The Stability for Linear Combinations of Characteristic Polynomials for Discrete-time Systems Koji Shiomi[†], Naohisa Otsuka^{††}, Hiroshi Inaba^{†††} and Rokuya Ishii[‡] December 25, 1995 ISE-TR-95-129 **key word :** Stability, Linear combinations of characteristics polynomials, Discrete-time systems, Bilinear transformation. [†] Doctoral Program in Engineering, University of Tsukuba, Tsukuba, Ibaraki 305, Japan. E-mail: shiomi@wslab.is.tsukuba.ac.jp ^{††} Institute of Information Sciences and Electronics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan. E-mail: otsuka@wslab.is.tsukuba.ac.jp ^{†††} Department of Information Sciences, Tokyo Denki University, Hatoyama, Hiki, Saitama 350-03, Japan. [†] Division of Electronics and Computer Engineering, Yokohama National University, Yokohama 240, Japan. # The Stability for Linear Combinations of Characteristic Polynomials for Discrete-time Systems Koji Shiomi[†], Naohisa Otsuka^{††}, Hiroshi Inaba^{†††} and Rokuya Ishii[‡] #### Abstract In this paper, stability for a linear combination of characteristic polynomials for discrete-time systems is studied. In order to investigate this problem, we study the transformation matrix derived by bilinear transformation and its properties. Under certain assumptions, necessary and sufficient conditions for a linear combination of k characteristic polynomials for discrete-time systems to be stable are obtained. # 1 Introduction The stability of convex combinations of two polynomials for continuous-time systems was studied by Białas and Garloff[2], Białas[3] and Bose[4]. And, the stability of polytope polynomials and linear combinations of k polynomials was studied by Bose[4]. On the other hand, for discrete-time systems, the stability of convex combinations of two polynomials was studied by Bose[4] and Ackermann and Barmish[5]. The objective of this paper is to study stability of a linear combination of k characteristic polynomials for discrete-time systems. In Section 2, we will study a transformation matrix P_n derived by bilinear transformation and its properties. In Section 3, necessary and sufficient conditions for a linear combination of k characteristics polynomials to be stable will be studied under certain assumptions. Section 4 will give an illustrative example. Finally, Section 5 will make some concluding remarks. [†] Doctoral Program in Engineering, University of Tsukuba, Tsukuba, Ibaraki 305, Japan. ^{††} Institute of Information Sciences and Electronics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan. ^{†††} Department of Information Sciences, Tokyo Denki University, Hatoyama, Hiki, Saitama 350-03, Japan. [‡] Division of Electronics and Computer Engineering, Yokohama National University, Yokohama 240, Japan. # 2 Matrix Representation of Bilinear Transformation and Its Properties In this section, some important relationships between the coefficient vector of n-th degree characteristic polynomials in the z-domain and the coefficient vector of the numerator of n-th degree characteristic polynomials in the s-domain by using bilinear transformations will be investigated. We first introduce the following notations. $$C^{H} := \left\{ x \in C \mid \text{Re}[x] < 0 \right\}.