# The Stability for Linear Combinations of Characteristic Polynomials for Discrete-time Systems

Koji Shiomi<sup>†</sup>, Naohisa Otsuka<sup>††</sup>, Hiroshi Inaba<sup>†††</sup> and Rokuya Ishii<sup>‡</sup>

December 25, 1995

ISE-TR-95-129

**key word :** Stability, Linear combinations of characteristics polynomials, Discrete-time systems, Bilinear transformation.

<sup>&</sup>lt;sup>†</sup> Doctoral Program in Engineering, University of Tsukuba, Tsukuba, Ibaraki 305, Japan. E-mail: shiomi@wslab.is.tsukuba.ac.jp

<sup>††</sup> Institute of Information Sciences and Electronics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan. E-mail: otsuka@wslab.is.tsukuba.ac.jp

<sup>†††</sup> Department of Information Sciences, Tokyo Denki University, Hatoyama, Hiki, Saitama 350-03, Japan.

<sup>†</sup> Division of Electronics and Computer Engineering, Yokohama National University, Yokohama 240, Japan.

# The Stability for Linear Combinations of Characteristic Polynomials for Discrete-time Systems

Koji Shiomi<sup>†</sup>, Naohisa Otsuka<sup>††</sup>, Hiroshi Inaba<sup>†††</sup> and Rokuya Ishii<sup>‡</sup>

#### Abstract

In this paper, stability for a linear combination of characteristic polynomials for discrete-time systems is studied. In order to investigate this problem, we study the transformation matrix derived by bilinear transformation and its properties. Under certain assumptions, necessary and sufficient conditions for a linear combination of k characteristic polynomials for discrete-time systems to be stable are obtained.

# 1 Introduction

The stability of convex combinations of two polynomials for continuous-time systems was studied by Białas and Garloff[2], Białas[3] and Bose[4]. And, the stability of polytope polynomials and linear combinations of k polynomials was studied by Bose[4]. On the other hand, for discrete-time systems, the stability of convex combinations of two polynomials was studied by Bose[4] and Ackermann and Barmish[5].

The objective of this paper is to study stability of a linear combination of k characteristic polynomials for discrete-time systems.

In Section 2, we will study a transformation matrix  $P_n$  derived by bilinear transformation and its properties. In Section 3, necessary and sufficient conditions for a linear combination of k characteristics polynomials to be stable will be studied under certain assumptions. Section 4 will give an illustrative example. Finally, Section 5 will make some concluding remarks.

<sup>†</sup> Doctoral Program in Engineering, University of Tsukuba, Tsukuba, Ibaraki 305, Japan.

<sup>††</sup> Institute of Information Sciences and Electronics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan.

<sup>†††</sup> Department of Information Sciences, Tokyo Denki University, Hatoyama, Hiki, Saitama 350-03, Japan.

<sup>&</sup>lt;sup>‡</sup> Division of Electronics and Computer Engineering, Yokohama National University, Yokohama 240, Japan.

# 2 Matrix Representation of Bilinear Transformation and Its Properties

In this section, some important relationships between the coefficient vector of n-th degree characteristic polynomials in the z-domain and the coefficient vector of the numerator of n-th degree characteristic polynomials in the s-domain by using bilinear transformations will be investigated.

We first introduce the following notations.

$$C^{H} := \left\{ x \in C \mid \text{Re}[x] < 0 \right\}.$$

$$C^{S} := \left\{ x \in C \mid |x| < 1 \right\}.$$

$$P_{n}^{R}(x) := \left\{ f(x) \mid f(x) = \sum_{i=0}^{n} a_{i}x^{i}, a_{i} \in \mathbf{R} \text{ for } i = 0, 1, \dots, n \right\}.$$

$$H_{n}^{R}(x) := \left\{ f(x) \in P_{n}^{R}(x) \mid \left\{ x \in \mathbf{C} | f(x) = 0 \right\} \subset \mathbf{C}^{H} \right\}.$$

$$S_{n}^{R}(x) := \left\{ f(x) \in P_{n}^{R}(x) \mid \left\{ x \in \mathbf{C} | f(x) = 0 \right\} \subset \mathbf{C}^{S} \right\}.$$

