A Data Modeling Approach to the Seamless
Information Exchange
among Structured Documents and Databases

Atsuyuki Morishima* Hiroyuki KitagawaﬂL
*Doctoral Degree Program in Engineering
tInstitute of Information Sciences and Electronics
June 1996
ISE-TR-96-133

Abstract

Integration of heterogeneous information resources has been one of the most important
issues in recent advanced application environments. In addition to conventional databases,
structured documents have been recognized as important information resources recently.
In this paper, we present a data model named the NR/SD model, which is used as a
basic data modeling framework for the seamless integration of structured documents and
relational databases. The NR/SD model combines an abstract data type named the
structured document type and the nested relational structures, and features operators
named converters to dynamically convert structured documents into nested relational
structures and vice versa. Therefore, we can manipulate information in either forms of
structured documents and relations. The operators can also be used to develop user
views on the stored structured documents. We show data structures and operators in
the NR/SD model and its applicability to system federation environments. Some basic
properties of the converters are also studied.

1 Introduction

Advanced applications today often require accesses to information not centralized in one
place but scattered in a variety of physically and/or logically distributed information
repositories. Thus, integration of heterogeneous information resources has been one of
the hot research issues [1][2][3]. Databases and structured documents are representatives
of important information resources. In addition to the conventional databases, structured
documents such as those described in SGML [4] have been widely used, and have in-
creased significance in applications such as digital libraries [5], CALS [6], WWW [7], and
hypermedia descriptions [8].

The objective of this research is to provide a framework for the seamless integration
of structured documents and conventional databases. In this paper, we present a data
model named the NR/SD model as a basic data modeling framework, and discuss its
applicability to the integration of structured documents and relational databases. Data
modeling constructs of the NR/SD model are nested relational structures and the abstract
data type concept. The nested relational structures [9][10][11] are useful in that (1)
they have primitive constructs to represent logical structures embedded in structured
documents, and (2) they suit well to the widely-used relational database structures as
natural extensions of relations. The NR/SD model provides an abstract data type named
the structured document type as a container to store raw structured document data. Thus,
the NR/SD model provides basic constructs to model data either in structured documents
and relational databases. The NR/SD model features operators, called converters, to
dynamically convert structured documents into nested relational structures and vice versa.
The converters allow us to represent the same logical structures either as instance-level
structures inside structured documents or as schema-level structures of nested relations.
The former representation is appropriate in manipulating a collection of heterogeneous
data objects, while the latter is appropriate from the viewpoint of data restructuring and
querying. The operators in the NR/SD model including the converters, can be used to
manipulate data both in the structured document repositories and relational databases. In
addition, we can get required data in the form of structured documents as well as relations.
Today, WWW is often used to retrieve data. In such environments, the retrieval results
need to be in structured documents. Furthermore, the operators in the NR/SD model
can be used to develop various user views on top of the stored structured documents in
analogy to views in relational databases [12].

Several approaches have been proposed to achieve the integration of structured doc-
uments and databases [13][14][15][16][17][18][19][20][21]. Although their objectives are
somewhat different from one another, most of them intend to achieve the integration of
structured documents and databases by introducing schema level constructs to represent
data in structured documents. Atlas [14] represents document data in nested relations
and provides querying facilities. Christophides and others extended the object-oriented
data model of Oy to represent SGML DTDs [15]. Yan and others [16], COINSJ[17], and
Volz and others[18] all provide the view of structured documents within the framework
of the object-oriented database schema. NST [19] is an algebra along this approach. All
those approaches map structural information of structured documents into the database
schema. Therefore, we have to design schema level constructs such as classes and types

for each type of structured documents within the framework of the given data model in
advance. Moreover, we are forced to manage documents of different types with different
object types, and it is not easy to manipulate heterogeneous document collections. As
aforementioned, the NR/SD model allows us to handle document structures either at the
schema level or at the instance level, and these problems are largely alleviated.

T/RDBMS [20][21] combines the relational data model and the abstract data type
to represent structured documents. In T/RDBMS, information inside structured docu-
ments can be viewed as a predefined collection of relations and queried in the extended
SQL. However, document structures cannot be converted to the schema level constructs.
Moreover, no means is provided for transforming relational structures into structured
documents. This asymmetric bridge between the structured document world and the re-
lational database world prohibits us from utilizing the full power of the relational data
model for manipulating structured documents. For example, we cannot apply the re-
lational algebra to restructure structured documents. The NR/SD model allows us to
first transform structured documents into nested relational structures with the convert-
ers, then to manipulate them with the nested relational algebra operators, and finally to
transform the result data into structured documents again. Also, the modeling concepts
in T/RDBMS cannot be used to develop “virtual” structured documents as user views.

Yoshikawa and others proposed another approach to the integration of those two world
[22]. Their approach provides a general mechanism to make reference links from compo-
nents of SGML documents to database objects. Therefore, the linkage specification of
structured documents and databases must be specified in advance at the instance level.

A family of region algebras were proposed to manipulate structured documents [23][24][25].
They are focussed on structured documents and do not consider conventional databases.
Moreover, they are essentially index algebras to be mainly used for retrieval, so that they
cannot be used for restructuring structured documents.

The rest of this paper is organized as follows. In Section 2, an example scenario is
shown to explain the integration of structured documents and the relational database
in the NR/SD model. Section 3 gives the data structures and operators in the NR/SD
model. In Section 4, we present application of the operators to the sample scenario in
Section 2 and show its applicability. In Section 5, we study some basic properties of the
converters. Section 6 is the conclusion.

