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Abstract
In this paper, stability for a linear combination of characteristic polynomials for
discrete-time systems is studied. In order to investigate this problem, we study the
transformation matrix derived by bilinear transformation and its properties. Under
certain assumptions, necessary and sufficient conditions for a linear combination of
k characteristic polynomials for discrete-time systems to be stable are obtained.

1 Introduction

The stability of convex combinations of two polynomials for continuous-time systems was
studied by Bialas and Garloff[2], Bialas[3] and Bose[4]. And, the stability of polytope
polynomials and linear combinations of k polynomials was studied by Bose[4]. On the
other hand, for discrete-time systems, the stability of convex combinations of two poly-
nomials was studied by Bose[4] and Ackermann and Barmish[5].

The objective of this paper is to study stability of a linear combination of k charac-
teristic polynomials for discrete-time systems.

In Section 2, we will study a transformation matrix P, derived by bilinear transfor-
mation and its properties. In Section 3, necessary and sufficient conditions for a linear
combination of k characteristics polynomials to be stable will be studied under certain
assumptions. Section 4 will give an illustrative example. Finally, Section 5 will make

some concluding remarks.



2 Matrix Representation of Bilinear Transforma-
tion and Its Properties

In this section, some important relationships between the coefficient vector of n-th degree
characteristic polynomials in the z-domain and the coefficient vector of the numerator of
n-th degree characteristic polynomials in the s-domain by using bilinear transformations

will be investigated.
We first introduce the following notations.
CH := {ze€C| Refz] <0}.
C° = {zeC ||z|<1}.
PR) = {f(x) f@) =3 aiz',a; € R for i = Oln}

=0
Hi(z) = {f(z) € PX2)| {z € Clf(a) =0} c C"}.
Si(@) = {f(z) € Bz | {z € CIf(z) = 0} C C}.

Here, we remark that HF(z) is the set of all n-th Hurwitz polynomials, and SE(z) is the
set of all n-th Schur polynomials. Next, we consider the n-th characteristic polynomial of
a discrete-time system given by

p(2) i= an2" + an_q2" 4 -+ ag € PR(2), n#0. (1)

st 1 (s # 1) to polynomial (1). Then, we

We apply the bilinear transformation z =

obtain the following relation:

1\" 1 n—-1
p(z) = an<3+ ) +an_1<s+ ) + -+ ag

s—1 s—1

= (s_ll)n{an(3+1)n+an_1(3+1)n—1(3__1)+»..-+a0(8_l)n} (2)
1 n n—-1

=: oo l)n{bns 4 by18" 4o b} 3)

Further, we denote the numerator of equation (3) as
q(s) 1= bps™ 4 by ™ -+ by (4)

From equations (2) and (3), a relationship between the coefficients a; and &; can be

easily obtained as follows.

CEECT) L)
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o) al |
where ( 3 ) = —_——(a—ﬂ)!ﬂ!'

Now, we define the following coefficient vectors a,b and matrix P,:

Ay bn [ Pg,o pg,l Tt pg,, e pg,n ]
An—1 bn-1 P?,o Ph e p;l:J e p;L,n
a:= b:= Po=| . - : 6
Qnj |’ P Pio P:ﬁ Py ot p?;n ’ ()
ao | | b | Pro PRy ot PR ot Pha
where
i . .
n-—j J i~k
=3 () (2 ) ey @
k=0

for¢,j =0,1,...,n. From the equations (5) and (6), we have the following equality:

P,a =b. (8)
Here, the matrix P, has the following well-known properties.

Lemma 2.1 Let P, be the matrix defined by equations (6) and (7). Further, let
f(z) € P}(z) and g(s) € PE(s). If the coefficient vectors o and B of f(z) and g(s)
satisfy

Poa =,

then, the following two assertions are equivalent.
(i) f(2) € S(2).

(i) 9(s) € HE(s). a

Lemma 2.2 [1] Let P, be the matrix defined by equations (6) and (7). Then, the
following property holds.
P2=2"E, (n>1)

where E, is a (n + 1) x (n+ 1) identity matrix. Therefore, this implies the matrix P, has

the following inverse matrix:

Pl = %Pn (n>1). O



The next lemma can be easily obtained.