Here, we remark that  $H_n^R(x)$  is the set of all n-th Hurwitz polynomials, and  $S_n^R(x)$  is the set of all n-th Schur polynomials. Next, we consider the n-th characteristic polynomial of a discrete-time system given by

$$p(z) := a_n z^n + a_{n-1} z^{n-1} + \dots + a_0 \in P_n^R(z), \qquad n \neq 0.$$
 (1)

We apply the bilinear transformation  $z = \frac{s+1}{s-1}$   $(s \neq 1)$  to polynomial (1). Then, we obtain the following relation:

$$p(z) = a_n \left(\frac{s+1}{s-1}\right)^n + a_{n-1} \left(\frac{s+1}{s-1}\right)^{n-1} + \dots + a_0$$

$$= \frac{1}{(s-1)^n} \{a_n(s+1)^n + a_{n-1}(s+1)^{n-1}(s-1) + \dots + a_0(s-1)^n\}$$
(2)
$$=: \frac{1}{(s-1)^n} \{b_n s^n + b_{n-1} s^{n-1} + \dots + b_0\}.$$
 (3)

Further, we denote the numerator of equation (3) as

$$q(s) := b_n s^n + b_{n-1} s^{n-1} + \dots + b_0.$$
(4)

From equations (2) and (3), a relationship between the coefficients  $a_j$  and  $b_i$  can be easily obtained as follows.

$$b_{n-i} = \sum_{j=0}^{n} \left\{ \sum_{k=0}^{i} \binom{n-j}{k} \binom{j}{i-k} (-1)^{i-k} \right\} a_{n-j}$$
 (5)

where 
$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} := \frac{\alpha!}{(\alpha - \beta)!\beta!}$$
.

Now, we define the following coefficient vectors a,b and matrix  $P_n$ :

$$\boldsymbol{a} := \begin{bmatrix} a_{n} \\ a_{n-1} \\ \vdots \\ a_{n-j} \\ \vdots \\ a_{0} \end{bmatrix}, \boldsymbol{b} := \begin{bmatrix} b_{n} \\ b_{n-1} \\ \vdots \\ b_{n-i} \\ \vdots \\ b_{0} \end{bmatrix}, P_{n} := \begin{bmatrix} p_{0,0}^{n} & p_{0,1}^{n} & \cdots & p_{0,j}^{n} & \cdots & p_{0,n}^{n} \\ p_{1,0}^{n} & p_{1,1}^{n} & \cdots & p_{1,j}^{n} & \cdots & p_{1,n}^{n} \\ \vdots & \vdots & \cdots & \vdots & \cdots & \vdots \\ p_{i,0}^{n} & p_{i,1}^{n} & \cdots & p_{i,j}^{n} & \cdots & p_{i,n}^{n} \\ \vdots & \vdots & \cdots & \vdots & \cdots & \vdots \\ p_{n,0}^{n} & p_{n,1}^{n} & \cdots & p_{n,j}^{n} & \cdots & p_{n,n}^{n} \end{bmatrix},$$
(6)

where

$$p_{i,j}^{n} := \sum_{k=0}^{i} \binom{n-j}{k} \binom{j}{i-k} (-1)^{i-k}$$
 (7)

for i, j = 0, 1, ..., n. From the equations (5) and (6), we have the following equality:

$$P_n \boldsymbol{a} = \boldsymbol{b}. \tag{8}$$

Here, the matrix  $P_n$  has the following well-known properties.

Lemma 2.1 Let  $P_n$  be the matrix defined by equations (6) and (7). Further, let  $f(z) \in P_n^R(z)$  and  $g(s) \in P_n^R(s)$ . If the coefficient vectors  $\boldsymbol{\alpha}$  and  $\boldsymbol{\beta}$  of f(z) and g(s) satisfy

$$P_n \alpha = \beta$$
.

then, the following two assertions are equivalent.

