

This definition is due to Yager [12].

Since an ordinary fuzzy set A = Y, p1;/2; can be regarded as a particular fuzzy multiset
{(i, pi) }iz1,.. n for which z; # zj, © # j. To distinguish these two representations, we
define a mapping I'(-) which is defined on the set of all fuzzy set of X into the set of
fuzzy multisets of X: For 4 = 3, p;/z;,

P(A) = {(afi, /J'i)}izl,..,n-

The basic relations and operations for fuzzy multisets should be consistent with those
for ordinary fuzzy sets. Namely, for arbitrary fuzzy sets A and B the inclusion, union,
and intersection should de defined so that they satisfy

ACB < T(4)CTI(B), (2)
F(AUB) = T(A)UI(B), (3)
T(ANB) = TI(A)NI(B). | (4)

To obtain the relation and the operations which satisfy (2), (3), and (4), third repre-
sentation for the fuzzy multiset using a grade sequence should be introduced. N amely,
the set {u},, .. ,p,,dk} correspondmg to 2y, is rearranged into a sequence (1}, ..., i}, ) of

decreasing order: ui; > pi, . > e, - This sequence is called the grade sequence for
2. Thus, a fuzzy multiset is represented by the third form:
A= { (150 e, ) /215 (Hags ooy Bng, )20 }- (5)

Notice also that when we consider a finite number of fuzzy multisets, the length of the
grade sequences £, can be taken to be a constant, say £, = p for all 2;, and for all the
fuzzy multisets under consideration, by appending zero grades: (ul, ..., P> 05+, 0).

Example 3. Let

A = {(a,0.2),(5,0.5), (b,0.1),(a,0.2), (a,0.3),(d, 0.7)}
= {{0.2,0.2,0.3}/a,{0.5,0.1} /b, {0.7}/d},

B = {(c,0.4),(b,0.7),(b,0.1), (,0.2)}
= {{0.2}/a,{0.7,0.1}/b,{0.4} /c}.

Then, the grade sequence forms are given by p = 3 and

4 = {(03,0.2,0.2)/a,(0.5,0.1,0)/8, (0,0,0)/c, (0.7,0,0)/d},
B = {(0.2,0,0)/a,(0.7,0.1,0)/5, (0.4,0,0)/c, (0,0, 0)/d}.




We hereafter take this form of the grade sequence as the standard representation for
the fuzzy multiset and the element uf; in (pj,, ..., Hip)/ Tk for A is also referred to as

() (0 () =def My;) for the ease of reference.

Now, we can define basic relations and operations for fuzzy multisets using the grade
sequence form. Namely, for two fuzzy multisets A and B of X ,

(I) [inclusion]

ACB < p(z) < plh(z), j= 1,2,..,p, VzeX.
(IT) [equality]

A=B < ;L'ii(x) =uh(z), j= 1,2,...,p, VzelX.
(IIT) [union]

Haop(®) = max(py(2), j(a)l, j=1,2,.,p, Vze€X.
(IV) [intersection]

() = minlid (o), ph(@)], 5 =123, Vo€ X.

Next, we define a-cut for fuzzy multisets.

(V) [e-cut] For arbitrarily given & € (0, 1], the number of copies of z in A,, the o - cut
of A is defined by

County,(z) =0 < pl(z)<a
Counts,(z) =k <= ph(z) > aand phi(z) <o, (k<p)
County, (z)=p <= ph(z)>a.