2 Example Scenario

In this section, we show an example integration scenario of structured documents and the
relational database to illustrate situations in which the NR/SD model is used. Suppose
that we have two information repositories. One is a relational database repository which
manages the faculty data of some university. The other is a document repository which
manages papers and books published, in the form of structured documents. To attain
the integration of these two information repositories, we follow the system federation
approach as in [1][26] and prepare a mediator and two wrappers as shown in Figure 1.
The mediator has to do two types of job: One is to communicate with the two repositories
through the wrappers, and the other is to provide the integrated view of the underlying

two repositories. The wrappers retrieve the information requested by the mediator from
the repositories and pass it in the requested form.

In this sample context, the NR/SD model can be used to provide the integrated
schema of these two repositories. As shown in Figure 2, the integrated schema consists
of three relations. The relations “Faculty” and “Department” directly represent data in
the relational database. The relation “Document” has an attribute “Doc” and represents
the collection of structured documents in the document repository. The domain of “Doc”
is the structured document type, and each “Doc” value is a raw structured document in
the document repository. As mentioned above, the document repository has two types of
structured document, that is, papers and books. Therefore, the “Doc” attribute values
have two different structures.

In this example, suppose we want to get a set of report structured documents, each
of which contains a department name and lists the papers and books written by faculty
members in the department (Figure 3). It is often the case that the result data needs to
be in structured documents when retrieval is done through WWW. Each item in the list
includes the title, author name, and publication year. In addition, it should include the
journal name, volume, etc. for journal papers, the conference name for conference papers,
and the publisher name for books. The contents of the papers and books are not included

in the list.

The integrated schema
in the NR/SD model

User
/ /Application
[Mediator

/\

[Wrapper1 Wrapper2
— S—
_—/
Relational Document
Database Repository
_—______’/ v

Figure 1. Example situation

Faculty
FID | Name | D-Name | Rank | Salary | Speciality

Department
D-Name | Head

Document
Doc

Figure 2. Integrated schema in the NR/SD model

<table>

<dep>Department A</dep>

<pubs>

<pub><title>‘‘On structured documents’’</title><a-name>T. Jone</a-name>
<pub-info><p-pub-info><journal><j-name>A-journal<j-name><vol>1</vol>
<no>8</no><year>1992</year></journal></p-pub-info></pub-info></pub>
<pub><title>‘‘Relational Databases’’</title><a-name>G. Mark</a-name>
<pub-info><b-pub-info><publisher>B</publisher><year>1995</year>
</b-pub-info></pub-info></pub>

<pub><title>‘‘Access control in a multidatabase’’</title><a-name>H. Smith
</a-name><pub-info><p-pub-info><proceedings><c-name>CIKM</c-name><month>May
</month><year>1992</year></proceedings></p-pub-info></pub-info></pub>

Figure 3. Sample report structured document

We can satisfy the requirement with the operators in the NR/SD model. Specifically,
we first extract the author name and affiliation information from relation “Document” and
represent it in nested relational structures with the converters. Then, we select relevant
data, join them with the faculty relation data, and so on. Finally, we convert the data
into structured documents again.

3 NR/SD Data model

In this section, we define the data structures and operators in the NR/SD model. As
mentioned before, nested relational structures, and the abstract data type, structured
document type, are basic data modeling constructs of the NR/SD model. In addition to
the ordinal nested relational algebra operators, the NR/SD model features six converters,
to convert structured documents into nested relational structures and vice veasa.

3.1 NR/SD Data Structures

We define the nested relational structures following the formalism of Fischer and Thomas
[10]. A relation scheme S is a set of rules of the form A; = (A},...,A%). In this context,
the order of Ai,..., A! is significant. An example of relation scheme T is as follows.

T ={A=(B,C,D),D = (E,F)}

T has two rules. A, B, ..., F are called attributes. We call attributes which appear on the
left side of some rules, namely A and D, higher-order attributes, and the others, namely
B, C, E, and F, zero-order attributes. Let Eg denote the set of attributes in S, namely
Er = {A,B,C,D,E,F}. Each attribute can appear at most once on the right side of
some rule and also on the left side of another rule. S has just one ezternal attribute,
denoted by Rg, which appears only on the left side of some rule, namely Ry = A.

Instances are defined for each attribute. If A; is a zero-order attribute, an instance of
A; is a value from the set dom(A;), called the domain of A;. As defined in Subsection 3.2,
dom(A;) can be the structured document type as well as ordinal primitive data types such
as Integer and String. Values of the structured document type are called SD wvalues, and
values in the other domains are called ordinal values. If A; is a higher-order attribute and
A; = (AL AL ... Al), then an instance of A; is a set of tuples such that each component
of a tuple is an instance of A; Instances of higher-order attributes are called composite
values.

The relation (S, r) is a pair of the relation scheme S and an instance r of Rg. Figure
4 shows relation (T, 7¢) in tabular form. Here, dom(B) is String, dom(E) is Integer, and
dom(C) and dom(F) are the structured document type defined in Subsection 3.2. Often
we refer to the relation simply by its instance r when there is no ambiguity.

A
D
B C 5T T
abe <table><dep> |1
Department... | 2
3
def 1

Figure 4. Relation (T, rq)

3.2 Structured Document Type

Here, we define the structured document type denoted by SD. A value of the structured
document type SD is the following pair of a DTD (Document Type Definition) and text
in which tags are embedded according to the DTD.