- (i)  $f(z) \in S_n^R(z)$ .
- (ii)  $g(s) \in H_n^R(s)$ .

**Lemma 2.2** [1] Let  $P_n$  be the matrix defined by equations (6) and (7). Then, the following property holds.

$$P_n^2 = 2^n E_n \qquad (n \ge 1)$$

where  $E_n$  is a  $(n+1) \times (n+1)$  identity matrix. Therefore, this implies the matrix  $P_n$  has the following inverse matrix:

$$P_n^{-1} = \frac{1}{2^n} P_n \qquad (n \ge 1).$$

The next lemma can be easily obtained.

**Lemma 2.3** Let  $P_n = \{p_{i,j}^n\}$  be the matrix given by equations (6) and (7). Then, the elements  $p_{i,j}^n$   $(i,j=0,1,\ldots,n)$  of  $P_n$  satisfy the following relations.

$$p_{i,j}^n = (-1)^i p_{i,n-j}^n \qquad (i,j=0,1,\ldots,n).$$

(proof) The proof follows from the following equations.

$$\begin{array}{lll} (-1)^{i}p_{i,n-j}^{n} & = & \sum\limits_{k=0}^{i} \left(\begin{array}{c} j \\ k \end{array}\right) \left(\begin{array}{c} n-j \\ i-k \end{array}\right) (-1)^{-k} & (k'=i-k) \\ & = & \sum\limits_{k'=0}^{i} \left(\begin{array}{c} j \\ i-k' \end{array}\right) \left(\begin{array}{c} n-j \\ k' \end{array}\right) ((-1)^{-1})^{i-k'} \\ & = & p_{i,j}^{n}. & \square \end{array}$$

The next lemma can be easily obtained from Lemma 2.3 and are used to prove our main results.

**Lemma 2.4** Let a,b and  $P_n$  be the coefficient vectors and the matrix given by equations (6) and (7), then

$$P_{n} \begin{bmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{i} \\ \vdots \\ a_{n} \end{bmatrix} = \begin{bmatrix} (-1)^{0}b_{n} \\ (-1)^{1}b_{n-1} \\ \vdots \\ (-1)^{i}b_{n-i} \\ \vdots \\ (-1)^{n}b_{0} \end{bmatrix}.$$

(proof) From the equation (5) and (7),

$$b_{n-i} = \sum_{j=0}^{n} p_{i,j}^{n} a_{n-j}.$$

Here, we define a vector c as follows:

$$c = \begin{bmatrix} c_n \\ c_{n-1} \\ \vdots \\ c_0 \end{bmatrix} := P_n \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix}.$$

Then,

$$c_{n-i} = \sum_{j=0}^{n} p_{i,n-j}^{n} a_{n-j}.$$

It follows from Lemma 2.3 that

$$c_{n-i} = (-1)^{i} \sum_{j=0}^{n} p_{i,j}^{n} a_{n-j}$$
$$= (-1)^{i} b_{n-i}.$$

Therefore,

$$P_{n} \begin{bmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{i} \\ \vdots \\ a_{n} \end{bmatrix} = \begin{bmatrix} (-1)^{0}b_{n} \\ (-1)^{1}b_{n-1} \\ \vdots \\ (-1)^{i}b_{n-i} \\ \vdots \\ (-1)^{n}b_{0} \end{bmatrix}.$$

This completes the proof.  $\Box$ 

Now, we give the following definitions.

**Definition 2.1** Let  $p(z) \in P_n^R(z)$  and  $q(s) \in P_n^R(s)$ .

(i) Define

$$p_s(z) := \frac{1}{2} \{ p(z) + z^n p(z^{-1}) \},$$
  
 $p_a(z) := \frac{1}{2} \{ p(z) - z^n p(z^{-1}) \}.$ 

Then,  $p_s(z)$  and  $p_a(z)$  are said to be the symmetric part of p(z) and the anti-symmetric part of p(z), respectively.