Example 4. For A and B in Example 3,

AUB = {(0.3,0.2,0.2)/a,(0.7,0.1,0)/b,(0.4,0,0)/c, (0.7,0,0)/d},
ANB {(0.2,0,0)/a, (0.5,0.1,0)/5, (0,0, 0)/c, (0,0,0)/d},
A0_2 = {3/a,1/b,1/c,1/d}

Then we have

Proposition 1. The grade sequences in (IIT) and (IV) are well-defined, i.e.,
P’}«iuB(m) 2 l‘zAuB(az) 2 2> phup(2),
Panp(z) 2 pinp(e) > . > #ang(z),

for all z € X. |

Proposition 2. The relations (i - ii) and the operations (iii ~ v) are consistent with
those for ordinary fuzzy sets. Namely, an ordinary fuzzy set can be regarded as a fuzzy
multiset by putting p = 1 in defining the grade sequence. Then, the relations (2), (3),
and (4) are satisfied. Moreover, for arbitrary fuzzy set 4 and a € (0,1],

[(Ae) = [T(A)]a (6)




Proposition 3. For arbitrary fuzzy multisets A and B,

ACB < A,CB, VYac(01] (7)
A=B <= A,=B., VYae(01], (8)
(AUB). = A,UB,, VYac(0,1], (9)
(ANB)a = A.NB., Yac(0,1] (10)

Proposition 4. The union and intersection for arbitrary fuzzy multisets A, B ,and C
satisfy the following laws:

(a) [the commutative law]

AUB = BUA, ANB=BnNA.
(b) [the associative law]
AU(BUC)=(AUB)UC, AN(BNC)=(ANnB)NC.
(c) [the distributive law]

AU(BNC)=(AUB)N(AUC),
AN(BUC)=(ANB)U(ANC).

Thus, the class of all fuzzy multisets of X forms a distributive lattice [7].

The intersection and union are frequently generalized by using t-norms and ¢-conorms.
Let ¢ and s be arbitrary ¢-norm and t-conorm for ordinary fuzzy sets. Furthermore, N,
and U, are defined by

pans(z) = t(pa(z), pp(z)),
pau,s(z) = 3(#A($)’#B($))a

for two ordinary fuzzy sets 4 and B.

Now, it is straightforward to generalize these to fuzzy multisets. Namely, if A and B
are two fuzzy multisets, we can define N; and U, by

Wins(@) = t(h(2), ky(z)), F=1,2..,p
Wau,(z) = s(ly(z), pg(z)), 7=1,2,..,p.

Proposition 5. The operations U; and U, are well-defined, namely,
.U',l‘m,B(z) 2 ﬂzAntB(z) > o 2 phe,p(2),
'U',lciu,B (z) > /1'424U,B(:B) 2 2 /Lgiu.B(mL

for all z € X.

Proposition 6. Let A and B be two ordinary fuzzy sets. Then,

T'(AN, B) =T(4) N, T(B),
T(AU, B) =T(4) U, T(B).




3 Application to rough approximations

Let X = {21,23, ..., z,} be a finite universal set and R be an equivalence relation. Rough
sets introduced by Pawlak [10] concern the lower and upper approximations for a given
subset. Given a fuzzy set A = {p1/21, ..., fin/2,}, its lower and upper approximations
have been considered by Dubois and Prade [2]. We consider here another type of an
approximation using the fuzzy multisets. Let the equivalence classes induced from R be

X/R ={Y1,..,Y,.}. Assume that
ANYe = {fhi/Thiy ooy Pt/ Tt }-

Now, a fuzzy multiset approximation for A4 is defined by

A= {{hiy ey e}/ Vit <hsm:

Namely, the information on the elements are lost but the membership values are kept.
It is clear that the rough fuzzy sets [2] use the minimum and maximum values of
{ ki -y pre} for each Y.

According to the definitions in the previous section, we can consider rough relations
and operations.

Proposition 7. Given two fuzzy sets 4 and B of X, the followings hold.
i) ACB= ACB.

(i) A=B=> A=B.