Lemma 2.3 Let P, = {p{';} be the matrix given by equations (6) and (7). Then,

the elements p}; (¢,7 = 0,1,...,n) of P, satisfy the following relations.
p::tj = (—1)ip?:n—j (%J =0a1"",n)-

(proof)  The proof follows from the following equations.

s = (1) (120 )t w=iew

= Ig)( i_jkf ) ( n,;j ) ((=1)7h)*
= Py O

The next lemma can be easily obtained from Lemma 2.3 and are used to prove our

main results.

Lemma 2.4 Let a,b and P, be the coefficient vectors and the matrix given by equa-

tions (6) and (7), then

(a0 ] [ (-1)%, ]
ay (—l)lbn_l
Pn a; = (—-1)ibn_.i
anj i (_1)nb0 ]

(proof)  From the equation (5) and (7),

n
n
bai =D Phitn-j-

7=0
Here, we define a vector ¢ as follows:
Cp ag
c— Cn—1 =P, a
Co ay

Then,

n
— n .
Cn—i = Zpi,n—ja"‘f‘
=0
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It follows from Lemma 2.3 .tha.t

Comi = (=1)'3 plian-;
=0

= (=1)'bps.
Therefore,
(a0 ] [ (~1)%, ]
ay (—l)lbn_l
Pn a; = (—l)ibn_,‘
Lan | | (=1)"bo

This completes the proof. O
Now, we give the following definitions.
Definition 2.1 Let p(z) € PE(z) and q(s) € PE(s).
(i)  Define
1 n -1
pi() = 2lp(e)+ 2 p(=),
1 o
pa(2) = S{p(2) = 2"p(z7")}.

Then, p,(2) and p,(z) are said to be the symmetric part of p(z) and the anti-symmetric

part of p(z), respectively.
(ii)  Define
@) = 5{e(s) +a(~3)),
wls) = lals) —a(~9)).

Then, ¢.(s) and ¢,(s) are said to be the even part of ¢(s) and the odd part of q(s),

respectively. O

Lemma 2.5 In Definition 2.1, all decomposition is unique.
(proof) First, we prove that p(z) can be divided into p,(z) and p,(z) uniquely. We
assume that p(z) can be written by two way:

P(2) = pa1(2) + pa1(2) = psa(2) + paz(2) (9)
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where ps1(2) and ps2(2) are even parts of p(z), and p,1(z) and p,2(z) are odd parts of p(z).

And, we remark that

ps(271) = 27"pu(2),

pa(z-l) = —27"py(2).
From the equation (9),
f(2) = pa(2) = paa(2) = paz(2) — par(2). (10)
Then,
F(71) = 27{pa(2) = Pea(2)} = =27 {Paa(2) + par(2)}. (11)

From the equation (10) and (11),

Pa2(2) — Pa1(2) = —Ppa2(2) + pa1(2).
Hence, we obtain
Pai(2) = Pa2(2), pa(2) = Ps2(2).
Next, we prove the uniqueness of decomposition of ¢(s) in the similarly way.

We assume that ¢(s) can be written by two way:

() = ge1(8) + o1(s) = gea(s) + goa(s) (12)

where ge1(s) and g.2(s) are even parts of ¢(s), and g,1(s) and gs(s) are odd parts of g(s).

From the equation (12),
9(8) = ge1(8) — ge2(s) = go2(s) — gar(s). (13)
Then,
9(=5) = ge1(s) — gea(s) = —qu2(s) + o (5)- (14)
From the equation (13) and (14),
902(8) — go1(8) = —¢o2(8) + gor(s).
Hence,
G1(8) = ¢o2(s),  ger(s) = gea(s)-

This completes the proof. 0O



Let ps(2) and po(2) be the symmetric part of polynomial (1) and the anti-symmetric
part of polynomial (1), respectively. Further, Let ¢.(s) and g,(s) be the even part of
polynomial (4) and the odd part of polynomial (4), respectively. Then, if n is even, the

coeflicient vectors a, of p,(z), a, of p,(2), b of ¢.(s) and b, of ¢,(8) can be written as

follows.
[ an+ a0 ] ( an — ag | [ b, ] [ 0 ]
Qp-1 + Q1 Ap-1— O 0 bn—l
1 Qp_2 + as 1 Up-2 — Q3 bn—2 0
0,3:5 . 7aa=§' ,be= 7bo= . (15)
aiy + ap—1 a1 — Qp—1 0 by
ao+ an | | a0 —an | [ b0 | 0]