SD = {(d,c)|d is a DTD A c is a tagged text which conforms to d}

Figure 5 shows an example SD value. The DTD in the upper box represents the
document structure. Inside the lower box is the tagged text. The DTD in the NR/SD

5

model is similar to that in SGML, although we do not consider exception structures and
recursions for simplicity. A tagged text is divided into elements surrounded by a begin tag
<gi> and an end tag </g1>, where gi is a generic identifier representing the element type.
Elements can be nested within other elements. For example, the tagged text in Figure 5
has element “memo,” and the “memo” has “prolog,” “date,”... etc. as sub-elements.

The DTD prescribes how the elements can be hierarchically constructed by sub-
elements. Consider the DTD in Figure 5. FEach line in the DTD is an element type
definition. An element “memo” is a sequence of “prolog” and “body.” An element
“body” consists of zero or more “para” elements. An element “prolog” is again a se-
quence of “date,” “from,” “to,” and “subject.” An element “to” contains either “faxno”
or “mailaddr.”

Formally, a DTD is a set of element type definitions, which has one of the following
forms.

o g=seq(g1,--,0n)

e g =rep(q)

e g=or({g1,...,9n}), if § # i then g; # g;.
o g = ptext

Here, ¢ is a generic identifier of the defined element type, and g; is the generic identifier
of its sub-element type. Element type definitions of the form ¢ = ptext can be omitted
for concise presentation. In Figure 5, element type definitions such as “para=ptext”
are omitted. Element types defined in a DTD must form a rooted DAG structure. The
DTD in Figure 5 forms the rooted DAG (tree in this case) shown in Figure 6. Each node
in the DAG represents an element type and has a generic identifier ¢ and the structure
specification (seq, rep, or, or ptext). We call the generic identifier of the root node, the
root generic identifier. The root generic identifier of a DTD d is denoted by root(d). If d
stands for the DTD in Figure 5, root(d) = “memo.”

memo = seq(prolog, body)
body = rep(para)
prolog = seq(date, from, to, subject)
to = or({faxno, mailaddr})
<memo>
<prolog>

<date>March 27, 1996</date>
<from>A. Morishima</from>
<to><faxno>XX-XXXX</faxno></to>
<subject>An example</subject>
</prolog>

<body>

<para>This is a value of structured document
type. ...</para>
<para>...</para>

</body>

</memo>

Figure 5. SD value

seq memo
prolog / \\ body
seq rep
date from \ to subject para
ptext ptext or ptext ptext
faxno mailaddr
ptext ptext

Figure 6. The DAG representation of DTD

For convenience in the later discussion, we introduce the linear notation of a DTD.
For a DTD d with root(d) = g, the linear notation LN(g) is derived as follows.

1. If g = ptext € d, then LN(g) is g:ptext.
2. If g =seq(g1,-.-,9x) € d, then LN(g) = g : seq(LN(g1),...,LN(gs)).
3. If g =rep(g1) € d, then LN(g) = g : rep(LN(g1)).

4. If g =or(g1,...,9x) € d, then LN(g) = g :or(gy,...,LN(gn))-

The DTD in Figure 5 is represented below in the linear notation.

memo:seq(prolog:seq(date:ptext, from:ptext, to:or({faxno:ptext, mailaddr:ptext}),
subject:ptext), body:rep(para:ptext))

3.3 Converters

The NR/SD model provides the six operators: Rep-unpack, Seq-unpack, Rep-pack, Seq-
pack, Or-append, and Or-remove, which are generically called converters. The converters
transform SD values into nested relational structures and vice versa. XX-unpacks and XX-
packs reorganize nested structures of relations. XX-upacks extract the top-level structures
embedded in SD values and represent them in the nested relational structures. XX-packs
attain the conversions in the opposite direction. Or-append and Or-remove are mainly
used to make some preparations for XX-unpacks and XX-packs.

Rep-unpack

Rep-unpack (RU) takes a relation containing SD values, and extracts the repetition (rep)
structures at their roots. For example, relation r; (Figure 7) is transformed into relation
o (Figure 8) by the following Rep-unpack:

9 := RUBpyc,p),5(71)-

R
A B
(a:rep(b:or({c:seq(d:text,e:ptext),i:ptext})) ,
1 “<a><c><d>T1</d><e>T2</e></c>
<E>T3</E>

<c><d>T4</d><e>T5</e></c>")

(g:rep(h:seq(iitext,j:ptext, k:ptext)) ,
2 “¢g><h><i>T6</i><j>T7</j><k>T8</k></h>
<h><i>T9</i><j>T10</><k>T11</k></h></g>”)

Figure 7. Relation

R
B
A
C D E
1 | { bior({c:seq(d:text,e:ptext),fiptext}) , “<c><d>T1</d><e>T2</e></c>")
1 | 2 | (bror({c:seq(d:text,e:ptext),f:ptext}) , “<f>T3</£>”) a
3 | { b:or({c:seq(d:text,e:ptext) :ptext}), “<c><d>T4</d><e>T5</e></c>”)
9 |1 (h:seq(i:text,j:ptext,k:ptext) , “<h><i>T6</i><j>T7</j><k>T8</k></h>")
3 g « P > y . i g
2 | (h:seq(istext,j:ptext k:ptext) , “<h><i>T9</i><j>T10</j><k>T11</k></h>")

Figure 8. Relation ry

Definition 1. Let (S,7) be a relation. Assume that S has the rule Rg = (A41,...,4,),
dom(A;) = SD for some 1 < 1 < m, and Vt € r3g,d, c(t[A:] = (g : rep(d),c)). Then,
RU 4,.0,8),¢({(S,7)) = (5',r'), where B, O and G are new attributes,

S = (S={Rs=(A1,...,An)}) U{Rs = (41,..., An,G), A = (0, B)},
' = {t|3u € r,3g,d, c,n(u[A;] = (g : rep(d),c) A n = F#sub-el(c)
At = u except t[G] = g and t[4;] = {(1,(d, sub-el(c, 1)}), ..., (n,(d, sub-el(c,n)))})},

#sub-el(c) is the number of the direct sub-elements of ¢, and sub-el(c,) is the ¢-th direct
sub-element of c. O

Seq-unpack

Seq-unpack (SU) takes a relation containing SD values and extracts the sequence (seq)
structures at their roots. For example, relation r3 (Figure 9) is transformed into relation
r4 (Figure 10) by the following Seq-unpack:

rq = SUp_(c,p),5(r3).