$$ $$C^{S} := \left\{ x \in C \mid |x| < 1 \right\}.$$ $$P_{n}^{R}(x) := \left\{ f(x) \mid f(x) = \sum_{i=0}^{n} a_{i}x^{i}, a_{i} \in \mathbf{R} \text{ for } i = 0, 1, \dots, n \right\}.$$ $$H_{n}^{R}(x) := \left\{ f(x) \in P_{n}^{R}(x) \mid \left\{ x \in \mathbf{C} | f(x) = 0 \right\} \subset \mathbf{C}^{H} \right\}.$$ $$S_{n}^{R}(x) := \left\{ f(x) \in P_{n}^{R}(x) \mid \left\{ x \in \mathbf{C} | f(x) = 0 \right\} \subset \mathbf{C}^{S} \right\}.$$ Here, we remark that $H_n^R(x)$ is the set of all n-th Hurwitz polynomials, and $S_n^R(x)$ is the set of all n-th Schur polynomials. Next, we consider the n-th characteristic polynomial of a discrete-time system given by $$p(z) := a_n z^n + a_{n-1} z^{n-1} + \dots + a_0 \in P_n^R(z), \qquad n \neq 0.$$ (1) We apply the bilinear transformation $z = \frac{s+1}{s-1}$ $(s \neq 1)$ to polynomial (1). Then, we obtain the following relation: $$p(z) = a_n \left(\frac{s+1}{s-1}\right)^n + a_{n-1} \left(\frac{s+1}{s-1}\right)^{n-1} + \dots + a_0$$ $$= \frac{1}{(s-1)^n} \{a_n(s+1)^n + a_{n-1}(s+1)^{n-1}(s-1) + \dots + a_0(s-1)^n\}$$ (2) $$=: \frac{1}{(s-1)^n} \{b_n s^n + b_{n-1} s^{n-1} + \dots + b_0\}.$$ (3) Further, we denote the numerator of equation (3) as $$q(s) := b_n s^n + b_{n-1} s^{n-1} + \dots + b_0.$$ (4) From equations (2) and (3), a relationship between the coefficients a_j and b_i can be easily obtained as follows. $$b_{n-i} = \sum_{j=0}^{n} \left\{ \sum_{k=0}^{i} \binom{n-j}{k} \binom{j}{i-k} (-1)^{i-k} \right\} a_{n-j}$$ (5) where $$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} := \frac{\alpha!}{(\alpha - \beta)!\beta!}$$. Now, we define the following coefficient vectors a,b and matrix P_n : $$\boldsymbol{a} := \begin{bmatrix} a_{n} \\ a_{n-1} \\ \vdots \\ a_{n-j} \\ \vdots \\ a_{0} \end{bmatrix}, \boldsymbol{b} := \begin{bmatrix} b_{n} \\ b_{n-1} \\ \vdots \\ b_{n-i} \\ \vdots \\ b_{0} \end{bmatrix}, P_{n} := \begin{bmatrix} p_{0,0}^{n} & p_{0,1}^{n} & \cdots & p_{0,j}^{n} & \cdots & p_{0,n}^{n} \\ p_{1,0}^{n} & p_{1,1}^{n} & \cdots & p_{1,j}^{n} & \cdots & p_{1,n}^{n} \\ \vdots & \vdots & \cdots & \vdots & \cdots & \vdots \\ p_{i,0}^{n} & p_{i,1}^{n} & \cdots & p_{i,j}^{n} & \cdots & p_{i,n}^{n} \\ \vdots & \vdots & \cdots & \vdots & \cdots & \vdots \\ p_{n,0}^{n} & p_{n,1}^{n} & \cdots & p_{n,j}^{n} & \cdots & p_{n,n}^{n} \end{bmatrix},$$ (6) where $$p_{i,j}^{n} := \sum_{k=0}^{i} \binom{n-j}{k} \binom{j}{i-k} (-1)^{i-k}$$ (7) for i, j = 0, 1, ..., n. From the equations (5) and (6), we have the following equality: $$P_n \boldsymbol{a} = \boldsymbol{b}. \tag{8}$$ Here, the matrix P_n has the following well-known properties. Lemma 2.1 Let P_n be the matrix defined by equations (6) and (7). Further, let $f(z) \in P_n^R(z)$ and $g(s) \in P_n^R(s)$. If the coefficient vectors $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ of f(z) and g(s) satisfy $$P_n \alpha = \beta$$. then, the following two assertions are equivalent. - (i) $f(z) \in S_n^R(z)$. - (ii) $g(s) \in H_n^R(s)$. **Lemma 2.2** [1] Let P_n be the matrix defined by equations (6) and (7). Then, the following property holds. $$P_n^2 = 2^n E_n \qquad (n \ge 1)$$ where E_n is a $(n+1) \times (n+1)$ identity matrix. Therefore, this implies the matrix P_n has the following inverse matrix: $$P_n^{-1} = \frac{1}{2^n} P_n \qquad (n \ge 1).$$ The next lemma can be easily obtained. **Lemma 2.3** Let $P_n = \{p_{i,j}^n\}$ be the matrix given by equations (6) and (7). Then, the elements $p_{i,j}^n$ $(i,j=0,1,\ldots,n)$ of P_n satisfy the following relations. $$p_{i,j}^n = (-1)^i p_{i,n-j}^n \qquad (i,j=0,1,\ldots,n).$$ (proof) The proof follows from the following equations. $$\begin{array}{lll} (-1)^{i}p_{i,n-j}^{n} & = & \sum\limits_{k=0}^{i} \left(\begin{array}{c} j \\ k \end{array}\right) \left(\begin{array}{c} n-j \\ i-k \end{array}\right) (-1)^{-k} & (k'=i-k) \\ & = & \sum\limits_{k'=0}^{i} \left(\begin{array}{c} j \\ i-k' \end{array}\right) \left(\begin{array}{c} n-j \\ k' \end{array}\right) ((-1)^{-1})^{i-k'} \\ & = & p_{i,j}^{n}. & \square \end{array}$$ The next lemma can be easily obtained from Lemma 2.3 and are used to prove our main results. **Lemma 2.4** Let a,b and P_n be the coefficient vectors and the matrix given by equations (6) and (7), then $$P_{n} \begin{bmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{i} \\ \vdots \\ a_{n} \end{bmatrix} = \begin{bmatrix} (-1)^{0}b_{n} \\ (-1)^{1}b_{n-1} \\ \vdots \\ (-1)^{i}b_{n-i} \\ \vdots \\ (-1)^{n}b_{0} \end{bmatrix}.$$ (proof) From the equation (5) and (7), $$b_{n-i} = \sum_{j=0}^{n} p_{i,j}^{n} a_{n-j}.$$ Here, we define a vector c as follows: $$c = \begin{bmatrix} c_n \\ c_{n-1} \\ \vdots \\ c_0 \end{bmatrix} := P_n \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix}.$$ Then, $$c_{n-i} = \sum_{j=0}^{n} p_{i,n-j}^{n} a_{n-j}.$$ It follows from Lemma 2.3 that $$c_{n-i} = (-1)^{i} \sum_{j=0}^{n} p_{i,j}^{n} a_{n-j}$$ $$= (-1)^{i} b_{n-i}.$$ Therefore, $$P_{n} \begin{bmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{i} \\ \vdots \\ a_{n} \end{bmatrix} = \begin{bmatrix} (-1)^{0}b_{n} \\ (-1)^{1}b_{n-1} \\ \vdots \\ (-1)^{i}b_{n-i} \\ \vdots \\ (-1)^{n}b_{0} \end{bmatrix}.$$ This completes the proof. \Box Now, we give the following definitions. **Definition 2.1** Let $p(z) \in P_n^R(z)$ and $q(s) \in P_n^R(s)$. (i) Define $$p_s(z) := \frac{1}{2} \{ p(z) + z^n p(z^{-1}) \},$$ $p_a(z) := \frac{1}{2} \{ p(z) - z^n p(z^{-1}) \}.$ Then, $p_s(z)$ and $p_a(z)$ are said to be the symmetric part of p(z) and the anti-symmetric part of p(z), respectively. (ii) Define $$q_e(s) := \frac{1}{2} \{q(s) + q(-s)\},$$ $q_o(s) := \frac{1}{2} \{q(s) - q(-s)\}.