(ii) Define

$$q_e(s) := \frac{1}{2} \{q(s) + q(-s)\},$$
  
 $q_o(s) := \frac{1}{2} \{q(s) - q(-s)\}.$ 

Then,  $q_e(s)$  and  $q_o(s)$  are said to be the even part of q(s) and the odd part of q(s), respectively.  $\Box$ 

Lemma 2.5 In Definition 2.1, all decomposition is unique.

(proof) First, we prove that p(z) can be divided into  $p_s(z)$  and  $p_a(z)$  uniquely. We assume that p(z) can be written by two way:

$$p(z) = p_{s1}(z) + p_{a1}(z) = p_{s2}(z) + p_{a2}(z)$$
(9)

where  $p_{s1}(z)$  and  $p_{s2}(z)$  are even parts of p(z), and  $p_{a1}(z)$  and  $p_{a2}(z)$  are odd parts of p(z). And, we remark that

$$p_s(z^{-1}) = z^{-n}p_s(z),$$
  
 $p_a(z^{-1}) = -z^{-n}p_a(z).$ 

From the equation (9),

$$f(z) := p_{s1}(z) - p_{s2}(z) = p_{a2}(z) - p_{a1}(z).$$
(10)

Then,

$$f(z^{-1}) = z^{-n} \{ p_{s1}(z) - p_{s2}(z) \} = -z^{-n} \{ p_{a2}(z) + p_{a1}(z) \}.$$
(11)

From the equation (10) and (11),

$$p_{a2}(z) - p_{a1}(z) = -p_{a2}(z) + p_{a1}(z).$$

Hence, we obtain

$$p_{a1}(z) = p_{a2}(z), \qquad p_{s1}(z) = p_{s2}(z).$$

Next, we prove the uniqueness of decomposition of q(s) in the similarly way.

We assume that q(s) can be written by two way:

$$q(s) = q_{e1}(s) + q_{o1}(s) = q_{e2}(s) + q_{o2}(s)$$
(12)

where  $q_{e1}(s)$  and  $q_{e2}(s)$  are even parts of q(s), and  $q_{o1}(s)$  and  $q_{o2}(s)$  are odd parts of q(s). From the equation (12),

$$g(s) := q_{e1}(s) - q_{e2}(s) = q_{o2}(s) - q_{o1}(s).$$
(13)

Then,

$$g(-s) = q_{e1}(s) - q_{e2}(s) = -q_{o2}(s) + q_{o1}(s).$$
(14)

From the equation (13) and (14),

$$q_{o2}(s) - q_{o1}(s) = -q_{o2}(s) + q_{o1}(s).$$

Hence,

$$q_{o1}(s) = q_{o2}(s), \qquad q_{e1}(s) = q_{e2}(s).$$

This completes the proof.  $\Box$ 

Let  $p_s(z)$  and  $p_a(z)$  be the symmetric part of polynomial (1) and the anti-symmetric part of polynomial (1), respectively. Further, Let  $q_e(s)$  and  $q_o(s)$  be the even part of polynomial (4) and the odd part of polynomial (4), respectively. Then, if n is even, the coefficient vectors  $\mathbf{a}_s$  of  $p_s(z)$ ,  $\mathbf{a}_a$  of  $p_a(z)$ ,  $\mathbf{b}_e$  of  $q_e(s)$  and  $\mathbf{b}_o$  of  $q_o(s)$  can be written as follows.