R
A B

1 | { aiseq(b:rep(c:ptext),d:seq(e:ptext,f:ptext)) ,
“<a><c>T1</c><e>T2</c><d><e>T3</e><£>T4</£></d>")

9 | (g:seq(h:or({i:ptext,j:ptext}) k:rep(l:ptext)) ,
“g><h><j>TE</ j></h><k><KI>TE</I>KI>T7</1></k></g>”")

Figure 9. Relation r3

R
A C D)
1 | (brrep(c:ptext) , (d:seq(e:ptext,f:ptext) , a
“<e>T1</e><e>T2</e>7) “<d><e>T3</e><E>T4</E></d>”)
9 (hior({iiPteXtaijteXt})) (k:rep(l:ptext) , g
“<h><j>T5</j></h>”) “Ck><1>TB</I><1>T7</1></k>”)

Figure 10. Relation 74

Definition 2. Let (S,r) be relation. Assume that S has the rule Rg = (4y,...,A4n),
dom(A;) = SD forsome 1 < ¢ < m, and 3kVt € r3g,ds, ..., dk, c(t[A:i] = (g : seq(dy, ..., d),c)).
Then, SU4,—(p,,....8,),c((S,7)) = (5',r"), where By, ..., By and G are new attributes,

S" = (S—{Rs=(A1,...,An)})U{Rs = (41,...,Ai-1,B1,...,Br, Ais1,.. ., An, G)},
and
ro= {tlau er, ag7d1?‘ e ,dk,C(U[Ai] = <g : Seq(dla' e 7dk)>c>
NGl = g At[Ar, .. Aic, A, A = u[Ar, A A, A
AL < VI < k(t[Bi] = (d;, sub-el(c,1))))}. O

Rep-pack

Rep-pack (RP) takes a relation containing SD values, and embeds sub-relation structures
into SD values as repetition (rep) structures. For example, relation ro (Figure 8) is
transformed into relation r; (Figure 7) by the following Rep-pack:

r = RPB(’FQ).

Definition 3. Let (9, r) be a relation. Assume that S has the rules Rg = (A;,..., An, G)
and A; = (0, B), dom(B) = SD, < is a total order relation over dom(O), and V¢ €
radvv € t[A;]3e(v[B] = (d,c)). Then, RP4,((S,r)) =(5',r") , where

S = (S—{Rs=(A1,...,4,,G),A; =(0,B)})U{Rs = (A1,...,Am)},
= {t|Fu € r,3g,d,i1,... 00, C1,...,Cp
(u[G] = g Au[A] = {(i1,{d,c1)), ..., (n, {dycn)) } NG < oo < iy
At = u except t[A;] = (g : rep(d), add_tag(concat(cy,...,cn),9)))},
concat(cy, . .., ¢,) is the concatenation of the tagged texts cy, . .., ¢,, and add_tag([tagged_text],
g) is the tagged text “<g>[tagged._text]</g>.” Forexample, add_tag(“T1”, a)is “<a>T1.”
O

In the above definition, the generic identifier g is given by the corresponding value
of attribute G. We can explicitly specify the generic identifier g as a parameter instead
of specifying attribute G. In this case, the expression would be RP g ,(r2), where g is a
given generic identifier. We omit the formal definition of this version of Rep_pack.

Seq-pack

Seg-pack (SP) takes a relation containing SD values, and embeds attribute sub-sequences
into SD values as sequence (seq) structures. For example, relation r4 (Figure 10) is
transformed into relation r3 (Figure 9) by the following Seq-pack:

rg = SPB:(C‘,D)<T4)-

Definition 4. Let (S,) be a relation. Assume that S has the rule Rg = (41,...,4,, G),
and dom(A;) = SD,...,dom(A;) = SD forsome 1 < i < j < m. Then, SPp_(4;,..4,)((S,7)) =
(S’,r'), where B is a new attribute,

S = (S—{Rs=(Ap ..., Am,G))U{Rs = (A1,..., Aii1, B, Ajsr, ..., An)},

and
o= {t|Fuer,3g,di,. .., djci, ..., c;(u[G] = g Au[X;] = (di, i), .. Au[X] = (dj, ¢4)
/\t[Al, P 7Ai—laAi—|—1, . ,Am] = U[Al, e ,Ai—laAi-l-l, e ,Am]
At[B] = (g : seq(d;, . .., d;),add_tag(concat(c;, . .., ¢j),g)))} O
As in Rep-pack, the generic identifier g can be explicitly specified as a parameter to
Seq-pack.

10

Or-remove

Or-remove (OR) takes a relation containing SD values, and removes the top “or” (or)
structures at their roots. This operator can be used to prepare for further applications
of Rep-unpack and Seqg-unpack operators, which require the root structure of target SD
values to be repetition (rep) or sequence (seq). For example, the following Or-remove
transforms relation 75 (Figure 11) into relation rg (Figure 12), to which we can apply
Seq-unpack:

re ‘= ORB,C('I‘5).