If n is odd, they can be written as follows.

an + Qo 1 F an — Qg ] [ 0 ] [ bn ]
Gp—1+ a1 Qp1 — 01 bn—1 0
1| an-2+ay 1| Gn-2—az 0 bn—2
a;= — " . y Qg = = . ,be= . ,bo= n. . (16)
2 2 : :
ay + an_q a; — Gp-1 0 by
Qo+ an | | G0 — Gp ] B bo i L 0 .

The next Theorem can be proved by using Lemma 2.4 and plays an important role to

prove our main results.

Theorem 2.1 Suppose that p(z) € PF(z) and ¢(s) € PF(s) are defined by polyno-
mials (1) and (4), respectively. And, let a, b and P, be the vectors and the matrix given

by equations (6) and (7). Moreover, let a,, a4, b. and b, be the coefficient vectors given

by (15) or (16). Then, if n is odd,

and if n is even,

(proof) The proof is given only for the case that n is even. In the case that n is odd,

we can prove it, similarly.



From the equation (15), the coefficient vector a, can be written by

Qp, + ao
Qn-1 + ay

Qp_2 + az
a, =

N | =

a; + an—q
a+a, |,

It follows from equations (8), (15) and Lemma 2.4 that

( [ a, ] [ ap ] ([ b ] [ b ) [ b, ]
an_1 . ay bn—-l _bn—l 0
’ Ap— a bn-— bn_ bn_
Pna's=']; Pn .2 +Pn .2 =']:' .2 + .2 = .2 =be-
2 : : 2 : : :
ax Gp—1 by —-b 0
\ L a0 | | an |) \L o | | & 1/ L b |
Similarly, we can easily obtain |
Pna'a. = bo
Hence, The proof can be completed. O

3 The Stability for A Linear Combination of Char-
acteristic Polynomials

In this section, we give necessary and sufficient conditions for a linear combination of
characteristic polynomials for discrete-time systems to be stable under certain assump-
tions.

The next lemma concerning continuous-time systems can be easily obtained from the

results of Bose[4].

Lemma 3.1 Let gi(s) € PR(s) (1 = 1,2,...,k), and let g.i(s) and g¢,i(s) (i =
1,2,...,k) be the even part of ¢;(s) and the odd part of ¢i(s) (s = 1,2,..., k), respectively.
Suppose that the following condition (a) or (b) is satisfied.
(@) ga(s) = gea(s) =+ = qei(s).
(b)  gor(s) = goa(s) = - = qa(s).
Then, the following two assertions are equivalent.
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(1) gi(s) € HE(s) (i = 1,2,...,k).

k
(1) D Ngi(s) € HE(s) forall \; €[0,1] :=1,2,...,k). O

=1

The next theorem is one of our main results. This theorem is a discrete-time systems

version of Lemma 3.1.

Theorem 3.1 Let pi(z) € PE(z) (i = 1,2,...,k), and let pyi(z) and p,i(z) (i =
1,2,...,k) be the symmetric parts of p;(z) and the anti-symmetric parts of p;(z) (¢ =
1,2,...,k), respectively.

Suppose that the following condition (a) or (b) is satisfied.

(@) Pa(z) = pa(z) = = pau(2).
(b) pal(z) = pa2(z) == pak(z)-
Then, the following two assertions are equivalent.

0)  p(e) € SH2) (i=1,2,...,k).

k
(ii) Y- dipi(z) € SE(2) for all X; € [0,1] (¢ = 1,2,..., k).
=1
(proof) Proof is given only for the case that n is even. In the case that n is odd, we

can easily prove it, similarly.