$ Then, $q_e(s)$ and $q_o(s)$ are said to be the even part of q(s) and the odd part of q(s), respectively. \Box Lemma 2.5 In Definition 2.1, all decomposition is unique. (proof) First, we prove that p(z) can be divided into $p_s(z)$ and $p_a(z)$ uniquely. We assume that p(z) can be written by two way: $$p(z) = p_{s1}(z) + p_{a1}(z) = p_{s2}(z) + p_{a2}(z)$$ (9) where $p_{s1}(z)$ and $p_{s2}(z)$ are even parts of p(z), and $p_{a1}(z)$ and $p_{a2}(z)$ are odd parts of p(z). And, we remark that $$p_s(z^{-1}) = z^{-n}p_s(z),$$ $p_a(z^{-1}) = -z^{-n}p_a(z).$ From the equation (9), $$f(z) := p_{s1}(z) - p_{s2}(z) = p_{a2}(z) - p_{a1}(z).$$ (10) Then, $$f(z^{-1}) = z^{-n} \{ p_{s1}(z) - p_{s2}(z) \} = -z^{-n} \{ p_{a2}(z) + p_{a1}(z) \}.$$ (11) From the equation (10) and (11), $$p_{a2}(z) - p_{a1}(z) = -p_{a2}(z) + p_{a1}(z).$$ Hence, we obtain $$p_{a1}(z) = p_{a2}(z), \qquad p_{s1}(z) = p_{s2}(z).$$ Next, we prove the uniqueness of decomposition of q(s) in the similarly way. We assume that q(s) can be written by two way: $$q(s) = q_{e1}(s) + q_{o1}(s) = q_{e2}(s) + q_{o2}(s)$$ (12) where $q_{e1}(s)$ and $q_{e2}(s)$ are even parts of q(s), and $q_{o1}(s)$ and $q_{o2}(s)$ are odd parts of q(s). From the equation (12), $$g(s) := q_{e1}(s) - q_{e2}(s) = q_{o2}(s) - q_{o1}(s).$$ (13) Then, $$g(-s) = q_{e1}(s) - q_{e2}(s) = -q_{o2}(s) + q_{o1}(s).$$ (14) From the equation (13) and (14), $$q_{o2}(s) - q_{o1}(s) = -q_{o2}(s) + q_{o1}(s).$$ Hence, $$q_{o1}(s) = q_{o2}(s), \qquad q_{e1}(s) = q_{e2}(s).$$ This completes the proof. \Box Let $p_s(z)$ and $p_a(z)$ be the symmetric part of polynomial (1) and the anti-symmetric part of polynomial (1), respectively. Further, Let $q_e(s)$ and $q_o(s)$ be the even part of polynomial (4) and the odd part of polynomial (4), respectively. Then, if n is even, the coefficient vectors \mathbf{a}_s of $p_s(z)$, \mathbf{a}_a of $p_a(z)$, \mathbf{b}_e of $q_e(s)$ and \mathbf{b}_o of $q_o(s)$ can be written as follows. $$\boldsymbol{a}_{s} = \frac{1}{2} \begin{bmatrix} a_{n} + a_{0} \\ a_{n-1} + a_{1} \\ a_{n-2} + a_{2} \\ \vdots \\ a_{1} + a_{n-1} \\ a_{0} + a_{n} \end{bmatrix}, \boldsymbol{a}_{a} = \frac{1}{2} \begin{bmatrix} a_{n} - a_{0} \\ a_{n-1} - a_{1} \\ a_{n-2} - a_{2} \\ \vdots \\ a_{1} - a_{n-1} \\ a_{0} - a_{n} \end{bmatrix}, \boldsymbol{b}_{e} = \begin{bmatrix} b_{n} \\ 0 \\ b_{n-2} \\ \vdots \\ 0 \\ b_{0} \end{bmatrix}, \boldsymbol{b}_{o} = \begin{bmatrix} 0 \\ b_{n-1} \\ 0 \\ \vdots \\ b_{1} \\ 0 \end{bmatrix}.$$ (15) If n is odd, they can be written as follows. $$\boldsymbol{a}_{s} = \frac{1}{2} \begin{bmatrix} a_{n} + a_{0} \\ a_{n-1} + a_{1} \\ a_{n-2} + a_{2} \\ \vdots \\ a_{1} + a_{n-1} \\ a_{0} + a_{n} \end{bmatrix}, \boldsymbol{a}_{a} = \frac{1}{2} \begin{bmatrix} a_{n} - a_{0} \\ a_{n-1} - a_{1} \\ a_{n-2} - a_{2} \\ \vdots \\ a_{1} - a_{n-1} \\ a_{0} - a_{n} \end{bmatrix}, \boldsymbol{b}_{e} = \begin{bmatrix} 0 \\ b_{n-1} \\ 0 \\ \vdots \\ 0 \\ b_{0} \end{bmatrix}, \boldsymbol{b}_{o} = \begin{bmatrix} b_{n} \\ 0 \\ b_{n-2} \\ \vdots \\ b_{1} \\ 0 \end{bmatrix}.