R

A B

1 (a:or({b:seq(c:rep(d:text),e:ptext),f:seq(g:ptext,h:ptext)}) ,
“<a><c>T1</c><e>T2</c><d>T2</d>”)

9 {L:or({f:seq(g:text,h:ptext),j:seq(k:ptext,.or({m:ptext,n:ptext}))}) ,
“<i><§><k>T3</k><1><m>T4</m></1></j></i>")

3 {o:or({p:seq(q:text,r:ptext),f:seq(g:ptext,h:ptext)}) ,
“<0><p><q>T5</q><r>T6</r></p></0>”)

Figure 11. Relation rj

R
A B C
1 (b:seq(c:rep(d:text),e:ptext) a
“<c>T1</c><e>T2</c><d>T2</d>”)
9 (j:seq(k:ptext l:or({m:ptext,n:ptext})) , ;
“<§><k>T3</k><1><m>T4</m></1></§>")
3 (p:seq(q:text,r:ptext) ,
0
“<p><@>TE</Q><r>TE</T></p>")

Figure 12. Relation 74

Definition 5. Let (S,7) be a relation. Assume that S has the rule Rg = (Ay,..., An),
dom(A;) = SD forsome 1 <4 < m,andVt € rdg,dy,...,dx, c(t[A;] = (g :or({d1,...,dr}),c)).
Then, OR 4, ¢ ((S,7)) = (S’,r') , where G is a new attribute,

S, = (S—{RS:(Al,...,Am)})U{RS:(Al,...,Am,G)},
and
ro= {t|§|u € T,Hg,gl,...,gk,dl,...,dk,c(

ulAi] =(g:or({g1 : di,..., gk : dr}),c) Ac = “Rg><g;>.. </g;></g>”
At = u except t[G] = g and t[A;] = (g; : d;, sub-el(c,1)))}.]

Or-append

Or-append (OA) takes a relation containing SD values, and add the “or” (or) structures
at their roots. This operator can be used to prepare for Rep-pack operator, which requires
the target SD value set to have the same element type at their roots. For example, we

11

cannot directly apply Rep-pack to relation r; (Figure 13). However, the following Or-
append yields relation rg (Figure 14), to which we can apply Rep-pack:

rg 1= OAD(’I“7).
R
B
A C 5 E
1 | { c:seq(d:text,e:ptext) , “<c><d>T1</d><e>T2</e></c>”)

1 | 2 | {fior({g:ptext,h:ptext}) , “<E><g>T3</g></£>”) b
3 | {c:seq(d:text,e:ptext) , “<c><d>T4</d><e>T5</e></c>”)
N (jirep(k:ptext) , “<j><k>T6</k><k>T7</k></j>") :
2 | (Liseq(m:text,n:ptext) , “<1><m>T8</m><n>T9</n></1>”)

Figure 13. Relation r7

R
B

A C D

1 | { b:or({c:seq(d:text,e:ptext),f:or({g:ptext,h:ptext})}) , “<c><d>T1</d><e>T2</e></c>")
13 { b:or({c:seq(d:text,e:ptext),fior({g:ptext,luptext})}) , “<f><g>T3</g></£>”)

3 | {bior({c:seq(d:text,e:ptext),f:or({g:ptext,h:ptext})}) , “<c><d>T4</d><e>T5</e></c>")
2 | 1| (ior({jirep(k:ptext),liseq(m:text,n:ptext)}), “<i><j><k>T6</K><k>TT</k></j></i>”)

2 | (L:or({jirep(k:ptext),l:iseq(m:text,n:ptext)}) , “<i><1><m>T8</m><n>T9</n></1></i>”)

Figure 14. Relation rg

Definition 6. Let (S,r) be a relation. Assume that S has the rules Rg = (A1, ..., Am, G)
and A; = (By,...,By), and dom(B;) = SD for some 1 < j < n. Then, OAp; ((S,7)) =
(S’, '), where

S = (S—-{RS=(A1,...,Am,G)})U{RSZ(Ala-'-aAm)}

and
= {t|Fu € r,3g,d(u[G] = gAd=g:or({d|Fw e u[A],Ic(w[B;] = (d,c))})
At = u except t[A;] = {v|Fw € u[A;],3d, c(w[B;] = (d, ¢)
Av = w except v[B;] = (d,add tag(c,g)))})}. O

As in Rep-pack, the generic identifier g can be explicitly specified as a parameter to
Or-append.

3.4 NR/SD Algebra

The NR/SD algebra consists of the six converters and the operators explained here. The
operators other than the converters fall into two groups. The first group includes counter-
parts of ordinal nested relational algebra operators, such as Selection, Projection, Nest,
Unnest (Figure 15) [10]. The second group includes composite operators to enable concise
expressions. Here, we briefly describe these operators. We also explain how to translate
the structured document type into ordinal types and vice veasa.

12

Nested Relational Algebra Operators

Operators in Figure 15 are also operators of the NR/SD algebra. Selection takes selection
condition p for selecting tuples. In the NR/SD model, applicability of some converters
depends on the DTD structures of SD values. For this reason, Selection here is extended
to be able to select tuples based on equality of DTDs of SD values in tuples. For example,
Selection oTD py—a:0r({b:ptext,c:ptext})(rl) selects tuples whose DTDs of attribute B
(dom(B) = SD) values are a : or({b : ptext,c: ptext}).

As mentioned in Subsection 3.1, the order of attributes is significant in the NR/SD
model. The main reason is that sequence structures in structured documents are con-
verted into attribute sequences and vice versa by Seq-Unpack and Seq-Pack. Therefore,

WA,B(T) ;é WB,A(T) and 71 X To #7“2 X 7ry.