$$\boldsymbol{a}_{s} = \frac{1}{2} \begin{bmatrix} a_{n} + a_{0} \\ a_{n-1} + a_{1} \\ a_{n-2} + a_{2} \\ \vdots \\ a_{1} + a_{n-1} \\ a_{0} + a_{n} \end{bmatrix}, \boldsymbol{a}_{a} = \frac{1}{2} \begin{bmatrix} a_{n} - a_{0} \\ a_{n-1} - a_{1} \\ a_{n-2} - a_{2} \\ \vdots \\ a_{1} - a_{n-1} \\ a_{0} - a_{n} \end{bmatrix}, \boldsymbol{b}_{e} = \begin{bmatrix} b_{n} \\ 0 \\ b_{n-2} \\ \vdots \\ 0 \\ b_{0} \end{bmatrix}, \boldsymbol{b}_{o} = \begin{bmatrix} 0 \\ b_{n-1} \\ 0 \\ \vdots \\ b_{1} \\ 0 \end{bmatrix}.$$
(15)

If n is odd, they can be written as follows.

$$\boldsymbol{a}_{s} = \frac{1}{2} \begin{bmatrix} a_{n} + a_{0} \\ a_{n-1} + a_{1} \\ a_{n-2} + a_{2} \\ \vdots \\ a_{1} + a_{n-1} \\ a_{0} + a_{n} \end{bmatrix}, \boldsymbol{a}_{a} = \frac{1}{2} \begin{bmatrix} a_{n} - a_{0} \\ a_{n-1} - a_{1} \\ a_{n-2} - a_{2} \\ \vdots \\ a_{1} - a_{n-1} \\ a_{0} - a_{n} \end{bmatrix}, \boldsymbol{b}_{e} = \begin{bmatrix} 0 \\ b_{n-1} \\ 0 \\ \vdots \\ 0 \\ b_{0} \end{bmatrix}, \boldsymbol{b}_{o} = \begin{bmatrix} b_{n} \\ 0 \\ b_{n-2} \\ \vdots \\ b_{1} \\ 0 \end{bmatrix}.$$
(16)

The next Theorem can be proved by using Lemma 2.4 and plays an important role to prove our main results.

Theorem 2.1 Suppose that  $p(z) \in P_n^R(z)$  and  $q(s) \in P_n^R(s)$  are defined by polynomials (1) and (4), respectively. And, let  $\boldsymbol{a}$ ,  $\boldsymbol{b}$  and  $P_n$  be the vectors and the matrix given by equations (6) and (7). Moreover, let  $\boldsymbol{a}_s$ ,  $\boldsymbol{a}_a$ ,  $\boldsymbol{b}_e$  and  $\boldsymbol{b}_o$  be the coefficient vectors given by (15) or (16). Then, if n is odd,

$$P_n \boldsymbol{a}_s = \boldsymbol{b}_o, \qquad P_n \boldsymbol{a}_o = \boldsymbol{b}_e.$$

and if n is even,

$$P_n a_s = b_e, \qquad P_n a_a = b_o.$$

(proof) The proof is given only for the case that n is even. In the case that n is odd, we can prove it, similarly.

From the equation (15), the coefficient vector  $a_s$  can be written by

$$a_{s} = \frac{1}{2} \begin{bmatrix} a_{n} + a_{0} \\ a_{n-1} + a_{1} \\ a_{n-2} + a_{2} \\ \vdots \\ a_{1} + a_{n-1} \\ a_{0} + a_{n} \end{bmatrix},$$

It follows from equations (8), (15) and Lemma 2.4 that

$$P_{n}\boldsymbol{a}_{s} = \frac{1}{2} \left( P_{n} \begin{bmatrix} a_{n} \\ a_{n-1} \\ a_{n-2} \\ \vdots \\ a_{1} \\ a_{0} \end{bmatrix} + P_{n} \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \\ \vdots \\ a_{n-1} \\ a_{n} \end{bmatrix} \right) = \frac{1}{2} \left( \begin{bmatrix} b_{n} \\ b_{n-1} \\ b_{n-2} \\ \vdots \\ b_{1} \\ b_{0} \end{bmatrix} + \begin{bmatrix} b_{n} \\ -b_{n-1} \\ b_{n-2} \\ \vdots \\ -b_{1} \\ b_{0} \end{bmatrix} \right) = \begin{bmatrix} b_{n} \\ 0 \\ b_{n-2} \\ \vdots \\ 0 \\ b_{0} \end{bmatrix} = \boldsymbol{b}_{e}.$$

Similarly, we can easily obtain

$$P_n \boldsymbol{a}_a = \boldsymbol{b}_o$$
.