$$ (16) The next Theorem can be proved by using Lemma 2.4 and plays an important role to prove our main results. Theorem 2.1 Suppose that $p(z) \in P_n^R(z)$ and $q(s) \in P_n^R(s)$ are defined by polynomials (1) and (4), respectively. And, let \boldsymbol{a} , \boldsymbol{b} and P_n be the vectors and the matrix given by equations (6) and (7). Moreover, let \boldsymbol{a}_s , \boldsymbol{a}_a , \boldsymbol{b}_e and \boldsymbol{b}_o be the coefficient vectors given by (15) or (16). Then, if n is odd, $$P_n \boldsymbol{a}_s = \boldsymbol{b}_o, \qquad P_n \boldsymbol{a}_o = \boldsymbol{b}_e.$$ and if n is even, $$P_n a_s = b_e, \qquad P_n a_a = b_o.$$ (proof) The proof is given only for the case that n is even. In the case that n is odd, we can prove it, similarly. From the equation (15), the coefficient vector a_s can be written by $$a_{s} = \frac{1}{2} \begin{bmatrix} a_{n} + a_{0} \\ a_{n-1} + a_{1} \\ a_{n-2} + a_{2} \\ \vdots \\ a_{1} + a_{n-1} \\ a_{0} + a_{n} \end{bmatrix},$$ It follows from equations (8), (15) and Lemma 2.4 that $$P_{n}\boldsymbol{a}_{s} = \frac{1}{2} \left(P_{n} \begin{bmatrix} a_{n} \\ a_{n-1} \\ a_{n-2} \\ \vdots \\ a_{1} \\ a_{0} \end{bmatrix} + P_{n} \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \\ \vdots \\ a_{n-1} \\ a_{n} \end{bmatrix} \right) = \frac{1}{2} \left(\begin{bmatrix} b_{n} \\ b_{n-1} \\ b_{n-2} \\ \vdots \\ b_{1} \\ b_{0} \end{bmatrix} + \begin{bmatrix} b_{n} \\ -b_{n-1} \\ b_{n-2} \\ \vdots \\ -b_{1} \\ b_{0} \end{bmatrix} \right) = \begin{bmatrix} b_{n} \\ 0 \\ b_{n-2} \\ \vdots \\ 0 \\ b_{0} \end{bmatrix} = \boldsymbol{b}_{e}.$$ Similarly, we can easily obtain $$P_n \boldsymbol{a}_a = \boldsymbol{b}_o$$. Hence, The proof can be completed. # 3 The Stability for A Linear Combination of Characteristic Polynomials In this section, we give necessary and sufficient conditions for a linear combination of characteristic polynomials for discrete-time systems to be stable under certain assumptions. The next lemma concerning continuous-time systems can be easily obtained from the results of Bose[4]. **Lemma 3.1** Let $q_i(s) \in P_n^R(s)$ (i = 1, 2, ..., k), and let $q_{ei}(s)$ and $q_{oi}(s)$ (i = 1, 2, ..., k) be the even part of $q_i(s)$ and the odd part of $q_i(s)$ (i = 1, 2, ..., k), respectively. Suppose that the following condition (a) or (b) is satisfied. (a) $$q_{e1}(s) = q_{e2}(s) = \cdots = q_{ek}(s)$$. (b) $$q_{o1}(s) = q_{o2}(s) = \cdots = q_{ok}(s).$$ Then, the following two assertions are equivalent. (i) $$q_i(s) \in H_n^R(s) \ (i = 1, 2, \dots, k).$$ (ii) $$\sum_{i=1}^k \lambda_i q_i(s) \in H_n^R(s) \text{ for all } \lambda_i \in [0,1] \ (i=1,2,\ldots,k). \quad \Box$$ The next theorem is one of our main results. This theorem is a discrete-time systems version of Lemma 3.1. **Theorem 3.1** Let $p_i(z) \in P_n^R(z)$ (i = 1, 2, ..., k), and let $p_{si}(z)$ and $p_{ai}(z)$ (i = 1, 2, ..., k) be the symmetric parts of $p_i(z)$ and the anti-symmetric parts of $p_i(z)$ (i = 1, 2, ..., k), respectively. Suppose that the following condition (a) or (b) is satisfied. (a) $$p_{s1}(z) = p_{s2}(z) = \cdots = p_{sk}(z)$$. (b) $$p_{a1}(z) = p_{a2}(z) = \cdots = p_{ak}(z).