Selection o,(7)
Projection T sy Ai (T)
Cartesian product r1 X T

Nest VA=(B1,-.Bm)(T)
Unnest pa(r)

Union ry Urg
Difference T —Ta

Figure 15. Nested relational algebra operators

Composite Operators

The operators we have defined above are not sometimes convenient in formulating prac-
tical queries concisely, since they can only be applicable to the outermost structures of
relations. We can define composite operators which can directly manipulate internal at-
tributes inside relations. For this purpose, given a relation (S,), we define Tag operator
74, for Unnest pa,(r) as 74,(r) = Tatributes,a;, (7 X 1), where Attributes stands for the
children of the external attribute Rg. Namely, Tag operation makes a copy of the target
attribute A; of Unnest 1 4,(r) to assure the reversibility of Unnest [27]. Then, for example,
we define the composite operator RU* for Rep-unpack RU as follows:

RU* 4.5,0),6(r) = Y(RU syB,0),c(®(7))),

where ®(r) denotes a minimum sequence of pairs of Tag and Unnest such that RU 45,0y c(®(7))
is well-defined, and ¥(r) is a sequence of pairs of Nest and Projection which recovers the
original nesting of attributes as the inverse of ®. Similar composite operators can be
defined for any unary operators we have defined.

Translation between the Structured Document Type and Ordinal Types

In the manipulation of data in structured documents and relational databases, it is some-
times necessary to translate ordinal values such as integers and strings into primitive SD
values (namely, SD values which have only one start tag and end tag.) and vice versa. For

13

example, we need to translate a string “abc” into an SD value (g : ptext, “<g>abc</g>”)
and an integer 1 into (g : ptext, “<g>1</¢>"). The domain translator (D'T) perform such
type conversion. Formally, let (S,7) a relation, and assume A; is a zero-order attribute
in S. Then, DT 4, 7(r) changes dom(A;) into T. When T = SD, we also have to specify
a generic identifier g, for example DT 4; sp(g)(7), to be used in start and end tags.

4 Application

In this section, we show sample uses of the NR/SD algebra in the context of the scenario
explained in Section 2. Two examples are presented here. The first example shows data
retrieval from the document repository and the result is given as a relation. The second
one is the data retrieval discussed in Section 2. This example shows how the NR/SD
algebra is used to manipulate collections of heterogeneous data and to put the retrieval
result into structured documents.

As mentioned in Section 2, the integrated schema consists of three relations “Faculty,”
“Department,” and “Document.” We assume each structured document in “Document”
is based on DTD1 or DTD2, whose DAG structures are shown in Figure 16.

paper
DTD1 seq
title b
ptext rep authors r p-pub-info
di
author procee mgs]ournal reference
ptext rep ptext
t Xt abstract sectlons
pte ptext
te text
a-name affiliation glonth i name text ptext
text ext P year ptext
P pt ptext no -
c-name year vol section
DTD2 seq book

. b-content
title b-pub-info seq

" / c-table \\‘ rad
autnor
/s e‘q - bt

ptext ptext ptext ptext |chapters
ptext ptext publisher year preface abstract
a-name affiliation

rep chapter

ptext
section

Figure 16. DTDs in relation “Document”

14

Example 1 : Retrieve information on books from the document repository which were
published in 1990. The result should be given as a relation with the schema { R=(Title,
Author, Affiliation, Publisher)}.

First, we extract the root sequence (seq) structures in structured documents in relation
“Document,” and get the corresponding attribute sequence with Seq-unpack. Then, we
can select only tuples whose root generic identifiers are “book” as follows. Figure 17
illustrates the intermediate relation rq.

9 ‘= 0x =book(SUDoc:(Title,Authors,Pub-Info,Content),Gl (Document))
Document
Title | Authors | Pub-Info | Content | Gy
book

Figure 17. Relation rg

Next, we extract repetition (rep) and sequence (seq) structures at the root of SD
values in attributes “Authors” and “Pub-Info” one after another with Rep-unpack and
Seq-unpack. Finally, we select tuples whose value of attribute “Year” is 1990 and which
have the first author name, and get the final result with Projection.

10 = SUAuthor:(A—Name,Affil'éation),G4 (/LAuthors (RUAuthors:(Ol ,Author),G3 (
SU pub-Info=(Publisher,Year),G2(79))))
ri1 = 71-Title,Aut‘h07',Affiliation,Pv.Lbligher(O-Year:lQQO/\Ol =1 (DTYear,Integer(TIO)))

Example 2 : Retrieve information on papers and books written by faculty members in
“University A.” The result should be grouped by department and in the form of structured
document whose DTD is shown in Figure 18. We assume that the relational database
contains the data of “University A.”

15

seq table

dep/\

ptext re p pubS

seq pub
title // \ .

. -pub-info
b-pub-info / \orp P
se(/
proceedings \joumal

se Se
ptext ptext / q
publisher year / \
ptext nhiext text

c-name lglonth j—ngme ptext

text ptext year

pte ptext no

year vol

Figure 18. DTD in Example 2

The operation for the this example is divided into three steps: (1) transformation
of structured documents into nested relational structures with the converters, (2) ma-
nipulation with the nested relational algebra operators, and (3) transformation of the
intermediate data into structured documents again with the converters.

[Step 1]

Structures of SD values in relation “Document” is extracted, and “Document” is trans-
formed into relation 715 (Figure 19) as follows:

T2 = SUAuthor:(A—Name,Affiliation),G3 (/J'Authors (RUAuthors:(Ol ,Author),G2 (
SUDoc:(Title,Authors ,Pub-Info,Content),G1 (D Ocument)))) .