Hence, The proof can be completed.

# 3 The Stability for A Linear Combination of Characteristic Polynomials

In this section, we give necessary and sufficient conditions for a linear combination of characteristic polynomials for discrete-time systems to be stable under certain assumptions.

The next lemma concerning continuous-time systems can be easily obtained from the results of Bose[4].

**Lemma 3.1** Let  $q_i(s) \in P_n^R(s)$  (i = 1, 2, ..., k), and let  $q_{ei}(s)$  and  $q_{oi}(s)$  (i = 1, 2, ..., k) be the even part of  $q_i(s)$  and the odd part of  $q_i(s)$  (i = 1, 2, ..., k), respectively. Suppose that the following condition (a) or (b) is satisfied.

(a) 
$$q_{e1}(s) = q_{e2}(s) = \cdots = q_{ek}(s)$$
.

(b) 
$$q_{o1}(s) = q_{o2}(s) = \cdots = q_{ok}(s).$$

Then, the following two assertions are equivalent.

(i) 
$$q_i(s) \in H_n^R(s) \ (i = 1, 2, \dots, k).$$

(ii) 
$$\sum_{i=1}^k \lambda_i q_i(s) \in H_n^R(s) \text{ for all } \lambda_i \in [0,1] \ (i=1,2,\ldots,k). \quad \Box$$

The next theorem is one of our main results. This theorem is a discrete-time systems version of Lemma 3.1.

**Theorem 3.1** Let  $p_i(z) \in P_n^R(z)$  (i = 1, 2, ..., k), and let  $p_{si}(z)$  and  $p_{ai}(z)$  (i = 1, 2, ..., k) be the symmetric parts of  $p_i(z)$  and the anti-symmetric parts of  $p_i(z)$  (i = 1, 2, ..., k), respectively.

Suppose that the following condition (a) or (b) is satisfied.

(a) 
$$p_{s1}(z) = p_{s2}(z) = \cdots = p_{sk}(z)$$
.

(b) 
$$p_{a1}(z) = p_{a2}(z) = \cdots = p_{ak}(z).$$

Then, the following two assertions are equivalent.

(i) 
$$p_i(z) \in S_n^R(z) \ (i = 1, 2, \dots, k).$$

(ii) 
$$\sum_{i=1}^{k} \lambda_i p_i(z) \in S_n^R(z)$$
 for all  $\lambda_i \in [0,1]$   $(i = 1, 2, ..., k)$ .

(proof) Proof is given only for the case that n is even. In the case that n is odd, we can easily prove it, similarly.

First, let  $P_n$  be the matrix given by equations (6) and (7), and let

$$p_i(z) =: a_{in}z^n + a_{in-1}z^{n-1} + \cdots + a_{i0}$$
  $(i = 1, 2, \dots, k).$ 

Further, let  $a_i$  denote the coefficient vector of  $p_i(z)$  (i = 1, 2, ..., k), and define vectors  $b_i$  (i = 1, 2, ..., k) as follows:

$$\boldsymbol{b}_{i} = \begin{bmatrix} b_{in} \\ b_{in-1} \\ \vdots \\ b_{i0} \end{bmatrix} := P_{n} \boldsymbol{a}_{i} \qquad (i = 1, 2, \dots, k).$$

$$(17)$$

Defining  $q_i(s)$  by

$$q_i(s) := b_{in}s^n + b_{in-1}s^{n-1} + \dots + b_{i0}$$
  $(i = 1, 2, \dots, k),$ 

and denoting  $q_{ei}(s)$  and  $q_{oi}(s)$  by the even part of  $q_i(s)$  and the odd part of  $q_i(s)$ . Further, we define

$$q_{\lambda}(s) := \sum_{i=1}^{k} \lambda_{i} q_{i}(s), \ \lambda_{i} \in [0, 1], \ i = 1, 2, \dots, k$$
$$p_{\lambda}(z) := \sum_{i=1}^{k} \lambda_{i} p_{i}(z), \ \lambda_{i} \in [0, 1], \ i = 1, 2, \dots, k.$$

Then, it follows from Lemma 2.1 and equation (17) that the following claim holds.