First, let P, be the matrix given by equations (6) and (7), and let
pi(z) = a2 + ain-—lzn_1 +-tap (Z =12,..., k)

Further, let a; denote the coefficient vector of p;(2) (i = 1,2,...,k), and define vectors

b; (: =1,2,...,k) as follows:

Defining ¢;(s) by

qi(s) 1= bins™ + bin—lsn_l + -+ bio (l =12,..., k)’

9



and denoting g.;(s) and g,;(s) by the even part of ¢;(s) and the odd part of ¢;(s). Further,

we define

k
q,\(S) = Z/\z‘b(s), )‘i € [03 1]7 1= 1)2)-“7""

=1

k
pa(z) = D Api(z), i €0,1], i =1,2,...,k

=1

Then, it follows from Lemma 2.1 and equation (17) that the following claim holds.
Claim 1 pi(2) € SR(2), (i =1,2,...,k) <= q(s) € HE(s), (6 =1,2,...,k).

Further, from Theorem 2.1 and the hypothesis (a) or (b), the following condition (1)

or (2) is satisfies:
(1) ge1(8) = gez(8) = -+ = qei(s).
(2)  goa(s) = goa(s) = -+ = gor(s)-
Then, it follows from Lemma 3.1 that
Claim 2 q(s) € HR(s), (i = 1,2,...,n) <= qx(s) € H(s).

If we show the following claim, the proof of this theorem follows from Claim 1-3.

Claim 3 ¢\(s) € H;(s) <= pa(2) € SF(2).

Therefore, we will prove Claim 3. First, we can write ¢)(s) in the following form:
aA(8) = Y (Mbinei + Aoboni + -+ + Akbpni)s™
=0

Then, the coefficient vector by of ¢\(s) can be written as

A1bin + Agboy + -+ -+ Apbin
b A1bin—1 + Aobon1 + -+ -+ Apbpn—1
A= .

A1bio + A2bog + -+ - + Akbro
= Abi+ Aoby + -+ Aiby

= MP,a;+ MPa,+ -+ A PLax. (18)
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Since the inverse matrix P! exists from Lemma, 2.2, it follows from (18) that

P7'by = Mai+ hag+ -+ Aag
AMain + A2aon + ¢+ - + Apapn
A1@1p—1 + A2a2n-1 + - + Mpagn_1

A1ay0 + Azaz0 + + - - + Agaxo
= ay

Now, construct the polynomial with coefficient vector a, as follows:
(Main + -+ A@sn) 2" + (Mot + - 4 Aphn-1)2" "+ -+ + (M@0 + -+ + Apago)
= M(@122" +a10212" 7 ot ar0) + o+ Ak(@rn2" F Q12" F -+ ago)
k
> Aipi(2)
i=1

= pa(2)

Therefore, the coefficient vectors @, and by, of py(z) and gy (s) satisfy the following equality.
are related by P, as follows:

Pna,\ = b)‘.

By Lemma 2.1, Claim 3 was proved.

This completes the proof of this theorem. O

4 An Example

Consider the following polynomial:
pa(z) = (1201 + 1325 4 11X3)2% 4+ (81 + 92 + TA3)2% — (A1 + 2X2)z — (A + 2),)

where A\; € [0,1] (¢ = 1,2,3). Then, py(2) is represented as a linear combination of the

following three polynomials.
PA(2) = Mipa(2) + Aapa(2) + Aaps(z)
where
pi(z) = 122° 4822 —2—1
pa(2) = 13224922 -22-2
pa(z) = 112° 4722

11



It can be easily checked that the hypothesis (a) of Theorem 3.1 is satisfied, i.e.,

11 7 7 11
pSI(z) = ps?(z) = psS(z) = ‘5‘23 + 52’2 =+ 52 + ?

where p,i(2) is the symmetric part of p;(z) for i = 1,2, 3.
Then, the stability of px(z) can be determined by checking the stability of the poly-
nomials p;(2), p2(z) and ps(z). In fact, since p;, ps and ps are all schur stable, we can see

P is schur stable for all A € [0, 1].

5 Conclusions

In this paper, necessary and sufficient conditions for a linear combination of characteristic
polynomials for discrete-time systems to be stable were given under certain assumptions.

This result is a discrete-time systems version of the result[4] of continuous-time systems.
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