(iii) [ANB| <|ANB|, |AUB|>|AUB|.

where |-| is the cardinality for fuzzy sets and fuzzy multisets. For a fuzzy multiset A4, [A] is
defined by the sum of all of its membersh_tp values for all 2z € X: [A] = ¥ cx T2, pfy(2)

It is straightforward to generalize the above definitions to the cases of approximations
of multisets and fuzzy multisets of X. Namely, let E = A{vi/z1, . vnf2n} be a crisp
multiset and E N Y, = {vri/2wi, .., voe/Zae}. We define E = {{z/;m, s Ukt } [ Y b1 <h<m.
Given two multisets £ and F, (i )ECF:>ECF (i) E=F=E=F, and (iii’)
[ENF| < |[ENE|, |EUF| > |EUF|. similar to (i)-(iii) in Propos1t10n 7 hold. Moreover
for a fuzzy multiset C' = {u; /24, ..., py/2 o} in which 2} and z; may be identical, the

approximation C is defined in exactly the same way. The properties analogous to those
in Proposition 7 are obtained. We omit the detail.

4 Conclusions

We have developed new relations and operations of fuzzy multisets. Thus, a fuzzy
multiset is regarded as the collection of its a-cuts as crisp multisets. Application to a
new rough approximation of fuzzy sets given an equivalence relation has been considered.

Although consideration for a fuzzy multirelation are omited herein, its definition and
consideration for the max-min composition are straightforward.

Futuze studies include advanced operations for fuzzy multisets, and further develop-
ment in the above defined rough approximations. Applications to other areas such as
fuzzy databases and information systems are moreover possible.
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Appendix
A. Bag relations and operations proposed by Yager -
Yager [12] has introduced a notation C.M a(z) for a fuzzy bag A:

C.Ma(2r) = {f1s - Mig, }

corresponding to (1). Thus,
A= {C.My(z1)/21,....,C.M4(z,)/2,}




Notice that C.M4(z) is a crisp multiset of the unit interval. Then he defined the inclusion,
the union, and the intersection by

ACB <= C.My(z) CC.Mg(z), VzelX,

C.Maup(z) = C.Mu(z)UC.Mp(z), VzeX,
C.Munp(z) = C.Mus(z)NC.Mp(z), VzeX.

These defitions do not satisfy (2), (3), and (4), respectively. To see this, Let 4 = {0.5/a}
and B = {1.0/a} be two fuzzy sets. Then, from the ordinary fuzzy set relation and

operations,
A C B, AUB =B, ANB=A.

In contrast, from I'(4) = {{0.5}/a} and T'(4) = {{1.0}/a}, which means I'(4) C I'(B)

does not hold. Moreover,

I(A)UT(B) = {{0.5,1.0}/a},  T(A)NT(B)=0.

B. Proofs of the propositions

Proof of Proposition 1. Let ¢t and s be arbitrary ¢ - norm and ¢ - conorm for ordinary
fuzzy sets, respectively. Assume that a,b, c, and d are arbitrary real numbers in the unit
interval such that @ > ¢ > 0 and 8 > d > 0. Then, from the definitions of the ¢ - norm
and conorm ([4], p.23), :

t(a,b
s(a, b)

vV IV

t(c, d), ' ' (11)
s(c, d).

It is well-known that the min and max operations are a ¢ - norm and a ¢ - conorm,
respectively. Taking a = p(z), b = pk(2), c = pi'(2), and d = p5 ' (2), we have the

desired conclusion.

Proof of Proposition 2. The consistency expressed by (2), (3), and (4) is obvious,
since for an ordinary fuzzy set A, its grade sequence consists of one member pl(z) =
fra(z) (the right hand side is the ordinary membership) and p = 1. Then, it is easy to
see that the multiset inclusion, equality, union, and intersection coincide with those for
the respective relations and operations for ordinary fuzzy sets.

The definition of the « -cut for fuzzy multisets in the case of p = 1 reduces to

1| }4(13) > a),
Count4(z).= {0 (:14(:”) < a),

which coincides with the ordinary a-cut for fuzzy sets, since pl (2) = pu(2), Vz € X.
Thus, the consistency for the a-cut (6) also holds.

Proof of Proposition 3. For proving (7), we define a sequence of fuzzy sets A', A2, ..., A?
for a given fuzzy multiset 4 by

par(z) = ph(z), k=1,2,..,p, VzelX.