Claim 1 
$$p_i(z) \in S_n^R(z), (i = 1, 2, ..., k) \iff q_i(s) \in H_n^R(s), (i = 1, 2, ..., k).$$

Further, from Theorem 2.1 and the hypothesis (a) or (b), the following condition (1) or (2) is satisfies:

(1) 
$$q_{e1}(s) = q_{e2}(s) = \cdots = q_{ek}(s).$$

(2) 
$$q_{o1}(s) = q_{o2}(s) = \cdots = q_{ok}(s).$$

Then, it follows from Lemma 3.1 that

Claim 2 
$$q_i(s) \in H_n^R(s), (i = 1, 2, ..., n) \iff q_{\lambda}(s) \in H_n^R(s).$$

If we show the following claim, the proof of this theorem follows from Claim 1-3.

Claim 3 
$$q_{\lambda}(s) \in H_n^R(s) \iff p_{\lambda}(z) \in S_n^R(z).$$

Therefore, we will prove Claim 3. First, we can write  $q_{\lambda}(s)$  in the following form:

$$q_{\lambda}(s) = \sum_{i=0}^{n} (\lambda_1 b_{1n-i} + \lambda_2 b_{2n-i} + \dots + \lambda_k b_{kn-i}) s^{n-i}.$$

Then, the coefficient vector  $\boldsymbol{b}_{\lambda}$  of  $q_{\lambda}(s)$  can be written as

$$\boldsymbol{b}_{\lambda} := \begin{bmatrix} \lambda_{1}b_{1n} + \lambda_{2}b_{2n} + \dots + \lambda_{k}b_{kn} \\ \lambda_{1}b_{1n-1} + \lambda_{2}b_{2n-1} + \dots + \lambda_{k}b_{kn-1} \\ \vdots \\ \lambda_{1}b_{10} + \lambda_{2}b_{20} + \dots + \lambda_{k}b_{k0} \end{bmatrix}$$

$$= \lambda_{1}\boldsymbol{b}_{1} + \lambda_{2}\boldsymbol{b}_{2} + \dots + \lambda_{k}\boldsymbol{b}_{k}$$

$$= \lambda_{1}P_{n}\boldsymbol{a}_{1} + \lambda_{2}P_{n}\boldsymbol{a}_{2} + \dots + \lambda_{k}P_{n}\boldsymbol{a}_{k}. \tag{18}$$

Since the inverse matrix  $P_n^{-1}$  exists from Lemma 2.2, it follows from (18) that

$$P_n^{-1}\boldsymbol{b}_{\lambda} = \lambda_1\boldsymbol{a}_1 + \lambda_2\boldsymbol{a}_2 + \dots + \lambda_k\boldsymbol{a}_k$$

$$= \begin{bmatrix} \lambda_1a_{1n} + \lambda_2a_{2n} + \dots + \lambda_ka_{kn} \\ \lambda_1a_{1n-1} + \lambda_2a_{2n-1} + \dots + \lambda_ka_{kn-1} \\ \vdots \\ \lambda_1a_{10} + \lambda_2a_{20} + \dots + \lambda_ka_{k0} \end{bmatrix}$$

$$=: \boldsymbol{a}_{\lambda}$$

Now, construct the polynomial with coefficient vector  $\boldsymbol{a}_{\lambda}$  as follows:

$$(\lambda_{1}a_{1n} + \dots + \lambda_{k}a_{kn})z^{n} + (\lambda_{1}a_{1n-1} + \dots + \lambda_{k}a_{kn-1})z^{n-1} + \dots + (\lambda_{1}a_{10} + \dots + \lambda_{k}a_{k0})$$