$$ Then, the following two assertions are equivalent. (i) $$p_i(z) \in S_n^R(z) \ (i = 1, 2, \dots, k).$$ (ii) $$\sum_{i=1}^{k} \lambda_i p_i(z) \in S_n^R(z)$$ for all $\lambda_i \in [0,1]$ $(i = 1, 2, ..., k)$. (proof) Proof is given only for the case that n is even. In the case that n is odd, we can easily prove it, similarly. First, let P_n be the matrix given by equations (6) and (7), and let $$p_i(z) =: a_{in}z^n + a_{in-1}z^{n-1} + \cdots + a_{i0}$$ $(i = 1, 2, \dots, k).$ Further, let a_i denote the coefficient vector of $p_i(z)$ (i = 1, 2, ..., k), and define vectors b_i (i = 1, 2, ..., k) as follows: $$\boldsymbol{b}_{i} = \begin{bmatrix} b_{in} \\ b_{in-1} \\ \vdots \\ b_{i0} \end{bmatrix} := P_{n} \boldsymbol{a}_{i} \qquad (i = 1, 2, \dots, k).$$ $$(17)$$ Defining $q_i(s)$ by $$q_i(s) := b_{in}s^n + b_{in-1}s^{n-1} + \dots + b_{i0}$$ $(i = 1, 2, \dots, k),$ and denoting $q_{ei}(s)$ and $q_{oi}(s)$ by the even part of $q_i(s)$ and the odd part of $q_i(s)$. Further, we define $$q_{\lambda}(s) := \sum_{i=1}^{k} \lambda_{i} q_{i}(s), \ \lambda_{i} \in [0, 1], \ i = 1, 2, \dots, k$$ $$p_{\lambda}(z) := \sum_{i=1}^{k} \lambda_{i} p_{i}(z), \ \lambda_{i} \in [0, 1], \ i = 1, 2, \dots, k.$$ Then, it follows from Lemma 2.1 and equation (17) that the following claim holds. Claim 1 $$p_i(z) \in S_n^R(z), (i = 1, 2, ..., k) \iff q_i(s) \in H_n^R(s), (i = 1, 2, ..., k).$$ Further, from Theorem 2.1 and the hypothesis (a) or (b), the following condition (1) or (2) is satisfies: (1) $$q_{e1}(s) = q_{e2}(s) = \cdots = q_{ek}(s).$$ (2) $$q_{o1}(s) = q_{o2}(s) = \cdots = q_{ok}(s).$$ Then, it follows from Lemma 3.1 that Claim 2 $$q_i(s) \in H_n^R(s), (i = 1, 2, ..., n) \iff q_{\lambda}(s) \in H_n^R(s).$$ If we show the following claim, the proof of this theorem follows from Claim 1-3. Claim 3 $$q_{\lambda}(s) \in H_n^R(s) \iff p_{\lambda}(z) \in S_n^R(z).$$ Therefore, we will prove Claim 3. First, we can write $q_{\lambda}(s)$ in the following form: $$q_{\lambda}(s) = \sum_{i=0}^{n} (\lambda_1 b_{1n-i} + \lambda_2 b_{2n-i} + \dots + \lambda_k b_{kn-i}) s^{n-i}.$$ Then, the coefficient vector \boldsymbol{b}_{λ} of $q_{\lambda}(s)$ can be written as $$\boldsymbol{b}_{\lambda} := \begin{bmatrix} \lambda_{1}b_{1n} + \lambda_{2}b_{2n} + \dots + \lambda_{k}b_{kn} \\ \lambda_{1}b_{1n-1} + \lambda_{2}b_{2n-1} + \dots + \lambda_{k}b_{kn-1} \\ \vdots \\ \lambda_{1}b_{10} + \lambda_{2}b_{20} + \dots + \lambda_{k}b_{k0} \end{bmatrix}$$ $$= \lambda_{1}\boldsymbol{b}_{1} + \lambda_{2}\boldsymbol{b}_{2} + \dots + \lambda_{k}\boldsymbol{b}_{k}$$ $$= \lambda_{1}P_{n}\boldsymbol{a}_{1} + \lambda_{2}P_{n}\boldsymbol{a}_{2} + \dots + \lambda_{k}P_{n}\boldsymbol{a}_{k}. \tag{18}$$ Since the inverse matrix P_n^{-1} exists from Lemma 2.2, it follows from (18) that $$P_n^{-1}\boldsymbol{b}_{\lambda} = \lambda_1\boldsymbol{a}_1 + \lambda_2\boldsymbol{a}_2 + \dots + \lambda_k\boldsymbol{a}_k$$ $$= \begin{bmatrix} \lambda_1a_{1n} + \lambda_2a_{2n} + \dots + \lambda_ka_{kn} \\ \lambda_1a_{1n-1} + \lambda_2a_{2n-1} + \dots + \lambda_ka_{kn-1} \\ \vdots \\ \lambda_1a_{10} + \lambda_2a_{20} + \dots + \lambda_ka_{k0} \end{bmatrix}$$ $$=: \boldsymbol{a}_{\lambda}$$ Now, construct the polynomial with coefficient vector \boldsymbol{a}_{λ} as follows: $$(\lambda_{1}a_{1n} + \dots + \lambda_{k}a_{kn})z^{n} + (\lambda_{1}a_{1n-1} + \dots + \lambda_{k}a_{kn-1})z^{n-1} + \dots + (\lambda_{1}a_{10} + \dots + \lambda_{k}a_{k0})$$ $$= \lambda_{1}(a_{1n}z^{n} + a_{1n-1}z^{n-1} + \dots + a_{10}) + \dots + \lambda_{k}(a_{kn}z^{n} + a_{kn-1}z^{n-1} + \dots + a_{k0})$$ $$= \sum_{i=1}^{k} \lambda_{i}p_{i}(z)$$ $$= p_{\lambda}(z)$$ Therefore, the coefficient vectors \boldsymbol{a}_{λ} and \boldsymbol{b}_{λ} of $p_{\lambda}(z)$ and $q_{\lambda}(s)$ satisfy the following equality. are related by P_n as follows: $$P_n \boldsymbol{a}_{\lambda} = \boldsymbol{b}_{\lambda}.$$ By Lemma 2.1, Claim 3 was proved. This completes the proof of this theorem. # 4 An Example Consider the following polynomial: $$p_{\lambda}(z) = (12\lambda_1 + 13\lambda_2 + 11\lambda_3)z^3 + (8\lambda_1 + 9\lambda_2 + 7\lambda_3)z^2 - (\lambda_1 + 2\lambda_2)z 2\lambda_$$ where $\lambda_i \in [0, 1]$ (i = 1, 2, 3). Then, $p_{\lambda}(z)$ is represented as a linear combination of the following three polynomials. $$p_{\lambda}(z) = \lambda_1 p_1(z) + \lambda_2 p_2(z) + \lambda_3 p_3(z)$$ where $$p_1(z) = 12z^3 + 8z^2 - z - 1$$ $$p_2(z) = 13z^3 + 9z^2 - 2z - 2$$ $$p_3(z) = 11z^3 + 7z^2$$ It can be easily checked that the hypothesis (a) of Theorem 3.1 is satisfied, i.e., $$p_{s1}(z) = p_{s2}(z) = p_{s3}(z) = \frac{11}{2}z^3 + \frac{7}{2}z^2 + \frac{7}{2}z + \frac{11}{2}$$ where $p_{si}(z)$ is the symmetric part of $p_i(z)$ for i = 1, 2, 3. Then, the stability of $p_{\lambda}(z)$ can be determined by checking the stability of the polynomials $p_1(z)$, $p_2(z)$ and $p_3(z)$. In fact, since p_1 , p_2 and p_3 are all schur stable, we can see p_{λ} is schur stable for all $\lambda \in [0,1]$. ## 5 Conclusions In this paper, necessary and sufficient conditions for a linear combination of characteristic polynomials for discrete-time systems to be stable were given under certain assumptions. This result is a discrete-time systems version of the result[4] of continuous-time systems. ## References - [1] N. K. Bose, "Properties of the Q_n -Matrix in Bilinear Transformation," Proceedings of The IEEE, Vol.71, pp.1110-1111, 1983. - [2] S. Białas and J. Garloff, "Convex Combinations of Stable Polynomials," Journal of the Franklin Inst., Vol.319, No.3, pp.373-377, 1985. - [3] S. Białas, "A Necessary and Sufficient Condition for the Stability of Convex Combinations of Stable Polynomials or Matrices," Bulletin of the Polish Academy of Sci. Tech. Sci., Vol.33, No.9-10, pp.473-480, 1985. - [4] N. K. Bose, "A System-Theoretic Approach to Stability of Sets of Polynomials," Contemporary Mathematics, Vol.47, pp.25-34, 1985. - [5] J. E. Ackermann and B. R. Barmish, "Robust Schur Stability of a Polytope of Polynomials," IEEE Trans. on Automatic Control, Vol.33, No.10, pp.984-986, 1988.