Document
Title | O1 | A-Name | Affiliation | Pub-Info | Content | G Go G
authors | author

Figure 19. Relation 719

[Step 2]

First, we select only tuples whose “Affiliation” value is “A-univ” from relation r5, and
joins the intermediate relation with relations “Faculty” and “Department.” (Join is rep-
resented as a combination of Selection and Cartesian product below.) Then, we project
out unnecessary attributes and apply Nest to group publications by the department (D-
Name). The result at the end of Step 2 is shown in Figure 20.

16

iz = JA-Name:Name(DTName,SD(a-name)(UAffiliation:“A_univ”(

DT 4ffitiation,String(T12)) X O D-Name=D-Name(Faculty x Department)))
T4 = VPublications:(Name,T'itle,A—Name,Pub~Info)(

7TD—Name,Name,Title,A*Name,Pub-Info(T13))

T
Publications
Name | Title | A-Name | Pub-Info

D-Name

Figure 20. Relation 714

[Step 3]

Step 3 transforms 714 into structured documents. Figure 21 shows the result relation r5.
Note that the SD values in the attribute “Pub-Info” of r4 have two kinds of DTD for
papers and for books. Therefore, we need Or-append (OA) before Rep-pack (RP) on the
attribute “Publications,” to unify the two DTDs. “Name” is used in Rep-pack to specify
the order of elements in the repetition (rep) structure.

Ty = SPTable:(D—Name,Publications),table(RPPublications,pubs(
SP*Pub::(Title,A—Name,Pub*Info),pub(OAPub-Info,pub"info(DTD-name,SD(dep)(T14>))))

Document
Table

Figure 21. Relation r5

5 Basic Properties of Converters

The main concern about the converters is whether the original structures changed by a
converter can be recovered again by other converters. We show their basic properties as
the following propositions. We omit the proofs because they can be derived from the
definitions of the converters without difficulty.

Propositions 1 and 2 assure that XX-packs are reversible with XX-unpacks. Proposi-
tion 3 assures that Or-append is reversible with Or-remove.

Proposition 1. Let (S, r) be arelation. Assume that S hasthe rules Rg = (41,...,An, G)
and A; = (0, B), dom(B) = SD, and V¢t € r3dVv € t[A;]3ec(v[B] = (d,c)). Then,

RU4;.0,8),6(RP4,({S,7))) = (5,7). -

17

Proposition 2. Let (S, 7) be arelation. Assume that S has the rule Rg = (A, ..., An, G),
dom(A;) = SD,...,dom(A;) = SD for some 1 < ¢ < 7 < m, and B is a new attribute.
Then,

SUB=(4;,..,4;),6(SPB=(4;,..,.4,)({5, 7)) = (S, 7). O

Proposition 3. Let (S, r) be arelation. Assume that S hasthe rules Rg = (A41,..., A, G)
and A; = (By,...,B,), and dom(B;) = SD for some 1 < j < n. Then,

TAy A ,G(VAiz(Bl,...,Bn)(ORB,-,G(MAi (7a; (OAB,- (s, T))))))) =(S,r). O

Propositions 4 and 5 assure that XX-unpacks are reversible with XX-packs. However,
Proposition 6 says Or-remove is not always reversible with Or-append.

Proposition 4. Let (S,7) be a relation. Assume that S has the rule Rg = (Ay,...,A4,,),
dom(A;) = SD for some 1 < i < m, Vt € rdg,d, c(t[A;] = (g : rep(d),c)), and B, O, G
are new attributes. Then,

RP 4, (RU;0,8),6((5,7))) = (S, 7). O
Proposition 5. Let (S, 7) be arelation. Assume that S hasthe rule Rg = (A1, As, ..., An),

vvdom(A;) = SD forsome 1 < i < m, 3kVt € r3g,dy,...,dp, c(t[A] = (g : seq(ds,...,dr),c)),
and By,..., By, G are new attributes. Then,

SP 4,=8,,..8,)(SU4;=(B,,..B,),c ({5, 7)) = (S, 7). 0

Proposition 6. Let (S,r) be a relation. Assume that S has the rule Rg = (Ay,..., A4,,),
dom(A;) = SD for some 1 <i <m, and G is a new attribute. Then,

1a(OA 4, (Va=(ay,..am)(OR 4, c((S,7))))) = (S,r)

does not always hold. O

6 Conclusion

With the recent advances in information technology such as digital libraries, WWW, and
CALS, structured documents have been widely recognized as important information re-
sources. In this paper, we have proposed the NR/SD model for the seamless integration
of structured documents and relational databases. The NR/SD model uses the nested

18

relational structures incorporating the structured document type and provides a num-
ber of algebra operations, to manipulate data in structured documents and relations.
In particular, the converters attain dynamic conversion of structured documents into
nested relational structures and vice veasa. We have shown that the NR/SD algebra
enables seamless manipulation of structured documents and relational databases. With
the NR/SD algebra, we can formally specify the process of deriving necessary information
in the form of structured document as required in WWW environments. Also, we can
develop user views on the document repository as in the relational database. We are
sure that the NR/SD model can work as a useful formal modeling framework in various
system integration contexts. Finally, we have studied the reversibility of operations by
the converters as one of their basic properties.

Future research issues include more detailed analysis of properties of the operators,
development of user-friendly query languages, and system architecture and implementa-
tion schemes to support the NR/SD model. In the context of the scenario in Section 2,
caching and optimization techniques are also indispensable issues. These issues will be
discussed in forth-coming papers.