$$= \lambda_{1}(a_{1n}z^{n} + a_{1n-1}z^{n-1} + \dots + a_{10}) + \dots + \lambda_{k}(a_{kn}z^{n} + a_{kn-1}z^{n-1} + \dots + a_{k0})$$

$$= \sum_{i=1}^{k} \lambda_{i}p_{i}(z)$$

$$= p_{\lambda}(z)$$

Therefore, the coefficient vectors  $\boldsymbol{a}_{\lambda}$  and  $\boldsymbol{b}_{\lambda}$  of  $p_{\lambda}(z)$  and  $q_{\lambda}(s)$  satisfy the following equality. are related by  $P_n$  as follows:

$$P_n \boldsymbol{a}_{\lambda} = \boldsymbol{b}_{\lambda}.$$

By Lemma 2.1, Claim 3 was proved.

This completes the proof of this theorem.

# 4 An Example

Consider the following polynomial:

$$p_{\lambda}(z) = (12\lambda_1 + 13\lambda_2 + 11\lambda_3)z^3 + (8\lambda_1 + 9\lambda_2 + 7\lambda_3)z^2 - (\lambda_1 + 2\lambda_2)z - (\lambda_1 + 2\lambda_$$

where  $\lambda_i \in [0, 1]$  (i = 1, 2, 3). Then,  $p_{\lambda}(z)$  is represented as a linear combination of the following three polynomials.

$$p_{\lambda}(z) = \lambda_1 p_1(z) + \lambda_2 p_2(z) + \lambda_3 p_3(z)$$

where

$$p_1(z) = 12z^3 + 8z^2 - z - 1$$

$$p_2(z) = 13z^3 + 9z^2 - 2z - 2$$

$$p_3(z) = 11z^3 + 7z^2$$

It can be easily checked that the hypothesis (a) of Theorem 3.1 is satisfied, i.e.,

$$p_{s1}(z) = p_{s2}(z) = p_{s3}(z) = \frac{11}{2}z^3 + \frac{7}{2}z^2 + \frac{7}{2}z + \frac{11}{2}$$

where  $p_{si}(z)$  is the symmetric part of  $p_i(z)$  for i = 1, 2, 3.

Then, the stability of  $p_{\lambda}(z)$  can be determined by checking the stability of the polynomials  $p_1(z)$ ,  $p_2(z)$  and  $p_3(z)$ . In fact, since  $p_1$ ,  $p_2$  and  $p_3$  are all schur stable, we can see  $p_{\lambda}$  is schur stable for all  $\lambda \in [0,1]$ .

## 5 Conclusions

In this paper, necessary and sufficient conditions for a linear combination of characteristic polynomials for discrete-time systems to be stable were given under certain assumptions. This result is a discrete-time systems version of the result[4] of continuous-time systems.

## References

- [1] N. K. Bose, "Properties of the  $Q_n$ -Matrix in Bilinear Transformation," Proceedings of The IEEE, Vol.71, pp.1110-1111, 1983.
- [2] S. Białas and J. Garloff, "Convex Combinations of Stable Polynomials," Journal of the Franklin Inst., Vol.319, No.3, pp.373-377, 1985.
- [3] S. Białas, "A Necessary and Sufficient Condition for the Stability of Convex Combinations of Stable Polynomials or Matrices," Bulletin of the Polish Academy of Sci. Tech. Sci., Vol.33, No.9-10, pp.473-480, 1985.
- [4] N. K. Bose, "A System-Theoretic Approach to Stability of Sets of Polynomials," Contemporary Mathematics, Vol.47, pp.25-34, 1985.
- [5] J. E. Ackermann and B. R. Barmish, "Robust Schur Stability of a Polytope of Polynomials," IEEE Trans. on Automatic Control, Vol.33, No.10, pp.984-986, 1988.