Then it is easy to see that, for two fuzzy multisets A and B,
ACB < A*CB* k=12..p (13)

Let k = Counts,(z). Then, from the definition of Count,_,

par(z) = l‘ft(x) 2
paa(z) = pii(z) <a
In other words,
ze (e, =1,k
z ¢ (A%)q, i=k+1,.,p

where (A4*), and (B*), are ordinary a-cuts for A* and B*, respectively. Thus, we have
County, (2) = max{k: z € (4*%),}
This means that the following lemma holds.
Lemma. For every a € (0,1],
A, C B, « (4", C(B",, k=1, - (14)
(Proof of the lemma) The above discussion implies that |

Ay C By <= county, (z) < countp,(z), Yz € X
— max{k:z€ (4"),} <max{k:z e (B",}, VzeX
= ifze (A" thenz e (B*,, VzeX, k= 1,..,p
— (A%, C (B",, k=1,..,p.
(End of the proof of the lemma)

Furthermore, it is well-known that
A*C B* <= (4", C (BY., Vae (0,1, k=1,.,p. (15)
From (13), (14), and (15), it is now obvious that (7) holds.
It is now easily seen that (8) is valid, since

A=B <= ACB, BCA
<= AaC Bsy BaC A, Vae(0,1]
< A,=B, Vae(0,1]

The sequnces {A*} and {B*} are also used for proving (9) and (10). Notice that these
equations hold for ordinary fuzzy sets [1, 9.

Since A* and B* (k =1,2,...,p) are ordinary fuzzy sets, (A* U B*), = (4%), U (B*),
are valid. Moreover,

Hhos () = max{uh (2), wh(2)] = max(pae (@), woe (2)] = pogeom (2).
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Thus, for all z € X,
count(aup).(2) = max{k: ph z(z) > a}
= max{k : parpr(z) > a}
= max{k:z € (4*), or z € (B*),}
= max[max{k :z € (4%),},max{j: z € (B?),}]
= max[count,,(z), countpg, (z)]

= counts ug, ().
Hence we have (AU B)y = A4 U B,. The equation (10) is proved in the same way.

Proof of Proposition 4. Let us prove one equation for the distributive law. Notice
that (AUB)NC = (ANC)U(BNC) is equivalent to

[(AUB)NCla = [(ANC) U (BNC)a

for all o € (0, 1]. Noting that the distributive law holds for crisp multisets [12] and using
(9), (10), we have

(AUB)NCl, = (AUB) NCy
(Ao U Bs) N Cy
= (A Ca) U (Ba N Cy)

(4 ) U (BNC)a
[( CYU(BNO)a

The other laws are proved in the same way.

Proof of Proposition 5. Notice the property described in the proof of Proposition 1
for arbitrary {-norm and ¢-conorm. By putting a = p%(z), b = pk(z), c = pk(2), and
d= p.k“( ), we see that this proposition can be proved in the same way as Proposition
1.

Proof of Proposition 6. To see that the conclusion holds, it is sufficient to note that
the remark given in the beginning of the proof of Proposition 2 can be applied in this
case. We omit the detail.

Proof of Proposition 7. The properties (i) and (ii) are obvious. For the first inequality
in (iii), it is sufficient to note that for four nonnegative numbers ay, as, by, by such that
aq > sy &Ild bl > bz,

min[a;, b;] + minfas, by] > min|ay, by] + minay, 4]

holds. This inequality is proved by a stra,lghtforward calculation. Now, given two grade
sequences p/, (z) and p(z ) and for an arbitrary permutation (ki, ..., p) of (1,2,...,p), it
is not difficult to see that

P P
. . . . . ks
D>_ min[py(z), p(2)] > 3 min[p (), uy ()]
=1 7=1
using the previous inequality. |4 N B| is attained at some permutation, say (k1y s p).

Thus, the first inequality is valid. The second inequality in (iii) is proved likewise.
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