Acknowledgement

The authors appreciate collaboration with many members of Database Laboratory, Uni-
versity of Tsukuba. This work was partially supported by the Grand-in-Aid for Science
Research from the Ministry of Education, Science, and Culture of Japan.

References

[1] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom, “Object Exchange Across
Heterogeneous Information Sources,” in Proc. 11th International Conference on Data

Engineering, Mar. 1995, pp. 251-260.

[2] A. R. Hurson, M. W. Bright, and S. Pakzad, (eds.), Multidatabase Systems: An
Advanced Solution for Global Information Sharing, IEEE Computer Society Press,
1994.

[3] S. T. March, (ed.), Special Issue on Heterogenenous Databases, ACM Computing
Survey, vol. 22, no. 3, 1990.

[4] Information Processing — Text and Office System — Standard Generalized Markup
Language (SGML), ISO 8879, 1986.

[5] G. Wiederhold, “Digital Libraries, value, and productivity,” Communications of the
ACM, vol. 38, no. 4, April 1995, pp. 85-96.

[6] CALS Implementation Guide, MIL-HDBK-59B, 1994.

[7] E. Krol, The Whole Internet: User’s Guide & Catalog, Second Edition, O'Reilly &
Associates, Inc., 1994.

19

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

Hypermedia/Time-based Structuring Language (Hytime), ISO/IEC 10744, 1992.

S. Abiteboul, P. C. Fischer, and H. J. Scheck, (eds.), Nested Relations and Complez
Objects in Databases, no. 361 in Lecture Notes in Computer Science, Springer-Verlag,
1989.

P. C. Fischer and S. J. Thomas, “Operators for Non-First-Normal-Form Relations,”

in Proc. IEEE COMPSAC83, Chicago, Nov. 1983, pp. 464-475.

H. Kitagawa and T. L. Kunii, The Unnormalized Relational Data Model — For Office
Form Processor Design—, Springer-Verlag, 1989.

D. D. Chamberlin, J. N. Gray, and I. L. Traiger, “Views, Authorization, and Locking
in a Relational Database system,” in Proc. National Computer Conference, Anaheim,
1975, pp. 425-430.

R. Sacks-Davis, T. Arnold-Moore, and J. Zobel, “ Database systems for structured
documents,” Proc. International Symposium on Advanced Database Technologies and
Their Integration, Nara, Japan, 1994, pp. 272-283.

R. Sack-Davis, A. Kent, K. Ramamohanarao, J. Thom, and J. Zobel, “Atlas: A
Nested Relational Database System for Text Applications,” IEEE Trans. Knowledge
and Data Engineering, vol.7, no. 3, June 1995, pp. 454-470.

V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl, “From Structured Docu-
ments to Novel Query Facilities,” in Proc. ACM SIGMOD International Conference
on Management of Data, May 1994, pp. 313-324.

T. W. Yan and J. Annevelink, “Integrating a Structured-Text Retrieval System with
an Object-Oriented Database System,” in Proc. 20th VLDB Conference, Santiago,
Chile, 1994, pp. 740-749.

W. B. Croft, L. A. Smith, and H. R. Turtle, “A Loosely-Coupled Integration of a
Text Retrieval System and an Object-Oriented Database System,” in Proc. ACM
SIGIR Conference, 1992, pp. 223-232.

M. Volz, K. Aberer, and K. Bohm, “Applying a Flexible OODBMS-IRS-Coupling
to Structured Document Handling,” in Proc. 12th International Conference on Data
Engineering, 1996.

R. H. Giiting, R. Zicari, and D. M. Choy, “An Algebra for Structured Office Doc-
uments,” ACM Trans. Office Information Systems, vol. 7, no. 4, Apr. 1989, pp.
123-157.

G. E. Blake, M.P. Consens, P. Kilpelainen, P. Larson, T. Snider, and F. Tompa,
“Text/Relational Database Management Systems: Harmonizing SQL and SGML,”
in Proc. International Conference on Applications of Databases, n10.819 in Lecture
Notes in Computer Science, Vadstena, Sweden, 1994, pp. 267-280.

20

[21]

[22]

[23]

[24]

[25]

[26]

[27]

G. E. Blake, M. P. Consens, I. J. Davis, P. Kilpelainen, P. Larson, T. Snider, and
F. W. Tompa, “Text/Relational Database Management systems: Overview and Pro-
posed SQL Extensions,” Technical Report CS-95-25, UW Centre for the New OED
and Text Research, Department of Computer Science, University of Waterloo, June

1995.

M. Yoshikawa, O. Ichikawa, and S. Umemura, “Amalgamating SGML Documents
and Databases,” in Proc. 5th International Conference on Extending Database Tech-
nology, March 1996.

F. J. Burkowski, “An Algebra for Hierarchically Organized Text-dominated
Databases,” Information Processing & Management, vol.28, no. 3, 1992, pp. 333-
348.

C. L. A. Clarke, G. V. Cormack, and F. J. Burkowski, “An Algebra for Structured
Text Search and a Framework for its Implementation,” The Computer Journal, vol.
38, no. 1, 1995, pp. 43-56.

M. P. Consens and T. Milo, “Algebras for Querying Text Regions,” in Proc. ACM
Symposium on Principles of Database Systems, 1995, pp. 11-22.

Y. Papakonstantinou, H. Garcia-Molina, and J. Ullman, “MedMaker: A media-
tion system based on declarative specifications,” available by anonymous ftp from
db.stanfora.edu as the file pub/papakonstantinou/1995/medmaker.ps, 1995.

M. Gyssens and D. Van Gucht, “The Expressiveness of Query Languages for Nested
Relations,” Data Engineering, vol. 11, no. 3, 1988, pp. 48-55.

21

